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Host lifespan and the evolution of resistance to multiple
parasites.

Host are typically challenged by multiple parasites, but to date theory on the evolution of

resistance has mainly focused on single infections. We develop a series of models that examine

the impact of multiple parasites on the evolution of resistance under the assumption that

parasites coexist at the host population scale as a consequence of superinfection. In this

way we are able to explicitly examine the impact of ecological dynamics on the evolutionary

outcome. We use our models to address a key question of how host lifespan affects investment

in resistance to multiple parasites. We show that investment in costly resistance depends on

the specificity of the immune response and on whether or not the focal parasite leads to more

acute infection than the co-circulating parasite. A key finding is that investment in resistance

always increases as the immune response becomes more general independently of whether it

is the focal or the co-circulating parasite that exploits the host most aggressively. Long-lived

hosts always invest more than short-lived hosts in both general resistance and resistance that

is specific to relatively acute focal parasites. However, for specific resistance to parasites that

are less acute than co-circulating parasites it is the short-lived hosts that are predicted to

invest most. We show that these results apply whatever the mode of defence i.e. whether

it is through avoidance or through increased recovery, with or without acquired immunity,

or through acquired immunity itself. As a whole, our results emphasise the importance of

considering multiple parasites in determining optimal immune investment in eco-evolutionary

systems.

Key words: epidemiology, ecology, host resistance, density dependence, superinfection, coexistence, lifespan.
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1. Introduction

In natural settings hosts are subject to attack from a multitude of parasites (Morand and1

Poulin, 2000; Nunn et al., 2003, 2005). The impact of multiple infection on the evolution of2

parasite virulence has been well studied (Bremermann and Pickering, 1983; Bonhoeffer and3

Nowak, 1994; Nowak and May, 1994; van Baalen and Sabelis, 1995; Frank, 1996; Mosquera4

and Adler, 1998; Gandon et al., 2001) with this theory suggesting that parasite diversity5

is associated with higher parasite virulence (though collective action between co-infecting6

parasites can alter this result, see Brown et al. (2002)). Furthermore, of particular interest is7

that the strength of this effect can decrease with the relatedness of the parasites (Frank,8

1996; Gandon and Michalakis, 2002). The role of multiple infections in the evolution of9

host resistance, on the other hand, is less well studied (Poitrineau et al. (2003); Jokela10

et al. (2000); Kada and Lion (2015)) with all of the evolution of resistance theory that11

explicitly takes account of ecological feedbacks restricted to defence against a single parasite12

(or transient parasite diversity, see Kada and Lion (2015)). Parasites clearly interact directly13

through competition for susceptible hosts, but when the host evolves resistance to a focal14

parasite the extent to which the resistance also counters co-circulating parasites constitutes15

an additional, less obvious interaction between parasites. Therefore, the relationship between16

parasite diversity and the pattern of evolved resistance is likely to be complex. In particular17

there is considerable interest in the role that host lifespan plays in determining optimal18

investment in costly defence (van Boven and Weissing, 2004; Miller et al., 2007; Boots et al.,19

2013; Donnelly et al., 2015) but it is not yet understood how this will depend on the nature20

of co-circulating parasites.21

There is a large body of work that examines the evolution of immunity in the context of22

ecological feedbacks and the presence of a single parasite strain (Bowers et al., 1994; Antonovics23

and Thrall, 1994; Boots and Haraguchi, 1999; van Baalen, 1998; van Boven and Weissing,24

2004; Miller et al., 2007; Boots et al., 2013; Donnelly et al., 2015). In addition there are a25

few models that have considered parasite (or enemy) diversity in the study of defence (Jokela26
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et al., 2000; Poitrineau et al., 2003; Kada and Lion, 2015). Poitrineau et al. (2003) explored27

defence against two natural enemies and examined how cross resistance (synergy in resistance)28

influences optimal defence investment, while Jokela et al. (2000) focused on how the level of29

parasite diversity impacts on the optimal level of defence allocation. Both studies consider30

only evolutionary dynamics and do not incorporate ecological feedbacks so that the role of31

life-histories that influence evolutionary outcomes through population dynamics is not clear.32

