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Overview

✤ Introduction to Radiotherapy
✤ The radiotherapy journey
✤ Radiotherapy delivery 

✤ Identifying Organs and Planning
✤ CT scanning
✤ Treatment planning

✤ Using Atlas Information to Improve Treatment
✤ For automatic segmentation and contouring
✤ Real-time, adaptive, radiotherapy planning
✤ Outcome-driven radiotherapy
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Image Verification and Treatment
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Using an Atlas for Segmentation

•  11 radiation oncologists from 5 

difference centres 

•  GTV on CT for 22 patients 

•  Large observer variation 

•  Considerable variation in style 

Steenbakkers et al., Observer variation in target volume delineation of lung cancer related to radiation oncologist-
computer interaction: A Big Brother Evaluation. Radiother Oncol 2005;77:182-190.
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Using an Atlas for Segmentation

Left, CT slice through a prostate and (right) the corresponding MR scan. Khoo and Joon 2006. 



Image Analysis for Segmentation
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Image Analysis for Segmentation

Statistical Texture Analysis for GTV Classification on CT Images

Another feature F3 corresponding to PC 3 can just be the sum of Feature 3: correlation over

d = 1, 2, 3, 4:

F2 =
4�

i=1

(F3(d = i)) (4.8)

Figure 4.9

The F1 and F2 are scattered in Figure 4.9. The red dots stand for the features from ROIs

within GTV while the blue dots stand for the features from ROIs of non-GTV. F1 represents

the difference of two homogeneity measurements. From the scatter plot it can be seen as d

varied the GTVs had the difference of two entropies represented by F1 much smaller than the

non-GTVs, which implies that statistically the GTVs are more homogeneous than non-GTVs.

F3 alone show limited separation power; however it assists the F1. For understanding the

distribution of the features, the conditional probability, or likelihood function can be estimated:

p(F1, F2|Ti) ∼ N(µi,Σi) (4.9)

where N(µi,Σi) is the two dimensional Gaussian distribution with mean vector µi and covari-
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Automatic Contouring

GTV Auto-contouring: Combining Texture Analysis, Probabilistic Atlas and Anatomical
Knowledge
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Figure 6.1
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H. Laio, Steel R, W.H. Nailon, D.B. McLaren and S. McLaughlin. Entropy and wavelet denoising for enhancing the bladder 
prostate junction on radiotherapy planning CT images. Submitted to the 15th International Conference on Medical Image 
Computing and Computer Assisted Intervention (MICCAI), 2012.



Automatic Contouring
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GTV Auto-contouring: Combining Texture Analysis, Probabilistic Atlas and Anatomical
Knowledge
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Figure 6.3

Because the sizes of the bladders varied considerably for different patients, the positions of the

images were normalized to the interval of [0, 1]. The first superior slice was in the position of

0 while the last inferior slice was in the position of 1, with all other slices in between. The

superior slices therefore referred to the slices with the normalized positions in [0, 0.25], the

mid-range slices in (0.25, 0.75] while the inferior slices in (0.75, 1]. Note this was just a coarse

measure of the image positions.

For each CT image a DSC was calculated. The exact DSCs are scattered in Figure ?? against

the normalized positions. In order to show the tendency, the positions were divided into ten

intervals: [0, 0.1), [0.1, 0.2), etc. . The mean of the DSCs in each interval was calculated and

plotted against the positions in Figure 6.3(a) for high sensitivity scheme and in Figure 6.3(b)

for high specificity scheme.

To further examine the automatic contours, in Tables 6.1 the means and standard deviation

(STD) of DSCs in the superior, mid and inferior range are listed. The mean DSCs by high sen-

sitivity scheme are found consistently smaller than the mean DSCs by high specificity scheme.

For both schemes in the mid-range the automatic contours showed high agreement with the

clinical contours. This is comparable to the performance reported by other researchers in auto-

segmentation of the genitourinary organs. In particular, in a qualitative and quantitative study

by six clinicians on the use of the Varian SmartSegmentation software (Varian Medical Sys-

tems, Inc., Palo Alto, CA, USA) to segment the prostate, bladder and rectum of 39 patients, the
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GTV Auto-contouring: Combining Texture Analysis, Probabilistic Atlas and Anatomical
Knowledge

Location High Sensitivity Scheme High Specificity Scheme
µ σ µ σ

Superior 0.5763 0.2288 0.6464 0.2396
Mid 0.8160 0.0858 0.8643 0.0850

Inferior 0.6727 0.2145 0.6731 0.2228

Table 6.1: Mean and variance of DSCs between automatic and clinical contours in different
positions of male patients.

overall degree of support given by clinicians to the automatic technique was 90% [2]. It was

also noted by Husykens et al. that agreement between the clinicians and the auto-segmentation

result was higher in the middle of the bladder, with agreement typically in the 80% to 90%

range. This was followed by dips in the cranio-caudal extremes as shown in Figure 1.2. In our

work this fall-off in performance at the cranio-caudal extremes (superior, inferior regions) was

also observed. This is shown in Figure 6.3(a) and Figure 6.3(b).

