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Abstract

The Eurasian red squirrel (Sciurus vulgaris) is under threat in the UK from the introduced North
American grey squirrel. National measures to save the species include large conifer forest reserves
where management encompasses measures to bolster the native species. However, forests are multi-
purpose environments and foresters have to balance different timber production, amenity and con-
servation objectives. We present a mathematical modelling framework that examines the impacts
of potential felling and restocking plans for two reserves, Kidland and Uswayford forests, in north-
ern England. In collaboration with forest managers, we employed an iterative process that used the
model to assess four forest design plans (felling and restocking scenarios) with the aim of improv-
ing red squirrel population viability. Overall, the model predicted that extinction in both forests at
the same time was rare, but high in Uswayford (84%) alone. Survival could be drastically increased
(from 16% to 70%) by felling and restocking adjustments, and improving dispersal between the two
adjacent forests. This study provides an exemplar of how modelling can have a direct input to land
management to help managers objectively balance the differing pressures of multipurpose forestry.

Introduction
The management of forest systems will face a range of challenges in

the coming decades as a result of global climate change, emerging tree

diseases and a need to integrate forest ecosystem services such as tim-

ber extraction or amenity with efforts to preserve biodiversity (Bengts-

son et al., 2000; Brown and Webber, 2008; Ray, 2008; Ray et al., 2010;

DEFRA, 2011; Shuttleworth et al., 2012). Mathematical modelling can

play an important role in helping to address these challenges. In partic-

ular, models that are combined with digital landcover data and know-

ledge of species habitat requirements and behaviour form powerful

and highly successful tools for species conservation and management.

Examples of modelling approaches that combine mathematical mod-

els and spatial data include GIS-based landcover mapping approaches

linked with simple models to predict future land development impacts

on deer (Odocoileus hemionus; Kline et al., 2010); using spatially ex-

plicit population models to assess the potential success of species trans-

locations for butterflies (Maniola jurtina, Heikkinen et al., 2015); the

development of a spatially explicit agent-based model to simulate ti-

ger (Panthera tigris) population and territory dynamics (Carter at al.,

2015); or the use of spatial, stochastic models to study the impact of

disease-mediated competition by the introduced North American grey

squirrels (Sciurus carolinensis) on Eurasian red squirrels (S. vulgaris;

White et al., 2014).

A key benefit of models is their ability to pose “what if’ questions

that assess the likely effects of future land use changes or species man-

agement. Their use allows objective assessments of different manage-

ment options and can assist in developing the most effective conser-

vation strategies. Here we present the application of a spatially expli-

cit, stochastic population dynamics model that was used to evaluate the
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likely impacts of different forest design scenarios on the population per-

sistence of Eurasian red squirrels, a species under threat of extinction

in the UK (Gurnell et al., 2004, 2014; Lurz et al., 2005).

In close collaboration with the Forestry Commission, the govern-

ment forestry organisation in the UK, we examined the future felling

and restocking scenarios for Kidland and Uswayford forests (Fig. 1),

two spruce-dominated, conifer woodlands in the north-east of England.

The two forests are part a network of 17 English conifer-dominated

“strongholds’ for the endangered red squirrel, where favourable habitat

and management aims to reduce the competitive and disease impacts

of invading grey squirrel populations (grey squirrels carry squirrelpox

virus that is lethal to red squirrels; Tompkins et al., 2003) and thus en-

sure long term survival of local red squirrel populations (Parrott et al.,

2009; Anonymous, 2012 reviewed in Bosch and Lurz, 2012).

A large number of forests (38% of the UK forest area) are managed

by the Forestry Commission, and the Forestry Commission is a key

partner in the efforts to save red squirrels in Britain. With respect to

the North of England, they manage a significant or majority proportion

of the seven red squirrel reserves, all of which are forests planted in

the 20th century. Whilst the forests were initially established to provide

a strategic timber resource, there are now multi-purpose management

objectives that balance timber production with recreation and conser-

vation. The whole of Uswayford forest and approximately half of Kid-

land forest is owned and managed by the Forestry Commission. The

remainder of Kidland is in the hands of a number of private owners.