In Kada and Lion (2015) which included a type of superinfection that did not involve stably33

coexisting parasites at the host population scale (rather, a rare invading parasite lineage34

superinfected a stably circulating parasite and vice versa), the co-evolutionary dynamics of35

recovery resistance and virulence were studied. They found that superinfection can lead to36

high virulence and high investment in defence but crucially, resistance developed to counter37

one parasite did not simultaneously feedback to the prevalence of the other in the form of38

superinfection modelled in Kada and Lion (2015). Here, we make a novel extension to these39

studies by applying an eco-evolutionary approach to the question of how stable co-circulating40

parasitic challenges determine natural selection for host resistance achieved through avoidance,41

recovery and acquired immunity. For the first time in a framework that allows multi-parasite42

coexistence at the host population scale and encompasses specific as well as non-specific43

immune response we account for the complex ecological feedbacks between the dynamics of44

multiple parasites and evolving resistance. In this way, we examine how traits such as host45

lifespan determine patterns of optimal investment in host defence.46

The framework of evolutionary invasion analysis (Metz et al., 1996; Geritz et al., 1998)47

uses explicit ecological dynamics to derive fitness and provides tools for assessing the stability48

of evolutionary trajectories. Here we use these methods to examine resistance evolution in49

the presence of multiple parasites. This requires parasite coexistence, here referring to stable50

persistence of more than one parasite at the host population scale. To achieve this we assume51

a superinfection interaction, where individual hosts infected with a less virulent parasite52

are susceptible to infection, with displacement of the original parasite by a more virulent53

parasite (Nowak and May, 1994). Once co-existing multiple infections are incorporated in54

host parasite models the question of the specificity of resistance naturally arises, and in55
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this study we examine how the level of cross resistance impacts on the evolution of host56

resistance to infection. The ecological derivation of host fitness for a range of disease and57

host characteristics provides clear insight into the effect of co-circulating parasites on host58

resistance, and demonstrates consistent patterns of investment regardless of the type, or actual59

mechanism, of resistance.60

There has been considerable interest in how host immune investment differs between61

populations of contrasting lifespans (van Boven and Weissing, 2004; Miller et al., 2007; Boots62

et al., 2013; Donnelly et al., 2015). In particular, a naive view of immune investment is that it63

will increase monotonically as lifespan and hence exposure increases. However, recent theory64

using evolutionary invasion analysis has shown that when ecological feedbacks are included65

the relationship between life-span and immune investment can be complex (van Boven and66

Weissing, 2004; Miller et al., 2007; Boots et al., 2013; Donnelly et al., 2015). However, as yet67

none of this theory has taken account of parasite diversity. Here, by incorporating ecological68

dynamics we achieve a key aim of our study: an examination of how investment in resistance69

varies with host lifespan when hosts are challenged by multiple parasites.70

2. Methods71

(a)Epidemiological Model72

We assume a host structure based on susceptible, infected, and recovered/immune sub-73

populations (Kermack and McKendrick, 1927; Macdonald, 1957; Anderson and May, 1979).74

We extend the classical framework so that susceptible hosts, with density X, can be infected75

by either hosts with a focal infection, Y1 or a co-circulating infection, Y2. Hosts can recover and76

gain life-long immunity to the focal infection, Z1 and related to this the host may be infected77

by the co-circulating parasite but immune to the focal parasite, Y Z1

2
. We allow therefore for78

a range of resistance mechanisms (to the focal parasite) in the presence of a co-circulating79

parasite but for simplicity there is no acquired immunity to the co-circulating parasite, see80

figure 1 for schematic depiction. Nevertheless immunity to the focal parasite and resistance in81
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general can carry over to the co-circulating parasite if it is non-specific. The epidemiological82

dynamics are governed by the following equations:83

dX

dt
= aH − qH2

− bX − β1XY1 − β2X(Y2 + Y Z1

2 ) + (1− ν1)γ1Y1 + γ2Y2 (1)

dY1
dt

= β1XY1 − (α1 + b+ γ1)Y1 − sβ2Y1(Y2 + Y Z1

2 ) (2)

dY2
dt

= β2X(Y2 + Y Z1

2 )− (α2 + b+ γ2)Y2 + sβ2Y1(Y2 + Y Z1

2 ) (3)

dZ1

dt
= ν1γ1Y1 − bZ1 − σβ2Z1(Y2 + Y Z1

2 ) + γ2Y
Z1

2 (4)

dY Z1

2

dt
= σβ2Z1(Y2 + Y Z1

2 )− (α2 + b+ γ2)Y
Z1

2 (5)

84

All parameters are non-negative and the total host density is given by H =X + Y1 + Y2 +85

