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There is typically considerable variation in the level of infectivity of parasites and the degree of resistance of hosts within

populations. This trait variation is critical not only to the evolutionary dynamics but also to the epidemiology, and potentially

the control of infectious disease. However, we lack an understanding of the processes that generate and maintain this trait

diversity. We examine theoretically how epidemiological feedbacks and the characteristics of the interaction between host types

and parasites strains determine the coevolution of host–parasite diversity. The interactions include continuous characterizations of

the key phenotypic features of classic gene-for-gene and matching allele models. We show that when there are costs to resistance

in the hosts and infectivity in the parasite, epidemiological feedbacks may generate diversity but this is limited to dimorphism,

often of extreme types, in a broad range of realistic infection scenarios. For trait polymorphism, there needs to be both specificity

of infection between host types and parasite strains as well as incompatibility between particular strains and types. We emphasize

that although the high specificity is well known to promote temporal “Red Queen” diversity, it is costs and combinations of hosts

and parasites that cannot infect that will promote static trait diversity.
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Significant phenotypic and genetic diversity is typical of both

hosts in terms of their resistance and of parasites in terms

of their ability to infect (Allison 1954; Bergelson et al. 2001;

Schmid-Hempel 2003; Casanova and Abel 2007). For example,

the gene families that are part of the pathogen recognition path-

ways, such as the major histocompatibility complex (MHC) of

mammals and R genes in plants, have loci with many diverse

alleles, and phenotypically this leads to considerable variation

in infection probability for different host–parasite combinations

(Bergelson et al. 2001; Penn et al. 2002). This diversity has im-

portant implications not only for individuals but for the epidemi-

ology of the disease (Longini 1983; Lively 2010a), the effective

treatment and management of disease (Anderson and May 1991),

and in particular for the evolution of both hosts and parasites

(Schmid-Hempel 2011). When natural or artificial selection, in-

cluding drug treatment, acts on this diversity, there is the potential

for rapid evolution with major implications to health and biodi-

versity (Altizer et al. 2003). It is therefore critical to understand

the processes that generate and maintain diversity in both the

host and parasite. Clearly, diversity will be generated through
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both spatial and temporal heterogeneity in the environment

(Thompson 1994; Gavrilets and Michalakis 2008) but even in

homogeneous environments, coevolution may generate the static

coexistence of diverse host and parasite strains (Brockhurst et al.

2004). We therefore need to understand what characteristics of

host and parasite interactions may generate this diversity de novo

within populations and maintain it over time. One fundamen-

tal characteristic of host/parasite interactions is that when either

evolves, there are implications to the prevalence of the disease in

the population. Such epidemiological feedbacks have been shown

to have the potential to cause negative frequency dependence that

may generate diversity (Boots and Haraguchi 1999; Best et al.

2009, 2010). Another fundamental characteristic is the degree of

specificity in the way host types and parasite strains interact to

cause infection and this is known to be important to the gener-

ation of temporal “Red Queen” diversity (Van Valen 1973; Bell

1982; Frank 1993b,c, 1994; Agrawal and Lively 2002; Lively

2010b). Here, we develop a general coevolutionary theory that

addresses the role of these two fundamental characteristics of

host–parasite interactions, epidemiological feedbacks, and infec-

tion interactions in generating diversity.

There is a long tradition of theory that uses explicitly ge-

netic coevolutionary models to examine how specificity between

hosts types and parasites strains may lead to temporal diversity

due to the negative frequency dependence that the specificity

creates (Frank 1993b,c, 1994; Agrawal and Lively 2002; Lively

2010b). In particular, matching allele (MA) models (Frank 1993a;

Agrawal and Lively 2002) assume that only particular combina-

tions of host types and parasite strains lead to infection whereas

gene-for-gene (GFG) models assume complementary major gene

interactions between hosts and parasites, but assume some para-

sites infect a wider range of host types (Flor 1956; Leonard 1977;

Agrawal and Lively 2002). MA models tend to lead to temporal

“Red Queen” variation in genotypes whereas those based on GFG

assumptions only show temporal diversity if there are costs to a

wider infection range for the parasite or narrower susceptibility

or through drift (Frank 1993b,c, 1994; Agrawal and Lively 2002;

Lively 2010b). A key insight of these models is that the temporal

diversity created by cycles is more likely with the highly spe-

cific interactions of MA than with the variation in infection and

susceptible ranges of the GFG models (Frank 1993b; Agrawal

and Lively 2002). Effects such as spatial structure, reinfection

of individual hosts, short parasite generation times, and, criti-

cally, multilocus interactions do, however, increase the chance

of temporal dynamics in GFG host–parasite models (Damgaard

et al. 1994; Sasaki 2000; Tellier and Brown 2007a,b, 2009). This

assumption of multilocus interactions is important because the ini-

tial models were inspired by crop pathogen systems (Flor 1956)

that had been bred for major gene resistance and therefore as-

sumed major gene interactions but in many natural systems, in-

fection is likely to be quantitative determined by many loci or

alleles (Frank 1994; Sasaki 2000; Tellier and Brown 2007b). The

key insight from this work is that highly specific matching inter-

actions between hosts and parasites promote cycles and therefore

temporal diversity in hosts and parasites. More broadly, similar

insights are gained from predator–prey models in which bidirec-

tional (matching) interactions are more likely to promote cycles

than unidirectional (equivalent to GFG) ones (Abrams 2000), and

general models of coevolution of multilocus quantitative genetic

traits that show cycles in antagonistic (predator–prey) interactions

with matching interactions (Nuismer et al. 2005).