The two forests are composed predominantly of Sitka spruce (Picea

sitchensis) as well as a small proportion of other conifer species. They

were planted on open moorland and red squirrels colonised during the

last century. They are relatively isolated and therefore the likelihood of

invasion by grey squirrels is low.
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a) b) c)

Figure 1 – a) A photograph of Kidland forest highlighting how it is dominated by conifer. b) The Forestry Commission relief map of Kidland and Uswayford forests and c) the representation
of compartments in the model with the Kidland compartments (blue), Uswayford (green) and Private (red).

Monitoring for red squirrels at Kidland forest has occurred for the

last 15 years on an annual basis. The forest habitat supports low-

density populations of red squirrels and is thought to be unfavourable

for greys. A key determinant of red squirrel abundance in these regions

is resource availability which will depend on the availability of mature

seed producing trees suitable for red squirrels (which in turn varies de-

pending on felling and restocking strategies) and seed crop abundance

(which varies annually due to climate patterns, weather and pheno-

logy), (Bosch and Lurz, 2012). The close association of red and grey

squirrels with forest habitats and their maturity make them ideal spe-

cies for assessment with models (Lurz et al., 2001, 2003, 2008). Link-

ing mathematical models with digital landcover maps, or the highly

detailed UK forest stock maps which provide information on tree spe-

cies (planted as single species blocks) and age classes (planting year)

at high resolutions allows accurate simulations of different forest man-

agement options.

In this study we use mathematical models and digital landcover maps

to assess how red squirrel abundance would change as a result of dif-

ferent forest design plans. The objective was to use an iterative process

where modelling that assesses red squirrel population dynamics can

inform the development of further forest design plans with the aim of

ensuring and improving red squirrel viability. This iterative process

led to the consideration of four different forest design plans (scenarios

A -– D outlined in the methods sections) in which the model predicted

squirrel densities as Kidland and Uswayford are felled and replanted.

The model study outlines the scenarios that are most favourable for red

squirrel abundance and viability and this information has been used

by the Forestry Commission in the production of the proposed forest

design plans for these regions.

Figure 2 – Red squirrel carrying capacity estimates for Kidland, Uswayford and Tilhill in
2012. a) The high estimate (Tab. 1) representing a good seed year and b) the low estimate
(Tab. 1) representing a poor seed year.

Methods

Study area

Kidland and Uswayford are part of the North England Forest District, in

Northumberland, England. They were planted post 1960 and are com-

mercially managed. Kidland is 2050 ha, of which 1190 ha are managed

by the Forestry Commission, the rest is owned by private landowners

managed by the company Tilhill; while Uswayford is approximately

1000 ha, all managed by the Forestry Commission. The two forests are

separated by less than 1 km of open land (Fig. 1), but are relatively isol-

ated from other forested regions and surrounded by moorland. They are

dominated by conifer species such as Sitka spruce, Norway spruce (P.

abies), Scots pine (Pinus sylvestris), Lodgepole pine (P. contorta) and

larch, (Larix spp.; see also Fig. 1). Using Forestry Commission data,

we extracted the compartments that represent Kidland and Uswayford

(see blue and green regions respectively in Fig. 1c) and the privately

managed Tilhill area on the western side of Kidland (see red region in

Fig. 1c).

Carrying capacity estimate

The number of squirrels that the different forest compartments can sup-

port depends on habitat type, which can be estimated using Forestry

Commission stockmap data (or publicly available forest inventory re-

cords for private areas). This data provides species specific habitat and

age information within each compartment which can be combined with

squirrel density estimates from the literature and data from the existing

15 years of local squirrel and tree seed crop survey data (Forestry Com-

mission pers. comm.; Tab. 1). It is assumed that it takes 30 years for

trees to reach maturity and provide suitable, regular resources (seeds)

for red squirrels. As felling plans for the adjacent, privately managed

forest area were not known in detail, the land was taken to be one third

felled, one third immature and one third mature, which replicates a 45

year conifer rotation cycle typical for upland conifer plantations. This

also kept private forest areas neutral and allowed the project to focus

on assessing the impacts of any proposed Forestry Commission design

plans only, without confounding the results with changes to the struc-

ture of adjacent woodland. We determined a high and low carrying

capacity to reflect good and poor seed years for each compartment us-

ing published density estimates, taken from the following references:

Holm (1991); Magris (1998); Lurz et al. (1995, 1998); Bosch and Lurz

(2012); White et al. (2014). The estimated red squirrel densities per

hectare for each tree species class is shown in Tab. 1, and Fig. 2 shows

the resulting high and low carrying capacities for the forests in 2012.

Forest Design Plans (Scenarios A-D)

The initial forest design plan (named scenario A) supplied by the

Forestry Commission contains felling and species specific restocking

information from 2012–2052. This was created prior to the modelling

assessment and was based on commercial considerations without a fo-

cus on red squirrel conservation. The felling and restocking informa-

2



Modelling the impact of forest design plans

Table 1 – Density estimates for red squirrels in the di�erent tree species classes present in
Kidland and Uswayford forest. The data was derived from the following references: Holm
(1991); Magris (1998); Lurz et al. (1995, 1998); Bosch and Lurz (2012); White et al. (2014).

Red Squirrel Density (ha-1)

Tree species High Low

Ash, Fraxinus excelsior 0 0

Birch, Betula spp. 0 0

Douglas fir, Pseudotsuga menziesii 0.45 0.17

European larch, Larix decidua 0.38 0.21

Grand fir, Abies grandis 0 0

Hybrid larch 0.38 0.21

Japanese larch, Larix kaempferi 0.38 0.21

Lodgepole pine 0.4 0.04

Mixed broadleaf 1 0.62

Norway Spruce 0.58 0.25

Oak, Quercus spp. 1 0.62

Scots pine 0.4 0.04

Sitka spruce 0.11 0.011

Sycamore, Acer pseudoplatanus 0 0

Western Hemlock, Tsuga heterophylla 0 0

Other Conifer 0.45 0.17

Other Spruce 0.2 0.02

Mixed Conifer 0.45 0.17

Table 2 – A summary of the four di�erent forest design plans (scenarios) produced by the
Forestry Commission.

Scenario Date received Summary

A 24/2/2014 Original forest design plan.

B 14/10/2014 Reduced felling rate in Uswayford. Increased
felling rate in Kidland.

C 17/11/2014 Similar to scenario B for Uswayford. Re-
duced felling rate in Kidland. Restocking to
provide improved squirrel habitat.

D 12/2/2015 Similar to scenario C, but with commercial
focused restocking.

tion in scenario A can be used to produce carrying capacity maps for

each year between 2012–2052 (shown for every two years in the Sup-

plementary Material, Fig. S1 and S2). The initial model predictions

using scenario A were presented to the Forestry Commission in May

2014 and led to the development of three further scenarios (B, C, D)

that attempted to improve red squirrel population viability while tak-

ing into account local planting and felling constraints (e.g. restrictions

due to tree diseases and wind throw risks for exposed locations). We

outline these scenarios below (and see Tab. 2 for a summary).

Scenario B considers an alternative felling plan which extended the

time before some coupes were felled in Uswayford. This aimed to pre-

vent sustained low densities in Uswayford. To compensate, some ad-

ditional felling was undertaken in Kidland. Carrying capacity maps

using scenario B are shown in Fig. S3 & S4.

Scenario C has a similar felling trend to scenario B in Uswayford,

but has a reduced rate of felling in Kidland. In addition, the tree spe-

cies mixture chosen for restocking contains tree species that support a

higher density of squirrels. Carrying capacity maps using scenario C

are shown in Fig. S5 & S6.

Scenario D follows a similar trend to scenario C but the tree species

chosen for restocking are chosen based on commercial priorities rather

than squirrel habitat quality. They therefore do not support such a high

squirrel density as scenario C. Carrying capacity maps using scenario

D are shown in Fig. S7 & S8.