Y Z1

2
+ Z1. All hosts produce susceptible offspring at rate a which is limited by intra-specific86

crowding, q. Hosts die at natural death rate b. In addition, infected hosts suffer additional87

disease induced mortality (virulence) at rate α1 for the focal parasite and α2 for the co-88

circulating parasite. The dynamics of transmission and recovery are shown in schematic form89

in Figure 1. In detail we assume that transmission of infection is a mass action process90

between susceptible and infected types, with transmission coefficient β1 for the focal infection91

and β2 for the co-circulating infection. Virulence is assumed to be correlated with the rate92

at which parasites exploit individual hosts. As a consequence, individuals infected with the93

less virulent parasite are susceptible to infection by the more virulent parasite (since the94

competitive advantage of high host exploitation leads to competitive replacement within the95

host i.e. superinfection, see e.g. Nowak and May (1994)). If α2 >α1 the more aggressive co-96

circulating parasite superinfects the focal parasite and this is the situation represented by97

equations 1− 5 and depicted as model 1 in figure 1. If α1 <α2 the focal parasite is more98

virulent and superinfects the co-circulating one and this is depicted as model 2 in figure 1 (for99

brevity the equations for this model are not shown but it is simply the above model with the100
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direction of superinfection reversed and a transmission coefficient for the superinfection term101

of β1 rather than β2). The superinfection coefficient s controls the strength of the interaction102

and for our purposes 0≤ s≤ 1. Infected hosts recover at rate γ1 from the focal infection and103

γ2 from the co-circulating infection, with a proportion of recoveries from the focal infection,104

ν1 ∈ (0, 1), becoming immune to the focal parasite and the remaining individuals returning to105

a susceptible state. Immunity to the focal parasite can carry over to the co-circulating parasite106

if it is non-specific. This occurs if σ < 1 and implies that immunity to the focal parasite reduces107

the likelihood of infection to the co-circulating parasite, see figure 1 which shows that infection108

by the co-circulating parasite of class Z1 occurs at σ the rate of that of X.109

This general model form can be used to capture a wide range of classical infection110

scenarios. For example, if ν1 = 0 the model represents a Susceptible−Infected−Susceptible111

(SIS) framework, where there is no immune memory and recovered individuals are112

completely susceptible to both infections. On the other hand if ν1 = 1 we have the113

Susceptible−Infected−Recovered (SIR) model with specific (σ= 1) or non-specific (σ < 1) life-114

long immunity (though, for simplicity, the structure due to the co-circulating parasite remains115

SIS). In this SIR example specificity (of acquired immunity) is denoted by σ i.e. if σ is high116

then specificity is high. In all the other forms of resistance, specificity is denoted by c, and is117

defined as a parameter in the host trait that resists the co-circulating infection (i.e. β2 = β2(c)118

for avoidance and γ2 = γ2(c) in the case of recovery) and here high values of c correspond to low119

specificity (see later for more details). The fundamental forms of host defence can be defined120

as follows (Boots et al., 2013): (i) avoidance reduces the probability of becoming infected and121

resistant hosts therefore have a lower transmission rate (β1), (ii) recovery increases the rate of122

clearance of infection (γ1) and (iii) acquired immunity increases the probability of recovering123

to a life-long immune state (ν1). We first consider routes of innate resistance, i.e. avoidance124

and recovery (i and ii above) in an SIS setting, then in an SIR setting with specific life-long125

immunity and later evolution of acquired immunity itself.126
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(b)Population Dynamics127

A key measure of the ability of a parasite to spread in a host population is R0, the basic128

reproduction number, given here by129

Ri

0 = βiX
0/(αi + b+ γi) (6)

for parasite i in the absence of the alternative parasite. In equation 6 X0 represents the130

equilibrated density of susceptible hosts in the absence of any infection (i.e. the host carrying131

capacity, X0 = (a− b)/q). A second key measure is endemic disease prevalence, the frequency132

of infected individuals in the equilibrium host population. In single infection models of this133

type, whether the population structure is SI, SIS, SIR (i.e. our model with s= 0) or SIRS,134

prevalence at the endemic equilibrium satisfies,135

α
Y

H
= a− qH − b (7)

i.e. prevalence scaled by virulence equals per capita host population turnover (i.e. density136

dependent net reproduction). However, when there are two infections in the population, as137

per the model represented by equations 1− 5, per capita turnover at equilibrium equals the138

sum of the prevalences of the two infections weighted by their respective rates of virulence,139

α1

Y1
H

+ α2

Y2
H

= a− qH − b (8)

Therefore, as per single infection models, equilibrium infection in the host population is140

determined by the supply of susceptible individuals (i.e. turnover) but with the key difference141

that host turnover is shared amongst the multiple infections. One consequence of equation 8 is142

that coexistence of parasites means that equilibrium prevalence of any one parasite is always143

less than it would be if it were circulating in the host population alone. A condition for the144
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stable coexistence of parasites at the host population scale can be found in Nowak and May145

(1994) for a similar model.146

(c)Trade-off147

There is strong empirical evidence for the association of resistance with physiological costs148

through the diversion of resources to the development and maintenance of the resistance. For149

example, in Fuxa and Richter (1989) the percentage of eggs that hatch as well as the number150

produced per female were all lower in fall armyworm lines selected for resistance to NPV.151