The nature of the infection interaction between host types

and parasite strains and in particular the degree of specificity

is therefore critical in generating temporal diversity, but which

processes lead to stable phenotypic trait diversity within popu-

lations? Multilocus GFG models can show stable genetic vari-

ation but only limited trait variation within the host (Sasaki

2000) and metapopulation structure may temporally maintain

trait diversity particularly in the parasite at intermediate disper-

sal rates (Thrall and Burdon 2002). Diversity can also be main-

tained by mutation and drift in multilocus GFG models (Salathe

et al. 2005). Quantitative genetic models explicitly assume that

there is variation in host types and parasite strains (Nuismer

et al. 2005; Nuismer et al. 2007) but this does not address the

question of which processes generate and maintain multiple traits

within populations of hosts and parasites. GFG models can show

stable polymorphisms, with the coexistence of different pheno-

types, if there are additional factors such as multiple infection

within a host generation that generate direct frequency depen-

dence (Tellier and Brown 2007a,b, 2009), but it is increasingly

recognized that ecological feedbacks and density dependence

within host populations are critical in generating diversity in host–

parasite interactions (Boots and Haraguchi 1999; Best et al. 2009,

2010; Boots et al. 2012).

In many host–parasite interactions, there is variation in in-

fectivity by parasite strains or resistance by host types that is

universal, and not specific to particular combinations of geno-

types (Boots and Haraguchi 1999; Antonovics et al. 2002; Hall

et al. 2007; Duffy et al. 2008; Boots 2011). Specificity is critical

to the generation of temporal diversity in MA and GFG models,

but theory that assumes nonspecific infection interactions and also

explicitly models epidemiological feedbacks shows that disrup-

tive selection can occur due to negative frequency dependence

created by the ecological feedbacks (Boots and Haraguchi 1999;

Best et al. 2009, 2010; Boots et al. 2012). However, these simu-

lations predict only dimorphisms of extreme types in either host

or parasite and not the diversity that we see in nature (Boots and

Haraguchi 1999; Best et al. 2009). In contrast, if there is vari-

ation in parasite infectivity and host susceptibility range, which

captures the specificity assumed in GFG models along with costs
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to resistance, epidemiological feedbacks can lead to considerable

diversity in both hosts and parasites (Best et al. 2010).

In summary, existing theory clearly tells us that the specificity

of the host–parasite infection interactions is important in the gen-

eration of trait diversity, and it is also clear that epidemiological

feedbacks can generate diversity, but we do not understand what

characteristics of hosts and parasite generate polymorphism rather

than dimorphism. By examining a range of realistic infection sce-

narios, we develop a general theory on the role of costs, infection

specificity, and epidemiology to the coevolution of host–parasite

diversity.

Model Framework
We examine the coevolution of hosts and parasites where the key

epidemiological parameters depend on the interaction between

specific hosts and parasites. The framework considers n hosts

types and m parasite types, and represents the dynamics of sus-

ceptible hosts of type h, Xh , and infected hosts of type h infected

with parasite type p, Yhp with the following equations:

d Xh
/

dt = ah Xh − dhHXh − bh Xh −
∑

p
βhp XhYp

+
∑

p
γhpYhp, (1)

dYhp
/

dt = βhp XhYp − �hpYhp, (2)

where the total host density H = ∑
h Xh+

∑
p Yp, Yp = ∑

h Yhp,

h = 1, ..., n; p = 1, ..., m, and �hp = αhp + bh + γhp.

Here, for host type h, ah represents the birth rate, bh the

natural death rate, and dh acts to reduce the birth rate due to

density dependence. The terms αhp and γhp represent the disease-

induced mortality rate (virulence) and recovery rate for hosts of

type h infected with parasite type p. The parameter βhp represents

the transmission coefficient of infection for susceptible hosts of

type h challenged by a parasite of type p (carried by a host of

any type). The framework ((1) and (2)) encompasses all of the

simplified models that will be outlined for specific biological

scenarios.

Within the model framework, we consider a range of host–

parasite infection relationships. The nature of the specificity of

host–parasite interactions could be determined empirically by in-

oculations of all parasite strains on all host types. Figure 1 shows

a series of theoretical inoculation matrices represented as “heat”

diagrams (in an analogy to thermal imaging, the strength of the

interaction is represented by the color on the matrix), where we

assume that resistance and infectivity are quantitative traits that

combine to produce different strengths of infection. Infectivity

and resistance may be universal such that the most infective par-

asite strain is more infective to every host type and the most

resistant host type is the least susceptible to all parasite strains

(Fig. 1A). Our second major class of interaction (Fig. 1B) cap-

tures the phenotypic outcome of GFG models. As such, there is

specificity, but it comes in the form of differences in the num-

ber of host types that can be infected or the range of parasites

that can be resisted. In the third class (Fig. 1C), there is tight

specificity where particular host types are infected by particular

parasite strains. As such, it is a continuous model that captures

the phenotypic assumption of MA models. The three heat dia-

grams therefore represent the patterns that capture the universal

(Fig. 1A), range (GFG; Fig. 1B), and matching (alleles; Fig. 1C)

infection mechanisms with our continuous assumption of traits

underpinned by many alleles at multiple loci. The range matrix

represents nested networks that have been shown to be typical in

host–phage interactions (Flores et al. 2011) whereas the match-

ing matrix represents a highly modular one. We consider infection

matrices that range from completely unspecific, through variation

in specificity to consistently high specificity.