Figure 3 shows the effect of the four different forest design scenarios

on the overall carrying capacity of Kidland and Uswayford.

In addition to the new forest design scenarios (B-D), the Forestry

Commission also provided details of a potential habitat link between

the forests (see Fig. S9). In the model runs we therefore considered

two possibilities: (i) squirrels cannot utilise the dispersal compartment

Figure 3 – Changes in red squirrel carrying capacity using the high density estimates
between 2012–2052 for scenario A and between 2012–2066 for scenarios B-D (summarised
in Tab. 2). These scenarios were provided as an iterative process in response to model
findings with scenario A provided on 24/2/14, scenario B on 14/10/14, scenario C on 17/11/14
and scenario D on 12/5/15.

until 2045 (30 years after planting when trees are assumed to be mature)

and; (ii) squirrels can utilise the compartment in 2025 (while the trees

may not be suitable habitat for red squirrels after 10 years, they would

provide cover for squirrels moving between Kidland and Uswayford).

Model framework and setup

Previous model studies that have assessed the population dynamics

of red squirrels in realistic landscapes have adapted the classical de-

terministic modelling approach of Tompkins et al. (2003) to consider

a stochastic model framework (White et al., 2014; Macpherson et al.,

2015; White et al., 2016). In the current study it is important to con-

sider the stochastic nature of the population dynamics as population

abundance can reach low levels, which could result in regional popu-

lation extinction. We therefore follow a similar approach to White et

al. (2014) in this study. Within each forest compartment the popula-

tion density of red squirrels, N , at time t, in years, is represented by

the following underlying deterministic model:

dN

dt
= aN

(

1 −
N

K1

)

− bN
(

N

K

)

for tn 6 t 6 tn + 0.5 (1a)

dN

dt
= −bN

(

N

K

)

for tn + 0.5 6 t 6 tn+1.

(1b)

Here, we assume birth and death are density dependent and that birth

only occurs for a 6 month breeding season (representing 2 litter periods

between May-October) whereas death can occur throughout the year.

The natural mortality rate is b=0.9 yr-1 (Barkalow et al., 1970) and the

birth rate is a=3.0 yr-1 (Tompkins et al., 2003). The carrying capacity,

K, is determined using Forestry Commission data for each compart-

ment (see Fig. 2 and Fig. S1-S8) and the density dependent parameter

that scales the birth rate, K1=2.6K is calculated to ensure that the av-

erage population density over a year is equal to the carrying capacity,

K.

The deterministic model is turned into an individual based stochastic

model by turning the rates for births and deaths in Equation (1) into

probabilities of a birth or death “event”. We also need to consider the

dispersal of individuals. We assume saturation dispersal such that indi-

viduals are more likely to disperse as the local population increases (Po-
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ethke and Hovestadt, 2002). In our models we specify that individuals

disperse randomly up to a distance of 1 km and therefore could move to

any compartment that is within this distance. We assume the dispersal

rate, m = b, so that on average squirrels are predicted to disperse to a

new compartment once in their lifetime. The spatial stochastic model

is therefore:

Event Outcome Probability

Birth (breeding season) Ni → Ni + 1 [aNi(1 − Ni/Ki)]/R
(2a)

Death Ni → Ni − 1 [bNi(Ni/Ki)]/R (2b)

Dispersal Ni → Ni − 1,

Nj → Nj + 1 [mNi(Ni/Ki)
2]/R

(2c)

referring to events and their outcomes in a particular compartment i,
with dispersal occurring to compartment j. The rates from Equation

(1) are turned into probarilities by dividing by R =
∑

[rates] (the sum

of the terms in square brackets summed over all compartments).

We use a Gillespie algorithm (Gillespie, 1977) to select each event

and update the number of individuals (and therefore the probabilit-

ies) after each event. The time between each event is given by dt =
− ln(z)/R where z is an uniform random number between 0 and 1

(which assumes the next event is an exponentially distributed random

variable; Renshaw, 1993).