Longer development time, reduction in egg viability as well as an increase in pupal weight152

were a consequence of selection for resistance to a granulosis virus in Plodia interpunctella153

(Boots and Begon, 1993). There is also evidence of reduced larval competitive ability in154

immune-selected Drosophila melanogaster (Kraaijeveld and Godfray, 1997). Taken together155

these studies represent a sound basis for assuming that costs to resistance can be manifested156

in reduced host reproduction or reduced competitive ability. In this study we assume an157

association between level of resistance and reproduction rate such that recovery, avoidance158

and acquired immunity are all positive decreasing functions of host reproduction rate. This is159

consistent with the majority of previous studies that examine the evolution of resistance to160

parasites (see Boots et al. (2009)).161

(d) Specificity of Immune Response162

We begin by considering an SIS framework where the focal parasite is less virulent163

than the co-circulating parasite (i.e. α1 <α2). Hosts invest in costly resistance, 0≤ θ(a)≤ 1,164

through avoidance of the focal infection (i.e. β̂1 = β1(1− θ(a))) and resistance may carry165

over to the co-circulating infection depending on the specificity of resistance (0≤ c≤ 1, when166

c= 0 the resistance is specific to the focal infection), i.e. β̂2 = β2(1− cθ(a))). As c increases167

the resistance becomes more general. Alternatively resistance can be through recovery (i.e.168

γ̂1 = γ1(1 + θ(a)) and γ̂2 = γ2(1 + cθ(a))). Similarly the focal infection can be more virulent169

than the co-circulating parasite for each of the above cases (i.e. α1 >α2). When it comes to170

an SIR framework we consider all of the above cases but, for brevity, only present results for171
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cases where the focal parasite is less virulent than the co-circulating parasite. Finally in an172

SIR framework resistance may be through acquired immunity, corresponding to ν̂1 = θ(a)ν.173

For convenience we view specificity of acquired immunity not in terms of the probability174

of clearance of the co-circulating infection to an immune state, but rather as the decrease175

in transmission of the co-circulating infection to individuals who are immune to the focal176

infection. For this reason, specificity in acquired immunity is a fixed coefficient, σ, in equations177

4-5 with σ= 1 when resistance is specific or σ < 1 when it is not specific. For simplicity, we178

do not allow the less intuitive case where σ exceeds 1 (i.e. resistance developed to counter a179

focal parasite is more effective against a co-circulating parasite). See table 1 for a summary180

of the cases studied.181

3. Results182

Using the next generation method (Diekmann et al., 1990; van den Driessche and Watmough,183

2002; Hurford et al., 2010), see supporting information S1, we derive a proxy for invasion184

fitness, denoted sr(m), for the set of models outlined in the methods section for each of the cases185

detailed in table 1. Under the assumptions of adaptive dynamics (Metz et al., 1996; Geritz186

et al., 1998) a population will evolve through small, rare mutations in the direction of the187

gradient of the invasion fitness until an evolutionary singularity, where the mutant derivative188

of invasion fitness is zero, is reached (alternatively the evolving population may reach the189

limit of the phenotypic range). Evolutionary singularities can be classified according to their190

evolutionary and convergence stability properties (Metz et al., 1996). If a singularity is both191

evolutionary and convergence stable it is an uninvadable evolutionary attractor and an end192

point of evolution (Eshel, 1983). We wish to examine how the position of such singularities,193

which is determined by selection pressures, change when model parameters, in particular194

host lifespan, are varied. The results presented throughout are obtained using mathematical195

software for symbolic computation (Maple). They are additionally supported with simulations196

of the adaptive dynamics process whereby population dynamics of interacting resident and197

mutant host sub-populations are numerically solved with mutants, of similar effect to residents,198
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randomly introduced on a time scale slower than that of the ecological dynamics (for further199

detail on adaptive dynamics simulations see Donnelly et al. (2015)).200

For SIS innate resistance we use the invasion fitness proxy, sr(m), for hosts bearing a201

mutant investment phenotype, θm(am), to locate evolutionary attractors and to show how the202

evolved level of the resistance phenotype varies with host lifespan, see figure 2a− d. This can203

be shown when resistance is specific (black curves, figure 2a− d) and also when resistance204

is non-specific (grey curves, figure 2a− d). It can also be shown when resistance is through205

avoidance (figure 2a & b, i.e. cases 1− 4 table 1) and when resistance is through recovery206