We build epidemiological models that have the three fun-

damental transmission interactions shown in Figure 1 and then

use a combination of community ecology models that predict the

maximum number of host types and parasite strains that can be

supported (Bowers and Hodgkinson 2001) and adaptive dynamics

(AD) theory (Geritz et al. 1998) that examines whether branch-

ing can occur in monomorphic and then dimorphic populations

followed by explicit coevolutionary simulations. In this way, we

determine analytically (1) how many strains and types are possi-

ble, and (2) whether branching can occur under the assumption of

additive genetics and weak selection. We then test these predic-

tions using simulations where we can relax the additive and weak

selection assumptions.

Methods
Throughout, the initial analysis uses a community dynamics (CD)

framework to determine analytically the maximum number of

strains that can coexist. The CD analysis seeks to determine

the nontrivial equilibrium of (1) and (2) and in particular assess

whether an equilibrium exists that supports multiple host and/or

parasite types. If the CD framework produces restrictions to the

number of coexisting strains, then this imposes an upper limit on

strain diversity that can arise through a coevolutionary process.

AD is used to determine the coevolutionary outcome of the

model system and to assess whether the levels of diversity pre-

dicted by the CD methods can be attained through evolutionary

processes. Under the assumption that the evolving life-history pa-

rameters for the host are the host birth rate and host resistance

(through its contribution to the transmission term) and for the

parasite they are virulence and transmissibility (again through
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Figure 1. Transmission functional forms and evolutionary simulations when there are no costs to the evolution of host resistance or

parasite transmission. Subpanels A(i)–C(i) indicate the values of the transmission coefficient, βhp, for susceptible host type h against 11

representative parasite strains ( p = 0, 1, ..., 10) from the continuous distribution of the parasite with strain p = 0 indicated in red and

other types progressing in order from this strain. A(ii)–C(ii) display “heat” diagrams where the value of βhp is shown for a continuous

combination of susceptible host types h against parasite strains p. Simulations of the evolutionary behavior for the model represented

by equations (1)–(2) with the respective transmission functions are shown for the host in A(iii)–C(iii) and for the parasite in A(iv)–

C(iv). The specific functional forms for the transmission functions are for (A) βhp = 0.1 p(12 − h) + 0.5, (B) βhp = 10(1 − 1(1 + e−(h− p))),

(C) βhp = 10 exp(−((h − p)/2)2). Other parameters are b = 0.5, d = 0.5, α = 1.5, γ = 0.5. The simulation methods are described in the

Supporting Information.

its contribution to the transmission term), we can determine ex-

pressions for host and parasite fitness. We calculate the fitness

expressions for rare mutant types (which we will denote as h̃ and

p̃ for host and parasite, respectively) attempting to invade an en-

vironment composed of resident types (h and p) at equilibrium

(with equilibrium densities Xh and Yhp). Note, we assume small

mutations and therefore for the host, the value of h̃ is close to

h and mutation imposes a small change to transmission (βh̃ p is

close to βhp) and to the birth rate through a trade-off with resis-

tance (ah̃ is close to ah). Mutation operates in a similar manner

for the parasite. It can be shown (Kisdi 2006; Best et al. 2009;

Hurford et al. 2010) that the host fitness, s, and parasite fitness,
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r , are as follows:

s(ah̃, βh̃ p, ah, βhp)

=
(
ah̃ − d(Xh + Yhp)

)
(αhp + b + γ)

b(αhp + b + γ) + βh̃ pYhp(αhp + b)
− 1, (3)

r (αh p̃, βh p̃, αhp, βhp) = βh p̃ Xh − (αh p̃ + b + γ). (4)

AD theory indicates that the types will evolve in the direction

of local fitness gradients until a coevolutionary singular point is

reached where both fitness gradients are simultaneously zero. The

behavior at such a singular point is then determined by properties

of the second derivatives of the fitness expression, determining

its evolutionary stability (is the singular strategy a local fitness

maximum?), its convergence stability (are nearby strategies at-

tracted to the singular strategy?), and its mutual invadability (can

two strategies near the singular strategy mutually invade and co-

exist?). In particular, when a singular point is mutually invadable,

then trade-off functions must exist, which allows the process of

evolutionary branching to occur leading to increased diversity.

For further details, see Geritz (1998), Bowers et al. (2005), and

Kisdi (2006).

The CD and AD predictions are tested using simulations

of the evolutionary process. In the simulations, the population

dynamics (with n = 51 host and m = 51 parasite types) were

numerically solved for a fixed time () according to equations (1)

and (2) initially with a monomorphic population (i.e., a single

host, h, and a single parasite, p). This allows the epidemiological

dynamics to approach their attractor. Mutant strains were gen-

erated by small deviations around the current trait (i.e., the host

could produce a nearby mutant type, h̃, or the parasite a nearby

mutant type, p̃). The population dynamics were then solved for a

further time ta with strains whose population density fell below

a (low) threshold considered extinct and removed before consid-

ering new mutations and repeating the procedure. In this way,

the host and parasite types (and therefore the transmission term,

βhp) can evolve and evolutionary branching can lead to the co-

existence of dimorphisms and polymorphisms. When more than

one type coexist, the choice of current type from which to mutate

depends on its relative population density and the mutant type

is introduced at low density. We assumed an equal probability

of mutation (chosen randomly) for the host and parasite. These

simulation methods have been successfully used to approximate

the AD process but it should be noted that in this approximation,

the epidemiological dynamics will not reach their attractor before

a new mutation arises and in this way, the ecological and evolu-

tionary time scales are not strictly separated (as assumed in AD

theory). (Note also that the results presented below are qualita-

tively similar if we relax the assumption of equal mutation rates

for the host and parasite, if we allow the mutational step size to

increase, and if we change the number of hosts types and parasite

strains used in the simulations.)