Using scenario A, the model outlined in Equation (2c) was run for

100 years with the high and low carrying capacity estimates (Fig. 2)

to represent a spin-up period (see also supplementary information

Fig. S10 & S11). In order to reflect the natural, annual variation in

resources caused by good and poor seed years (e.g. Lurz, 2015), the

model is also run for a scenario in which 3 years of the high carrying

capacity was followed by 1 year at the low carrying capacity (3 high, 1

low scenario; Fig. S12).

Following the 100 year spin up period, 50 realisations of the model

were run for a further 40 years (2012–2052), with the carrying capacity

being updated yearly depending on the felling and replanting strategy

of the scenario A forest design plan. Similarly, 50 realisations of the

model were run for a further 55 years (2012–2066) updating the carry-

ing capacity yearly depending on the strategies given in scenarios B-D.

Results
The spin up period showed that in the high scenario, the red squirrel

population can be supported in the long term with an average of ap-

proximately 150 squirrels (Fig. S10). In the low scenario population

extinction is predicted in all model runs (commonly within 5–20 years,

Fig. S11), indicating that the red squirrel population could not persist

if there were only poor seed crop years. In the 3 high, 1 low scen-

ario, the red population can be supported in the long-term (Fig. S12).

This scenario also reflects the variation in annual squirrel abundance

that is reported in these forest strongholds (Forestry Commission pers.

comm.) with abundance peaking at around 150 squirrels after success-

ive good years and dropping to around 35 individuals in poor years.

Since the annual variation in resources is a feature of the natural sys-

tem the remaining results in this study are presented for the 3 high, 1

low scenario.

Scenario A

The model was run from 2012–2052 using the forest design plans out-

lined for scenario A and following the 3 high, 1 low seed crop scenario.

Complete extinction of red squirrels in both Kidland and Uswayford

was observed in 2% of the realisations (Fig. 4a). However, red squirrel

extinction (by 2052) was predicted in Uswayford (only) in 84% of the

realisations. When an additional 20 years was simulated beyond 2052

(Fig. 4a), the red squirrel population at Kidland stabilised, as the re-

planted forest compartments had matured and could support additional

Figure 4 – a) The population abundance in Kidland (blue), Uswayford (green) and both
(Kidland + Uswayford; black) in the ’3 high, 1 low’ carrying capacity scenario using the
scenario A forest design plan for 2012–2052. The model was continued for an additional
20 years at the 2052 levels (highlighted by the vertical dashed red line). b) The same
scenario as (a) with global dispersal (rather than the restriction of 1 km to dispersal).

squirrels. However, there was minimal recovery of squirrel numbers in

Uswayford. The model runs indicate that Uswayford was not recolon-

ised by squirrels dispersing from Kidland, even though suitable habitat

to support squirrel populations in Uswayford was available from 2050

onwards.

In order to investigate why dispersal from the red squirrel popula-

tion in Kidland (incl. privately managed Tilhill areas) did not aid the

repopulation of Uswayford in the model, we examined the distribution

of mature seed-bearing habitat for red squirrels under the forest design

plans of scenario A (see Fig. S13). This indicated that there was little

suitable habitat in Uswayford between 2038 and 2048 which results in

the high levels of population extinction. From 2050 onwards suitable

habitat was available in Uswayford, but only a small fraction of this

was within the 1 km dispersal distance to the populations at Kidland.

Therefore, while some compartment boundaries between Uswayford

and Kidland/Tilhill are within the dispersal range for squirrels, felling

and replanting meant that the occurrence of mature habitat within the

dispersal range was limited.