(figure 2c & d, i.e. cases 5− 8 table 1), when the resistance is developed primarily to counter207

a relatively avirulent focal infection (figure 2a & c) or to counter a relatively virulent focal208

infection (figure 2b & d). The resulting graphs indicate that regardless of the route of innate209

resistance, investment increases with host lifespan except when it is specific to an avirulent210

infection.211

Focusing on the case where resistance evolves to counter an avirulent focal infection we212

show that these results extend to an SIR framework, arising through the presence of acquired213

immunity specific to the avirulent focal infection (i.e. σ= 1), see figure 3a & b for avoidance,214

i.e. cases 9− 10 table 1, and see figure 3c & d for recovery, i.e. cases 11− 12 in table 1. As the215

proportion of immune individuals in the population increases (due to changing the value of ν,216

i.e. the probability of inducing acquired immunity upon recovery, from ν = 0 represented by a217

black curve to ν = 1 represented by a light grey curve) there is no qualitative change, though218

the overall magnitude of investment tends to decrease (because recovery to immunity decreases219

prevalence, reducing the need for resistance). Finally, we analyse optimal acquired immunity220

developed to counter the less virulent parasite. Here, the mutant investment phenotype is221

νm
1
(am) and immunity extends to the virulent infection if σ < 1. When immunity is non-222

specific, investment increases with increasing lifespan, when immunity is specific investment223

decreases with increasing lifespan, see figure 4a, i.e. cases 13− 14 in table 1.224

As a whole, the results show that resistance to a relatively avirulent focal infection in the225

presence of a co-circulating virulent infection varies with host lifespan in a manner that is226

dependent on the specificity, but significantly, is not dependent on the route of resistance.227
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In general, investment increases as the level of specificity in resistance decreases. We provide228

a further illustration of this in figure 4b− d where curves are given for different lifespans229

for evolving avoidance, 4b, recovery, 4c and acquired immunity, 4d, respectively. Investment230

is greater at low lifespans when resistance is specific (c is low) but investment is greater at231

long lifespans when resistance is relatively general (c is high). Therefore, there is a level of232

specificity for each form of resistance below which investment decreases with increasing host233

lifespan and above which investment increases with increasing host lifespan. This transition234

occurs for relatively small values of specificity for the innate forms of resistance (i.e. avoidance235

and recovery) compared to the relatively high value of specificity at which it occurs for acquired236

immunity.237
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4. Discussion238

Hosts are typically challenged by multiple parasites, but to date theory on the evolution of239

resistance has mostly focused on single infections. We have developed a series of models that240

have examined the impact of multiple parasites on the evolution of resistance with explicit241

feedbacks between the ecological and evolutionary dynamics. Our key assumption is that242

parasites coexist as a consequence of superinfection which assumes that a more virulent243

parasite can replace a less virulent parasite within an individual host. Our results show244

that co-circulating parasitism dramatically impacts on the evolution of resistance to a focal245

parasite. In particular, the specificity of the resistance with respect to co-circulating parasites246

is critical to the outcome. A key, intuitive, result is that investment in resistance increases247

as the immune response becomes more general. This finding is related to those of previous248

studies that considered the impact of multiple enemies on resistance evolution in the absence249

of ecological dynamics. Jokela et al. (2000) considered the evolution of resistance for different250

levels of parasite diversity. They showed that specific host resistance is less effective when251

faced with a diverse range of parasites and therefore that host resistance increases as parasite252

diversity decreases. Poitrineau et al. (2003) examined the evolution of defence to two separate253

enemies and considered scenarios of synergy or interference in defence response, showing that254

investment increases as the level of synergy increases. Our finding that resistance increases255

as immune investment becomes more general is related to these results, and extends them to256

systems including explicit feedbacks between the ecological and evolutionary dynamics.257

Risk of infection by pathogens and parasites has led hosts to evolve a wide range of defence258

mechanisms from behavioural strategies (Joop et al., 2014) to the bio-chemical cascades of the259

complement system and the memory B and T cells of acquired vertebrate immunity (Schmid-260

Hempel, 2002; Frank, 2002). Intuition suggests that the longer a host lives the more it is261

likely to benefit from immunity. This observation has been used to explain macro-evolutionary262

patterns of investment such as the lack of acquired immunity in invertebrates (Ricklefs and263

Wikelski, 2002; Tieleman et al., 2005) and is supported by a number of empirical studies.264

For example, a positive correlation between immunity and lifespan in avian hosts has been265
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demonstrated for humoral, cell mediated, and constitutive immune responses (Ardia, 2005;266