The initial analysis in this study, case 1 (below), assumes that

there are no costs associated with an increase in resistance for the

host or infectivity for the parasite (as costs were often omitted

in the explicit genetic models). There is, however, compelling

empirical evidence that higher resistance in hosts can arise as the

result of lower fitness in the absence of the parasite through trade-

offs with life-history traits including fecundity, competitive abil-

ity, and development time (Boots and Begon 1993; Boots 2011;

Schmid-Hempel 2011). For the parasite, the trade-off theory of

the evolution of virulence suggests that increased death rates and

therefore reduced infectious period is a cost of high infectivity (de

Roode et al. 2008; Alizon et al. 2009). Higher universal infectivity

is therefore bought at a cost in terms of a shorter infectious period.

There is also evidence that the wider the range of host genotypes

that a parasite strain can infect, the less productive they are on

any particular host type (Thrall and Burdon 2003; Poullain et al.

2008). Equivalently, hosts with a wide range of resistance through

the possession of many resistance genes have been shown to pay

a cost for carrying these resistance genes (Brown 2003; Tian

et al. 2003). We include these costs, cases 2 and 3 (below), and

they can lead to negative frequency dependence due to epidemi-

ological feedbacks and this means that there is the possibility of

diversity (Boots and Haraguchi 1999; Tellier and Brown 2011).

Results
CASE 1: COEVOLUTION WITHOUT COSTS

Figure 1 shows the evolutionary outcome under our three different

specificity assumptions when there are no differences other than

in the infectivity of the parasite strains or the susceptibility of

the host types. We are therefore initially assuming no costs to

higher infectivity or range in parasites or to higher resistance and

decreased range of susceptibility in hosts (i.e., βhp is the only

evolving parameter and the subscript can be removed from all

other parameters). Under this assumption, the CD analysis of the

steady states of (1) and (2) (and constraints associated with them)

can be written as:

(
a − d H − b −

∑
p
βhp

(
1 − γ

/
�

)
Yp

)
= 0

for h = 1, . . . , l and Xl+1, . . . , Xn = 0, (5)

(∑
h

(
βhp

/
�

)
Xh − 1

)
= 0

for p = 1, . . . , q and Yq+1, . . . , Ym = 0, (6)

H −
∑

h
Xh−

∑
p

Yp = 0, (7)
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(up to reordering of types). We wish to solve equations (5)–(7)

to find solutions X1, ..., Xl , Y1, ..., Yq , H . We therefore system-

atically examine equations (5)–(7) for different values of l and q

to determine where there are consistent solutions. Now (5) is not

generic; either l > 1 and then in general Yp = 0 for all p is the

only feasible solution (and such disease-free solutions are not of

interest in this study) or l = 1. When l = 1, then from (6) we have

that q = 1. Thus, when there are no costs, irrespective of other de-

tails, the only solution is (X1, Y1, H ) and therefore only one host

and one parasite strain can coexist (and in particular evolutionary

branching in the AD analysis (below) will not be possible).

When there are no costs, the host and parasite fitness used

for the AD analysis ((3) and (4)) can be reduced to:

s(βh̃ p, βhp) =
(
a − d(Xh + Yhp)

)
(α + b + γ)

b(α + b + γ) + βh̃ pYhp(α + b)
− 1, (8)

r (βh p̃, βhp) = βh p̃ Xh − (α + b + γ). (9)

When the transmission function is universal (e.g., Fig. 1A

with βhp = K p(N − h) + c and K , c > 0 and N > h), the fitness

gradients are as follows:

∂s

∂ h̃
=

(
a − d(Xh + Yhp)

)
(α + b + γ) K pYhp(α + b)

(b(α + b + γ) + βh̃ pYhp(α + b))2
and

∂r

∂ p̃
= K (N − h)Xh . (10)

Therefore, the fitness gradients for both host and parasite

are always positive (because a − d(Xh + Yhp) > 0 is a restriction

imposed to have a positive, stable equilibrium) and so the host

and parasite evolve to their maximum type (Fig. 1A).

When the transmission function approximates a GFG infec-

tion process (e.g., Fig. 1B with βhp = K
(
1 − 1

/
(1 + e−(h−p))

)
and K > 0), the fitness gradients are as follows:

∂s

∂ h̃
=

(
a − d(Xh + Yhp)

)
(α + b + γ) K Yhp(α + b) e−(h−p)

(b(α + b + γ) + βh̃ pYhp(α + b))2 (1 + e−(h−p))2
and

∂r

∂ p̃
= K Xh e−(h−p)

(1 + e−(h−p))2
. (11)

The fitness gradients for both host and parasite are again

always positive and so the host and parasite evolve to their maxi-

mum type (Fig. 1B).