To explore whether dispersal was a critical factor in the survival or

recovery of squirrel populations at Uswayford, we therefore considered

Figure 5 – The population abundance in Kidland (blue), Uswayford (green) and both
(Kidland + Uswayford; black) in the ’3 high, 1 low’ carrying capacity scenario. (a-c) represent
scenario B, (d-f) scenario C and (g-i) scenario D (summarised in Tab. 2). The left column
(a, d, g) represent realisations in which the additional dispersal corridor between Tilhill and
Uswayford is not included. The middle column (b, e, h) includes the additional dispersal
corridor and assumes it can be utilized 30 years after planting. The right column (c, f,
i) includes the additional dispersal corridor and assumes that it can be utilized 10 years
after planting.
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Figure 6 – The percentage of realisations in which red squirrel populations persisted in Uswayford in 2052 for the four forest design scenarios (summarised in Tab. 2) when there is no
dispersal corridor (left) and when the corridor is planted in the compartment shown in Fig. S9 and has a 30 year growth time before it can be used (middle) or a 10 year growth time
(right).

an “idealised” scenario, in which dispersal was allowed to any com-

partment, independent of its location or distance. Figure 4b shows that

population abundance still drops to low levels between 2040–2050 due

to the low carrying capacity in Uswayford. However, the improved

connectivity allows the population to recover in all model realisations.

Therefore, recolonisation of Uswayford is hindered by a lack of dis-

persal opportunities, and a better connection between Uswayford and

Kidland/Tilhill would improve recovery in Uswayford following pop-

ulation decline (or extinction) once mature habitat becomes available

again.

These interim findings were presented to the Forestry Commission

in May 2014. It was clear that the planned felling and restocking un-

der scenario A could cause a large drop in the carrying capacities, and

therefore squirrel abundance, in both Kidland and Uswayford at the

same time. Based on the modelling assessment, the key recommenda-

tions to reduce the likelihood of red squirrel population included:

• adjusting the forest management plans so that low carrying capa-

cities (large areas that are felled and/or plantations of an age that

do not yet produce seeds) are out of phase in each forest;

• adjusting the tree mixtures to improve the overall carrying.

Discussions with the Forestry Commission also suggested that the

model system could be used to consider the effect of an improved con-

nection between Kidland/Tilhill and Uswayford. This would allow one

forest to act as a source of squirrels if temporary extinctions were to

occur in the other. The impact of a habitat link between forests (see

Fig. S9) was considered for scenarios B-D (see below).

Scenarios B, C and D

The scenario A model predictions suggest that Kidland could gener-

ally maintain a continuous squirrel population, while the population in

Uswayford would fall to very low levels, supporting few squirrels un-

til a slight increase by 2052 (Fig. 3a and 4a). The chance of population

extinction in Uswayford when realistic seed crop patterns were mod-

elled is high (84%). Scenarios B–D were developed by the Forestry

Commission in response to these model findings.

In the absence of a dispersal corridor, model simulations for scen-

ario B (Fig. 5a) show that red population abundance in Uswayford is

predicted to fall by around 2052. However, following 2052 the hab-

itat improves and by 2066, populations are recovering to sustainable

levels. There is a 46% chance of extinction in 2052 (compared to 84%

for scenario A). The scenario C forest design plan further reduced the

felling rate in Kidland and model predictions for this scenario support

a larger total population of squirrels throughout the period (Fig. 5d).

While there is still a drop in the abundance of squirrels in Uswayford

in 2052, only 30% of model realisations result in extinction in Usway-

ford. Scenario C would therefore reduce the probability of squirrel ex-

tinction compared to both scenarios A and B. The model realisations

for scenario D (Fig. 5g) are very similar to those in scenario C, with a

chance of extinction in Uswayford of 30% (the same as in scenario C).

The total overall population is slightly lower in scenario D than scen-

ario C as the trees used in restocking do not support as many squirrels.

Whilst the new scenarios improve population viability for red squir-

rels, population abundance still drops to low levels (by around 2050)

with a risk of extinction in Uswayford. Population recovery in Usway-

ford was improved when a dispersal link was included. Model res-

ults indicate that recovery was fastest when the dispersal corridor could

be utilised 10 years after planting (Fig. 5). Populations in Uswayford

(and the total population) were highest by 2066 in scenario C (Fig. 5).