Tella et al., 2002; Versteegh et al., 2012; Lee et al., 2008). Theoretical models that have267

examined the evolution of resistance in the face of a single parasite make the assumptions268

underlying this intuition explicit. They have provided some support for this pattern but also269

deviate from it in important ways (van Boven and Weissing, 2004; Miller et al., 2007; Boots270

et al., 2013; Donnelly et al., 2015). For example, in contradiction to the intuition, optimal271

resistance in hosts capable of permanent acquired immunity can be maximal at intermediate272

lifespan (Boots et al., 2013; Donnelly et al., 2015) and in the case of innate resistance this can273

be true even in the absence of acquired immunity (Miller et al., 2007; Donnelly et al., 2015).274

However, a key aspect of these studies is that host populations are burdened by only one275

infection. Here we address the key question of how optimal investment changes with lifespan276

in the face of co-circulating parasites.277

When a host population is challenged by multiple parasites the investment in immunity278

is critically dependent on the specificity of the defence. When the resistance is relatively279

general, then investment increases with host lifespan. In contrast, when immunity is specific280

the pattern of investment relative to host lifespan depends on the nature of the co-circulating281

parasite. If the co-circulating parasite is less aggressive in exploiting the host than the focal282

infection, then investment increases with lifespan. However, if the co-circulating parasite is283

more aggressive, then specific immune investment decreases as host lifespan increases because284

the ratio of infected individuals with the co-circulating parasite to individuals with the focal285

parasite increases (since there is a higher incidence of superinfection at high host lifespans).286

These patterns are true in our model when the evolving resistance is innate in a host incapable287

of immune memory, is innate in a host responding additionally with immune memory or when288

the evolving resistance is itself acquired. This is an important insight since it shows that289

the life-history patterns will depend on the nature of the co-circulating parasite, and the290

specificity of the response, but not the mode of resistance itself, which is in stark contrast to291

single infection models where patterns fundamentally depend on the type of resistance (i.e.292

innate vs acquired) but not the exact mode (for example avoidance vs recovery within the293

innate type) (van Boven and Weissing, 2004; Miller et al., 2007; Boots et al., 2013; Donnelly294
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et al., 2015). Therefore, a key implication of our work is that, in contrast to single infection295

models, the classic idea that more investment should occur in longer-lived hosts is generally296

supported when there are multiple parasites.297

What are the underlying processes that lead to these different findings (i.e. in the effect of298

host lifespan on optimal immune defence) when host are faced by multiple rather than single299

parasites? Single infection models deviate from the intuition that investment increases with300

lifespan because of two important effects that are undermined by the presence of co-circulating301

infections (see detailed analysis in Donnelly et al. (2015)). In single infection models, optimal302

investment that is maximal at intermediate lifespans (Miller et al., 2007) is a hallmark of303

innate resistance because it is characterised by the return or maintenance of individuals to304

a susceptible state as opposed to the conversion of them into an immune state (Donnelly305

et al., 2015). Since susceptible individuals are vulnerable to reinfection which is likely at high306

levels of prevalence, the benefit of innate resistance is low at high prevalence and therefore low307

at high lifespans (in SIS systems prevalence increases with increasing host lifespan). With308

multiple parasites and superinfection, more virulent parasites take over hosts infected with less309

virulent parasites. When hosts live longer, the period during which these conversions occur is310

longer and this favours the virulent parasite. However, the higher virulence of these parasites311

also acts to reduce the infectious period and as a consequence, prevalence does not rise to the312

high levels that are seen in equivalent single infection models. As such, optimal investment313

increases with lifespan in the face of multiple infections and superinfection in models where it314

would be maximal at intermediate lifespans without the co-circulating infection because the315

prevalence of the focal parasite is strongly limited due to the share of susceptible hosts taken316

by the co-circulating parasite, see equation 8.317

There is a second process that comes into play once there is permanent immunity to the318

parasite. In single infection models where the host is long-lived, permanent immunity leads319

to high host density. When host density approaches the carrying capacity there is little host320

turnover and prevalence levels are low (see equation 7). Therefore long-lived host populations321

with permanent immunity have a relatively small risk of infection and will evolve weaker322

resistance (Miller et al., 2007; Boots et al., 2013; Donnelly et al., 2015). For this reason a323
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long-lived immune class can decrease the need for immunity in general at high lifespans.324