When the transmission function approximates an MA in-

fection process (e.g., Fig. 1C with βhp = K exp
(− ((h − p)/2)2

)
and K > 0), the fitness gradients are as follows:

∂s

∂ h̃
=

(
a − d(Xh +Yhp)

)
�K (h − p)Yhp(α + b) e−((h−p)/2)2

2(b�+βh̃ pYhp(α+b))2

and
∂r

∂ p̃
= K (h − p)Xh e−((h−p)/2)2

2
. (12)

When h = p, the fitness gradients are equal to zero and there

is a coevolutionary singular point that is a coevolutionary repeller

(i.e., it is not convergence stable—Geritz et al. (1998)). In partic-

ular, although selection always drives the parasite to “match” the

current host type (to maximize transmission), the host can evolve

away from the singular point to escape parasitism. If h > p, the

host will evolve to increase its type and if h < p, the host will

evolve to decrease its type. This means the host will evolve in one

direction and will be “followed” by the parasite. However, should

the parasite evolve beyond the host (which depends on stochastic

processes associated with mutation), the host will switch its direc-

tion of evolution. This causes the change in direction of evolution

observed in Figure 1C leading to evolutionary cycles. Note, the re-

sults outlined for specific functional forms in Figure 1A–C apply

more generally (see Supporting Information for more details).

In summary, the CD analysis has shown that there is no

possibility of coexisting multitype diversity in the models without

costs. It can also be shown using AD analysis and simulations,

and it can be understood intuitively that in the universal and range

scenarios, the best host and parasite become fixed (Fig. 1A and

B) and in the matching scenario (Fig. 1C), there is generally a

close to monomorphic population that moves through host type

and parasite strain space leading to temporal changes over time

but little or no diversity at any one time. These results show an

equivalence of our results using continuous infection interactions

in epidemiological models to the classic GFG and MA models, in

that temporal diversity in the absence of costs is predicted in MA

models.

CASE 2: COEVOLUTION WITH COSTS AND

RESTRICTED DIVERSITY

The infection matrices shown in Figure 2 represent universal in-

fection (with either a linear (Fig. 2A) or curved (Fig. 2C) relation-

ship) or specific infection (Fig. 2B). To undertake the CD analysis,

we note that the transmission term (for Fig. 2A–C) has the form

βhp = β1
hμ

1
p + μ2

p (see Supporting Information for more details)

and we assume costs are imposed through the functions a = a(h)

and α = α(p), which lead to trade-offs between resistance and

reproduction for the host and infectivity and virulence for the par-

asite. The CD analysis follows the methods outlined for case 1 and

the details are presented in the Supporting Information, case 2).

The key finding from the CD analysis is that host–parasite coexis-

tence is only possible when there is one host strain and one parasite

strain or two host strains and one or two parasite strains. There-

fore, the maximum level of diversity is the coexistence of two

host and two parasite strains. This emphasizes the strength of the
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Figure 2. Transmission functional forms and evolutionary simulations with costs to host resistance or parasite transmission leading

to dimorphisms. Subpanels A(i)–C(i) indicate the transmission coefficient, βhp, for susceptible host type h against 11 representative

parasite strains ( p = 0, 1, ..., 10) from the continuous distribution of the parasite with strain p = 0 shown in red. A(ii)–C(ii) display

“heat” diagrams where βhp is shown for a continuous combination of susceptible host types h against parasite strains p. Simulations

of the evolutionary behavior of the model represented by equations (1) and (2) with the transmission function shown in C(i) and C(ii)

are shown for the host in C(iii) and for the parasite in C(iv). The functional forms for the transmission functions are for (A) βhp =
0.1 p(12 − h) + 0.5, with trade-offs arising through relationships a = a(h) and α = α(h), (B) βhp = (12.5 − p) − (12− p)h

10+2 p with the host trade-

off arising through the relationshipa = a(h), (C) βhp = 0.5 p
(
sin(hπ/10 − 3π/2) + 1

) + 0.1 with the relationships a = 1.75 + 1.726 1−0.125h
1+0.1215h

and α = 3.772 − 3.704 0.125(10− p)
1+0.001075( p−2) plotted as insets in (iii) and (iv). Other parameters and simulation methods are as in Figure 1.

CD analysis as it highlights the restriction to the maximum level

of diversity regardless of the details of the cost structure imposed.

AD analysis can be used to determine whether evolution-

ary branching can occur, in either the host or the parasite, which

could lead to the generation of diversity. For branching to occur,

one of the species must exhibit mutual invadability at the cosingu-

lar point (i.e., M Ih = ∂2s
/
∂h∂ h̃ < 0 or M Ip = ∂2s

/
∂p∂ p̃ < 0;

Geritz et al. 1998). If it does, then there will be a set of param-

eters and trade-offs that produce branching in that species in the

coevolutionary system (Kisdi 2006). For the infection matrices in

Figure 2 and with appropriate choice of trade-offs, it can be shown

that the cosingular point is convergence stable and that the mutual

invadability condition for the host is M Ih < 0 and for the parasite

is M Ip = 0. This implies that evolution will be directed toward

the cosingular point but when close to the host will branch and the

host will become dimorphic (the parasite remains monomorphic).

After host branching, the resident population is composed of two

host types and one parasite type at equilibrium, and a combina-

tion of analytic and numerical analyses can then be undertaken

to assess whether further branching can occur. The results in-

dicate that M Ih = 0 for both host types and that M Ip < 0 for

the parasite. Therefore, the parasite can now undergo evolution-

ary branching and the population becomes composed of two host

types and two parasites types. Again, AD can be further applied

to a resident population composed of two hosts and two parasites.

This indicates that M Ih = 0 and M Ip = 0 for all coexisting host

and parasite types and therefore further branching cannot occur

(confirming the findings of the CD analysis).

Simulations can be undertaken and indicate that two host and

two parasite types can evolve (see Fig. 2C). The trade-off shape

(curvature) is critical to allow evolutionary branching (see Kisdi

2006; Best et al. 2010) and a range of trade-offs (with weak cost

structure) produce branching. In the simulations in this study,

the trade-offs are chosen using the AD analysis to allow host

and parasite branching with the specific details of the trade-off

dependent on the particular model parameters.