6.3.3 Clinical Evaluation

6.4 Refining the Classification Results by Probabilistic Atlas

6.4.1 Probabilistic Atlas Construction using Rigid Registration

The purpose of using a probabilistic atlas is to quantify the anatomical constraints into posterior

probabilities to improve the results from texture analysis. The form of posterior probability is

chosen because it allows the texture and atlas to give conditionally independent assessments

of whether an ROI should be classified as GTV. By combining the posterior probabilities, the

results may be improved. In order to form a probabilistic atlas for test set, all the 3-D clinical

bladder masks in the training set were rigidly registered together. This was done by first ran-

domly selecting one of the K oncologist segmented bladder binary masks as a reference, then

uniformly scaling the volumes of the other K 1 3-D bladder masks to equal the reference mask,

and rigidly registering the K 1 masks one-at-a-time to the reference mask. The registrations

were performed using the Insight Toolkit (ITK) and each attempted to maximize the overlap

volume between the two masks. The K scaled and co-registered masks were then summed and

normalized to form a probabilistic atlas. Thus where all masks overlapped, the probabilistic

atlas would have value 1, falling progressively to 0 where no overlap of masks existed.
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Qualitative Evaluation

H. Laio, Steel R, W.H. Nailon, D.B. McLaren and S. McLaughlin. Entropy and wavelet denoising for enhancing the bladder 
prostate junction on radiotherapy planning CT images. Submitted to the 15th International Conference on Medical Image 
Computing and Computer Assisted Intervention (MICCAI), 2012.
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Because the sizes of the bladders varied considerably for different patients, the positions of the

images were normalized to the interval of [0, 1]. The first superior slice was in the position of

0 while the last inferior slice was in the position of 1, with all other slices in between. The

superior slices therefore referred to the slices with the normalized positions in [0, 0.25], the

mid-range slices in (0.25, 0.75] while the inferior slices in (0.75, 1]. Note this was just a coarse

measure of the image positions.

For each CT image a DSC was calculated. The exact DSCs are scattered in Figure ?? against

the normalized positions. In order to show the tendency, the positions were divided into ten

intervals: [0, 0.1), [0.1, 0.2), etc. . The mean of the DSCs in each interval was calculated and

plotted against the positions in Figure 6.3(a) for high sensitivity scheme and in Figure 6.3(b)

for high specificity scheme.

To further examine the automatic contours, in Tables 6.1 the means and standard deviation

(STD) of DSCs in the superior, mid and inferior range are listed. The mean DSCs by high sen-

sitivity scheme are found consistently smaller than the mean DSCs by high specificity scheme.

For both schemes in the mid-range the automatic contours showed high agreement with the

clinical contours. This is comparable to the performance reported by other researchers in auto-

segmentation of the genitourinary organs. In particular, in a qualitative and quantitative study

by six clinicians on the use of the Varian SmartSegmentation software (Varian Medical Sys-

tems, Inc., Palo Alto, CA, USA) to segment the prostate, bladder and rectum of 39 patients, the
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Automatic Contouring - GBM

Figure 7: This is a slice brain MRI scan, the blue contour is drawer by
experienced physician, and the red contour is generated by level set
methods

4. Experimental Results

5. Notes - whn

1. The references on inter- and intra-observer error
are rather out of date - update these for the final
version of the paper.

2. Need to make sure that there are sufficient refer-
ences from the journal where this will be submit-
ted to - it will be either Transactions on Medical
Imaging or this, Journal of Medical Imaging.

3. Be sure to state that in radiotherapy we have a
very specific problem which is to correlate a pre-
operative MR image with a post-operative CT im-
age. Emphasise this in the introduction section
with pictures.

4. Be careful not to be criticised for using just a level
set approach. Most authors are combining the level
set with other approaches such as an atlas-based
approach. Stress that it is difficult to construct an
atlas for tumours because of the variation that ex-
ists - it’s not like a patient atlas of similar anatomy
- no two tumours are the same.

5. There needs to be a review of the existing litera-
ture. This should go before the Method section.

6. I think a table similar to that produced by Corso
et al., but concentrating purely on atlas- and non-
atlas-based approaches would be useful. Perhaps
not focusing on atlas and non-atlas - could be use-
ful to summarise the papers discussed in a table

Figure 8: Green: The initial contour of the level set function; Red:
Converged contour generated by the Level set method proposed
above; Blue: The Gross Tumor contour delineated by an experienced
physician

putting down: authors; description; type; cases; ac-
curacy and time.