However, crucially, when there are multiple infections the impact of an especially long-living325

class arising from recovery to a permanent immune state will be substantially less because the326

immune individuals will be susceptible (at least to some degree) to infection by co-circulating327

parasites. Therefore, when acquired immunity evolves in the face of multiple parasites and328

superinfection, just as for innate immunity, optimal investment is higher in long-lived host329

populations in models where it would be maximal at intermediate lifespans without the co-330

circulating infection.331

There is one important exception to our general prediction that investment in immunity332

rises with host lifespan. When the co-circulating parasite is more virulent and the evolving333

response is specific to the less virulent focal parasite, then investment decreases with increasing334

lifespan. Two simple interactions are responsible for this result: 1) if the co-circulating parasite335

is more virulent then it is the superinfector and it is favoured at high lifespans. Therefore the336

benefit of specific resistance to the focal parasite, which by definition is not effective against337

the co-circulating parasite, diminishes as lifespan increases. 2) Responding through resistance338

to the less virulent focal parasite can actually increase the risk of infection with the more339

virulent co-circulating parasite (since there is an increase in the availability of susceptible340

individuals for the co-circulating infection). Therefore, taken together, there is little fitness341

benefit to investing resources into fighting the lesser of your enemies and specific resistance342

to the less aggressive parasite is not favoured at high host lifespans under an assumption of343

superinfection. We note that several of these interactions are a consequence of the interplay344

between strain prevalence, their relative virulence and virulence associated superinfection. For345

this reason it is important to acknowledge that alternative mechanisms of coexistence may346

lead to different results.347

In conclusion, there are multiple factors that determine the relationship between optimal348

investment in immunity and host lifespan. This results in a variety of patterns for single349

infection models (Miller et al., 2007; Boots et al., 2013; Donnelly et al., 2015; van Boven and350

Weissing, 2004) but here we have shown that this intricacy can be lost when diversity in the351
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parasite burden of the host population is considered. Instead it is the classic idea that long-352

lived hosts invest more in immunity that is generally supported when this key aspect of natural353

populations is included. Our main focus has been on how multiple parasites impact on the354

relationship of host lifespan to resistance, but more generally our inclusion of realistic ecological355

feedbacks in evolutionary models of resistance extends results of previous multi-enemy models356

that assumed constant rather than dynamic populations (Poitrineau et al. (2003); Jokela357

et al. (2000)). Future work should relax the assumption that superinfection occurs and may358

therefore involve different population feedbacks whose effects should be assessed. Such co-359

infection models would be more challenging theoretically, but the importance of including360

ecological feedbacks is emphasized by our work. Furthermore, there is a need for a variety361

of defence interactions against a range of enemies beyond resistance to two parasites to be362

examined in this broader eco-evolutionary context.363
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Case Resistance type under evolution Infection hierarchy Specificity Figure

1 SIS avoidance (β1(a), ν = 0) acute co-circulating (α1 <α2) specific, c= 0 see figure 2a
2 SIS avoidance (β1(a), ν = 0) acute co-circulating (α1 <α2) general, c > 0 see figure 2a
3 SIS avoidance (β1(a), ν = 0) acute focal (α1 >α2) specific, c= 0 see figure 2b
4 SIS avoidance (β1(a), ν = 0) acute focal (α1 >α2) general, c > 0 see figure 2b
5 SIS recovery (γ1(a), ν = 0) acute co-circulating (α1 <α2) specific, c= 0 see figure 2c
6 SIS recovery (γ1(a), ν = 0) acute co-circulating (α1 <α2) general, c > 0 see figure 2c
7 SIS recovery (γ1(a), ν = 0) acute focal (α1 >α2) specific, c= 0 see figure 2d
8 SIS recovery (γ1(a), ν = 0) acute focal (α1 >α2) general, c > 0 see figure 2d
9 SIR avoidance (β1(a), ν > 0) acute co-circulating (α1 <α2) general, c > 0 see figure 3a
10 SIR avoidance (β1(a), ν > 0) acute co-circulating (α1 <α2) specific, c= 0 see figure 3b
11 SIR recovery (γ1(a), ν > 0) acute co-circulating (α1 <α2) general, c > 0 see figure 3c
12 SIR recovery (γ1(a), ν > 0) acute co-circulating (α1 <α2) specific, c= 0 see figure 3d
13 SIR acquired immunity (ν1(a)) acute co-circulating (α1 <α2) general, σ < 1 see figure 4a
14 SIR acquired immunity (ν1(a)) acute co-circulating (α1 <α2) specific, σ= 1 see figure 4a

Table 1. Table of evolving resistance scenarios detailing the infection framework and type of resistance to the

focal parasite that can evolve.
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Hosts infected w. focal

Susceptible hosts

Hosts immune to focal parasite

Hosts infected w/ focal parasite

Hosts infected w/ co-circulating parasite

Hosts immune to focal but infected w/ co-circulating

Model 2: 

Focal parasite superinfects co-circulating parasite

Model 1: 