A key result therefore is that with universal resistance and

infectivity, there is only the possibility of dimorphism even when
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feedbacks are incorporated. Moreover, the evolution of dimor-

phism is not the result of assuming linearity in the variation in

infection (compare Fig. 2A and C). The fundamental assumption

of the universal model is that there is no specificity such that the

most infective parasite strain is the most infective to all host types.

We examined whether specificity could lead to diversity beyond

dimorphism by assuming the infection matrix in Figure 2B, where

particular parasite strains are relatively more infective against par-

ticular host types. The CD and AD analyses show that there is

still only the possibility of dimorphism. As such, specificity per

se is not enough to generate polymorphism in hosts and parasites.

Our first insight is therefore that when there are costs to infec-

tivity in parasites and resistance in hosts, coevolution can lead to

diversification, but for a wide range of infection scenarios, even

when there is specificity, only dimorphism is found. There are

therefore a maximum of two phenotypes in the host and parasite

and these are often of extreme types: highly resistant hosts with

highly susceptible ones and highly infective parasites with poorly

infective ones. So how can we explain the polymorphism we see

in natural host–parasite populations?

CASE 3: COEVOLUTION WITH COSTS AND MULTIPLE

BRANCHING LEADING TO POLYMORPHISM

Figure 3 shows infection matrices with specificity and variation in

infectivity and susceptibility range that do lead to the generation of

polymorphism through multiple branching (in all cases, costs are

imposed on host resistance and parasite transmission as indicated

by Figure 3, column iii). The CD analysis is undertaken on the

general model (equations (1) and (2)) and indicates that there is no

limit to the level of diversity that can occur (details are shown in

the Supporting Information). However, the CD analysis indicates

that host–parasite coexistence is only possible when the number

of host strains and parasite strains is equal or the host strains ex-

ceed the parasite strains by 1. This therefore permits “any” level

of diversity, but imposes the restriction that if it is to occur through

a process of evolutionary branching, then it requires a strict, re-

peating, pattern in which a host branching event is followed by

a parasite branching event. AD analysis and simulations confirm

the CD findings and show that for a suitable choice of trade-offs,

polymorphism will evolve through a repeating process of an evo-

lutionary branching event in the host followed by evolutionary

branching event in the parasite (Fig. 3, see Supporting Informa-

tion for more detail and Best et al. (2010) for a discussion on the

shape of trade-offs that lead to branching for the model shown in

Fig. 3A). This process is further highlighted in Figure 4 in which

simulation results of Figure 3A are enhanced to indicate the posi-

tion of the host and parasite branching points and to include local

pairwise invadability plots for each of the current residents strains

at the branching points. As predicted from the CD and AD analy-

ses, branching occurs in a strict order of host, then parasite (Fig. 4).

So what are the characteristics that allow polymorphism for

the scenarios considered in case 3? First, there needs to be costs to

high resistance and infectivity, which can be life-history costs or

host-use costs, and there needs to be specificity. The key additional

criterion that allows the generation of diversity is that in addition

to costs and specificity, there must also be “consistency” such that

there are a number of parasite strains that infect a number of host

types to the same degree. This consistency among the parasites

means that a number of host types are challenged by a number

of parasite strains that infect them to the same degree. The most

natural biological example is illustrated by comparing Figures 2B

and 3B. In both cases, there is a similar transmission interaction

function, whereby there is a high degree of specificity and differ-

ent parasites do better on different hosts. The difference between

Figures 2B and 3B is that in Figure 3B, the transmission functions

are extended to hit zero. Therefore, in Figure 3B, there are a num-

ber of host–parasite combinations that do not lead to infection.

This is what we mean by “consistency,” there are a large number

of parasite strains that have the same, in this case zero, infectivity

against a number of host types. Many host–parasite interactions

therefore have the same outcome: in this case, no infection. It can

be shown that other consistent levels of infection, including com-

binations showing the same positive chance of infection, when

combined with specificity can also lead to polymorphism (see

Supporting Information, Fig. S1). The most biologically relevant

way that consistency is likely to occur, however, is when there are

incompatibilities such that particular host–parasite combinations

lead to no infection. Such incompatibilities may be common in

nature and may therefore be a major driver of diversity in hosts and

parasites.

A range of infection matrices that include both specifici-

ties and incompatible combinations have the potential to lead to

multiple branching. The examples that we give in Figure 3 in-

clude the phenotypic assumption of a classic GFG with costs

model, in which parasite strains that have a wide range are rel-

atively poor at infecting those hosts (Fig. 3A and B). This leads

to polymorphism and there is also multiple branching if the cost

to the parasite for wider infection is higher virulence in terms of

mortality (Fig. 3C). Polymorphism through multiple branching

also coevolves in a highly specific “matching” model in which

there is a trade-off between parasite strains in their ability to

infect and the number of hosts they have a possibility to in-

fect (Fig. 3D). Multiple branching leading to polymorphism is

predicted when there is a continuous matching between hosts

and parasites, but there is variation in the transmission of the

parasites on each host with high transmission bought at high vir-

ulence. Our key result therefore is that considerable diversity in

host and parasite phenotypes is most likely to evolve in nature

when, in the presence of costs, there are specific interactions and

some combinations of hosts and parasites lead to no infection.
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Figure 3. Transmission functional forms and evolutionary simulations with costs to host resistance or parasite transmission showing

multiple branching. Subpanels A(i)–D(i) indicate the transmission coefficient, βhp, for susceptible host type h against 11 representative

parasite strains ( p = 0, 1, ..., 10) from the continuous distribution of the parasite with strain p = 0 indicated in red and other types

progressing in order from this type. A(ii)–D(ii) display “heat” diagrams where is shown for a continuous combination of susceptible

host types h against parasite strains p. A(iii)–D(iii) show the relationships between host type and reproduction (solid line) and parasite

strain and either maximum transmission or virulence (dotted line). Simulations of the model represented by equations (1)–(2) with the

respective transmission functions are shown for the host in A(iv)–D(iv) and for the parasite in A(v)–D(v). The specific functions are for