7. Perhaps incorporate the main findings of the study
by Mazzara on variability. This is analogous to the
work by Steenbakkers.

6. References

Aloui, K., Naceur, M. S., 2009. 3d brain tumor segmentation using
level sets methods and meshes simplification from volumetric mr
images. World Academy of Science, Engineering and Technology
57.

Armstrong, C. J., Price, B. L., Bartlett, W. A., 2007. Interactive seg-
mentation of image volumes with live surface. Computer Graphics
31 (2), 212–229.

Birbeck, N., Cozbas, D., Jagersand, M., Murtha, A., Kesztyues,
T., Dec 2009. An interactive graph cut method for brain tumour
segmentation. In: Workshop on applications of computer vision
(WACV). pp. 1–7.

Bomford, C., Kunkler, I., October 2002. Walter and Miller’s Textbook
of Radiotherapy: Radiation Physics, Therapy and Oncology, 6th
Edition. Churchill Livingston.

Caselles, V., Catte, F., Coll, T., Dibos, F., 1993. A geometric model
for active contours in image processing. Numerical Mathematics
66, 1–31.

Caselles, V., Kimmel, R., Sapiro, G., 1997. Geodesic active contours.
Int J Comp. VIS 22, 61–79.

Ciofolo, C., Barillot, C., 2009. Atlas-based segmentation of 3d cere-
bral structures with competitive level sets and fuzzy control. Med-
ical Image Analysis 13, 459–470.

Coen, R., Roel, S., Isabelle, F., Joop, D., Peter, N., van Herk Marcel,
P. F. . E. A. . K. J. . P. F. ., 2010. Decreased 3d observer variation
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Using an Atlas for Adaptive RT

Improving the Accuracy of Radiotherapy Using Information from an Atlas
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Improving the Accuracy of Radiotherapy Using Information from an Atlas

Radiotherapy 
Planning CT Scan Radiotherapy Plan

Time-of-Treatment 
Imaging (CBCT) /

(PET?)

Atlas - Anatomical/
planning information

Select best match for 
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An Atlas for Outcome-driven RT



An Atlas for Outcome-driven RT

76 U. Bağcı et al. / Computerized Medical Imaging and Graphics 36 (2012) 72– 84

Fig. 1. Anatomical lung segments: B1: apical, B2: posterior, B3: anterior, B4: lateral, B5: medial, B6: superior, B7: basal medial, B8: basal anterior, B9: basal lateral, B10: basal
posterior (partly from [119], with permission).

Fig. 2. Overview of different feature sets used in CAD systems for lung diseases.

metastases, miliary TB, or fungal infections. Fig. 3b and c illustrate
examples of nodular patterns seen in chest CT scans.

Computerized detection of nodules and nodular patterns: Shape-
based features are often used to detect nodular patterns in chest
radiographs and CT scans. Published reports indicate that size,
volume, area, diameter, circularity for 2D, form factor, solidarity
[48,49], thickness, top-hat filtering, mean curvature [38], shape
index, Gaussian curvature, sphericity for 3D [50–52],  surface
smoothness, shape irregularity [53], roundness, center of mass [54],

compactness, inertia matrix [55], and surface curvature [56] are the
most effective and useful features for characterizing nodular pat-
terns. For example, lung nodules come in two basic forms: solid and
GGO (partly solid and non-solid). In order to discriminate GGO nod-
ules, which are much more likely to be malignant [57], from solid
nodules, a shape feature can be used to define sphericity, solidity
or circularity/roundness criteria [50] based on the fact that GGO
nodules have more irregular shapes and less well defined bound-
aries than solid nodules. Fractal-based features can also be used to

Fig. 3. (a) Consolidation, (b) nodules and nodular structures, (c) ground glass nodular opacities.



An Atlas for Outcome-driven RT

✤ Pre and post-RT Patient Information
✤ Smoking status
✤ Co-morbidities
✤ Drugs
✤ Pathology
✤ Stage & Grade
✤ Exercise tolerance
✤ Pneumonitis grading (0, 1 mild, 2 moderate, 3 severe, 4 death)
✤ Planning target volume (volume irradiated)
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An Atlas for Outcome-driven RT

                          

Radiotherapy 
Planning CT Scan Radiotherapy Plan

Time-of-Treatment 
Imaging (CBCT) /

(PET?)

Atlas - Anatomical, 
Biological, Planning 
and Outcome Data

New RT Plan 
from Atlas

Atlas - Anatomical, 
Biological, Planning 
and Outcome Data
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