Co-circulating parasite superinfects focal parasite

Uninfected hosts Hosts infected w. co-circulating

Transmission events

Recovery events

Figure 1. Flow chart showing epidemiological transitions for a situation where a host can recover to immunity
against a focal parasite but where there is in addition a second parsite co-circulating in the host population
(for simplicity there is no immunity to the co-circulating parasite). Parasite coexistence in the host population
(and not within individual hosts) is facilitated by virulence associated superinfection. In model 1 the co-
circulating parasite (represented by the density of hosts infected with that parasite, Y2) is more virulent than
the focal parasite (represented by Y1) and therefore individuals move from the focal infection class Y1 to the
co-circulating infection class Y2 when the co-circulating infection is transmitted to an individual infected with
the focal infection. In model 2 the focal parasite is more virulent than the co-circulating parasite and therefore
individuals move from the co-circulating infected class Y2 to the focal infected class Y1 when the focal infection
is transmitted to an individual already infected with the co-circulating infection. Birth and death of hosts also
occur but are omitted here for simplicity.
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Figure 2. Optimal investment in specific and non-specific resistance in an SIS structured host population.
In (a) and (b) the function of the resistance is avoidance. In (c) and (d) the function of the resistance is
recovery (i.e. increased rate of disease clearance). In (a) and (c) resistance is evolved to counter the relatively
avirulent infection while in (b) and (d) resistance is evolved to counter the relatively virulent infection. In
all cases both infections will be equally countered when resistance is completely general (c= 1). Parameters
were: q= 0.1 β1 = 2 β2 = 4 α1 = 2 α2 = 8 with s= 0.45, in the case of evolving avoidance β̂i = βi(1− 0.5θ) with
γ1 = γ2 = 0.35 and in the case of evolving recovery γ̂i = γi(1 + 2.5θ) with β1 = β2 = 1. In all cases investment
in resistance relates to reproduction according to θ(a) = 1− (aµ)/(aµ

max) with amax = 1.9 and µ= 12.
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Figure 3. Optimal investment in specific and non-specific resistance in an SIR structured population developed
to counter the relatively avirulent infection. In (a) and (b) resistance is through avoidance while in (c) and (d)
resistance is through increased recovery. The proportion of recovered individuals entering the immune class is ν
while the proportion returning to a susceptible state is 1− ν. As ν increases above 0 towards 1 the population
becomes SIR (dark grey through to light grey curves). In (a) and (c) c= 0.5 while in (b) and (c) c= 0. In (a)
and (b) the trade-off exponent is µ= 18, in (c) and (d) µ= 24. Note, α1 <α2 and σ= 1 throughout, for other
parameter values see caption of figure 2.
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Figure 4. Optimal investment in specific (grey curve) and non-specific (black curve) acquired immunity
developed to counter the relatively avirulent infection is given in (a). In (b), (c) and (d) optimal investment
for a range of values of specificity is given for avoidance, recovery and acquired immunity respectively in an
SIR structured population. In each case three separate curves are displayed for the following values of host
lifespan, 1/b= 1 (black curve), 1/b= 2 (dark grey curve) and 1/b= 50 (grey curve). (b), (c) and (d) indicate
that there is a critical value of specificity below which, where resistance is general, high lifespans are associated
with higher investment than low lifespans. On the other hand, beyond this critical value, where resistance
is specific to the relatively avirulent infection, low lifespans are associated with higher investment than high
lifespans. In (a), (c) and (d) the trade-off exponent is µ= 24 and in (b) µ= 18. In (b) and (c) σ= 1 and ν = 1.
Note, α1 <α2 and for other parameter values see caption of figure 2.
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Supporting Information S1 Next Generation Matrix

Invasion fitness (Metz et al., 1996; Geritz et al., 1998) can be derived through a linear stability1

analysis of a mutant ecological model in a population consisting of residents at their population2

attractor (usually a stable point equilibrium). If the steady state corresponding to no mutants3

but positive residents is unstable then the mutant can invade. Hence, eigenvalues (of the4

coefficient matrix, A, of the linearised system, ẋ=Ax) determine the invasion potential5

of the mutant and in particular the dominant eigenvalue is a measure of invasion fitness.6

When a mutant host invades a resident population that is challenged by multiple infections,7

high dimensionality prevents direct derivation of invasion fitness. Instead, following the next8

generation method (Diekmann et al., 1990), the linearised system can be decomposed into9

two matrices, A= F − V . If the largest absolute value of the eigenvalues of the matrix FV −110

is greater (smaller) than 1, then by the next generation theorem (van den Driessche and11

Watmough, 2002; Hurford et al., 2010) the invasion fitness is positive (negative), but note12

that conditions on the matrices F and V apply, see van den Driessche and Watmough (2002).13

For general resistance as described in the main text, i.e. allowing for the possibility14

of evolving avoidance (β1(a
m), β2(a

m)), or evolving recovery (γ1(a
m), γ2(a

m)) or evolving15

acquired immunity (ν(am)), the corresponding birth and death matrices are:16
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