(A) βhp = β0(1 − 1(1 + e−(h− p))), a = 5.454 − 4.672 1+0.1(h−10)
1−0.2615(h−10) and β0 = 17.117 − 16.626 1+0.1( p−10)

1+0.0434( p−10) ; (B) βhp = β0 − (12− p)h
0.1+ p , a = 5.454 −

4.672 1+0.1(h−10)
1−0.2615(h−10) and β0 = 12.5 − p; (C) βhp = 10(1 − 1(1 + e−(h− p))), a = 1.365 + 1.255 0.125(10−h)

1.112−0.0561h and α = 2.546 − 1.778 0.125(10− p)
0.958+0.0208 p;

(D) βhp = β0 exp(−( p−h
0.8 p+0.25 )2), a = 5.954 − 4.672 1+0.1(h−10)

1+0.0074(h−10) and β0 = 17.117 − 16.626 1+0.1( p−10)
1+0.095( p−10) . Other parameters and simulation

methods are as in Figure 1.

Discussion
Our aim has been to examine how ecological feedbacks and the

nature of the transmission relationships between hosts and para-

sites may lead to generation of static diversity. This trait diver-

sity is another important outcome of host–parasite coevolution in

addition to fixation through selective sweeps or temporal variation

through Red Queen cycles. It is important to emphasize that the

diversity is manifested at the phenotypic level with coexistence of

hosts and parasites that have different infectivity and susceptibil-

ity. This is distinct from diversity around a single optimum that is

seen as a consequence of the assumption of a unimodal character
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Figure 4. Simulation results for the model in Figure 3A showing the evolution of host types and parasite strains and additionally

displaying local pairwise invadability plots (PIPs) around the dominant types (indicated in the main figure panel). PIPs display the fitness

profile for a mutant type (vertical axis) attempting to invade nearby resident type (horizontal axis) in an environment composed of one

or several resident types at equilibrium. Regions of the PIP in black indicate that the mutant fitness is positive and those in white indicate

that the mutant fitness is negative. The PIPs indicate how the branching events are ordered (host, then parasite, then host, then parasite,

etc.).

distribution in models based on the classical approaches of quanti-

tative genetics (Nuismer et al. 2005, 2007). Our analysis assumes

that variation only arises from mutation and therefore the trait

diversity we see is generated directly by the ecological feedbacks

and host–parasite interactions. Diversity arises in the first place if

there are costs due to disruptive selection caused by direct negative

frequency dependent selection that emerges from the epidemiol-

ogy of the system. Tellier and Brown (2007a) have shown clearly

it is this direct frequency dependence that is necessary for static

diversity whereas indirect frequency dependence will only lead

to temporal diversity. However, our key insight is that this disrup-

tive selection may lead to two distinct outcomes depending on the

nature of the host–parasite interaction: either dimorphism or poly-

morphism. We have shown that for polymorphism to arise, there

needs to be a combination of both specificity and a consistency that

is most likely to arise biologically because some combinations of

hosts and parasites do not result in infection. Such incompatibility

between host types and parasite strains, whereby there is no infec-

tion, allows polymorphism because it structures the host and para-

site populations. Effectively different subsets of hosts and parasite

populations are interacting, allowing the coexistence of different

strains and types. In principle, this may be a mechanism by which

parasites and hosts drive sympatric speciation but in its essence

it is an epidemiological driver of diversity in host and parasite

populations.

There is clearly a need for more data on the nature of host–

parasite infection interactions to understand how important speci-

ficity and incompatibility are in generating diversity in nature.

Empirically, to determine whether the infection matrix has the

potential to generate diversity, a range of doses of each combina-

tion of host type and parasite strain (Thrall and Burdon 2003) is

necessary. If only one dose is used, a binary infection/no in-

fection matrix is produced and therefore it is not possible to

determine whether there is qualitative resistance (incompatibil-

ities): infection may occur between combinations of hosts and

parasites at higher doses than those chosen. Furthermore, sim-

ply detecting main host and parasite effects and an interaction

effect is not enough to distinguish the different infection matri-

ces because even our universal interaction assumption (Fig. 1A)

would show a significant interaction. To test the predictions of

our models, the host–parasite infection matrix across a range of

doses is required in addition to an assessment of the diversity

in both the host and parasite. We should emphasize that dimor-

phism is predicted for a wide range of infection matrices and

we would therefore predict the coexistence of extreme types in

nature leading to dimorphic populations. Clearly, static diversity

can be generated by other mechanisms that cause direct frequency

dependence (Tellier and Brown 2007a) and the diversity that we

find in nature is a combination of all of these processes as well as

temporal diversity and the diversity that arises through processes

such as mutation and drift (Salathe et al. 2005). Furthermore,

temporal variation in densities can in itself lead to more coex-

istence (Armstrong and McGehee 1980) and as a consequence,

we are likely to need relatively large datasets to detect the signal

of the effects of the host–parasite infection matrix and ecological

feedback.
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There has been considerable interest in how the negative

frequency dependence between specific hosts and parasites can

create predictable oscillations—Red Queen dynamics (Van Valen

1973; Bell 1982)—mainly because of their potential role in the

evolution of sex (Lively 2010b). In our matching continuous func-

tion (Fig. 1C), which is phenotypically a continuous version of a

MA model, we generally predict close to monomorphic host and

parasite populations at any one time, but the dominant host type

and parasite strain change through time. The host and parasite

strains fluctuate through time as mutation moves the host away

from its specific parasite (each peak is evolutionarily stable for

the parasite but a repeller for the host). The fundamental insights

from our assumptions of continuous functions and epidemiolog-

ical feedbacks are comparable to previous models in terms of

temporal variation in that MA models easily generate temporal

variation in host and parasite strains. The matching model leads to

the generation of polymorphism when there is variation in trans-

mission rate or range in the parasite and resistance in the host that

is costly. This represents the situation in which there is continuous

infection function that is intermediate between a MA and a GFG

model (Agrawal and Lively 2002). Moreover, polymorphism is

also predicted when there is a very specific matching interaction

between the hosts and parasites but there is the classic transmis-

sion virulence trade-off for the parasite (Fig. 3C). Together the

model of interactions that intermediate between the GFG and the

model that captures the tight specificity of the MA but where para-

sites show a transmission virulence trade-off may describe a large

number of host–parasite interactions. As such, these processes

may be an important component of the generation of diversity in

host–parasite interactions.

Theory has emphasized the importance of epidemiological

feedbacks to the coevolution of hosts and parasites with funda-

mental differences between, for example, tolerance and resistance

mechanisms (Best et al. 2008). Our models also emphasize the

central importance of trade-off relationships to the evolution of

diversity, showing that costs are necessary for diversification. The-

ory makes it clear that the shapes of trade-off relationships are

critical to diversification with close to linear relationships most

likely to lead to branching (Boots and Haraguchi 1999; Boots and

Bowers 2004; de Mazancourt and Dieckmann 2004; Hoyle et al.

2008). Strong costs will select for fixation at intermediate resis-

tance (strong accelerating costs) or either maximal or minimum

resistance (strong decelerating costs), but not diversification. The

importance of feedbacks and costs is further emphasized by the

contrast between the results of our epidemiological models and

from the coevolution of bacteria and phage in a chemostat (Weitz

et al. 2005). This model shows the generation of static polymor-

phism in hosts and parasites with a continuous matching infection

interaction equivalent (Fig. 1C). The contrast with our result arises

because the feedbacks intrinsic to modeling growth in a chemo-

stat create trade-offs, and because the function in Figure 1C has

high specificity and incompatibility, the additional costs due to

the chemostat create diversity as we predict (see Supporting Infor-

mation for an analysis of this model in our framework). We would

therefore argue that a complete understanding of the evolution of

host defense is only likely to be understood in the context of epi-

demiological feedbacks on disease prevalence. More generally,

our models argue that coevolution needs to be understood in the

context of ecology.

Simulations show that the coevolution of diversity is not de-

pendent on the assumption of weak selection or the separation of

ecological and evolutionary time scales explicit in the evolution-

ary analysis. Also, parasites may often have faster mutation rates

and population sizes than the host, but again simulations show that

the coevolution of polymorphism still occurs under this assump-

tion (simulations have been undertaken using a range of mutation

rates for the host and parasite and the results are qualitatively

similar and in particular show the evolution of diversity of mul-

tiple types). We assume multilocus/allele additive genetics and

while it remains to test how different genetic assumptions affect

the outcome of our models, our intuition of how epidemiological

feedbacks generate our results is likely to be widely applicable. To

incorporate and analyze the genetic details of the model, classi-

cal approaches based on quantitative genetics are not appropriate

because they assume a unimodal character distribution, but recent

methods have been developed that can allow us to analyze mul-

timodal polymorphic outcomes (Sasaki and Dieckmann 2011).

This is particularly important in determining whether the diversi-

fication that we see in our models is likely to lead to speciation of

hosts and parasites.

Our focus has been on static polymorphism, where once di-

versity has evolved, the same host types and parasite strains are

maintained through time (Boots and Haraguchi 1999; Tellier and

Brown 2007a). It is clearly important to distinguish the static

diversity from temporal “Red Queen” diversity. An implication

of our work is GFG-type models, in which phenotypically there

is variation in infectivity and susceptible range often promotes

static diversity although it is thought to purge “Red Queen” diver-

sity (Frank 1993b,c, 1994; Agrawal and Lively 2002). There are

therefore potentially different processes that generate temporal

diversity and static polymorphisms, where incompatibilities and

costs are critical. Our work therefore underlines the importance

of costs in generating diversity, but incompatibilities are critical

in epidemiological feedbacks producing more than dimorphisms

between extreme types. Oscillations are not necessary for the

parasite-mediated evolution of sex (Lively 2010b) but the role of

static polymorphism in the evolution of sex remains to be exam-

ined. What is clear is that it is static diversity that allows rapid evo-

lution in the face of medical and agricultural intervention and im-

pacts disease transmission and control (Longini et al. 1983; Altizer
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and Davis 2003; Lively 2010a). Furthermore because the predic-

tion is for a number of distinct phenotypes of the host and parasite

to coexist, there may be dramatic changes as distinct phenotypes

are lost. As a consequence, empirical estimations of infection dy-

namics and costs are critical to understanding when epidemiolog-

ical feedbacks may generate this diversity in hosts and parasites.
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