To compare the four forest design scenarios (A-D) in more detail, we

determined the probability of red squirrels persistence in 2052 under

scenario B-D when the additional dispersal corridor between Kidland

and Uswayford was included in the model. The chance of total ex-

tinction in both Kidland and Uswayford was rare and only occurred in

one realisation in the 3 high, 1 low carrying capacity case in scenario A

(and in no other model runs). We therefore focus on Uswayford and de-

termine the probability of survival in Uswayford. Without a dispersal

corridor between Kidland and Uswayford, the chance of survival is low

in scenario A (16%), higher in scenario B (54%) and further increased

in scenarios C (70%) and D (70%) (Fig. 6). Population extinction can

still occur in Uswayford when the dispersal corridor is included, but in

all of these cases the model predicts improved survival in Uswayford in

2052 (Fig. 6), and that Uswayford will be re-populated by 2066 (when

the corridor is included). Therefore, the dispersal corridor reduces the

chance of extinction and significantly improves the re-population of

Uswayford if extinction does occur.

Discussion

Managing forests to improve species conservation and diversity is in-

creasingly important (Hansen et al., 1991; Lindenmayer et al., 1998)

but can often conflict with commercial forestry interests which are in-

fluenced by economic pressures that may be detrimental to many spe-

cies (Ratcliffe and Petty, 1986). Comprehensive and integrated model

frameworks can be used to represent ecosystems and their services and

to design appropriate methods to handle forest management impacts

(Filyushkina et al., 2016). However, efforts to manage forest ecosys-

tem services and preserve endangered species can only succeed when

scientists, foresters and landowners work together. Whilst some forest

species such as the Capercaillie (Tetrao urogallus) benefit from intact,

mature old-growth forests (e.g. Mikoláš et al., 2015), the conservation

efforts for red squirrels can be integrated with standard forest opera-

tions over the whole woodland area. A high degree of flexibility in red

squirrel habitat and space use in conifer forests (Lurz et al., 1995, 1997,

1998, 2000) allows the species to exist at low population densities in

production conifer plantations typical of British uplands. These areas

offer refuges from the introduced, broadleaf-specialist grey squirrels

and form the backbone of current red squirrel conservation efforts in

the North of England (Pepper and Patterson, 1998; Parrott et al., 2009).

Management for red squirrels in these conifer dominated areas focuses

on a few basic recommendations:

• maintaining seed food supply for red squirrels through a minimum

level of tree diversity;
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• considering forest age structure to ensure there are sufficient ma-

ture trees of seed bearing age to support a population;

• maintaining canopy connectivity after thinning and dispersal links

within the forest to allow squirrels to resettle as a result of harvest-

ing operations without the risk of predation on open ground (Lurz

et al., 2008; Anonymous, 2012; Flaherty at al., 2012).

The permanent retention of small areas capable of supporting a pop-

ulation would also speed up re-colonisation of nearby woodland blocks

following harvesting and replanting.

The integration of information on red squirrel population dynam-

ics (Lurz et al., 2005) with local forest management expertise, and

mathematical modelling approaches (White et al., 2014) allows assess-

ments of potential impacts of different forest management options on

red squirrel abundance. The results of the current study clearly in-

dicate that an iterative, close collaboration can drastically reduce the

likely extinction risk for red squirrel populations at Kidland and Usway-

ford forests and can help in the development of robust conservation

strategies. Model findings showed that changes to harvesting and re-

stocking could improve red squirrel viability by ensuring that there was

sufficient suitable habitat. Furthermore, an important factor in im-

proved population survival was the consideration of Uswayford and

Kidland as one forest system, realised by the inclusion of a linking,

dispersal corridor (see Fig. S9). Given differences in respective forest

ages, and a necessity for timber extraction due to high wind-throw risks

and contractual obligations, the management of the two forests as a

linked system offers increased flexibility for harvesting to help maintain

sufficient mature, seed-bearing habitat for a viable red squirrel popula-

tion.

The results from the model study have been incorporated into the

proposed forest design plans for the Kidland and Uswayford region

(under the Forestry Commission Cheviot Forest Plan proposal; pers.

comm.). The revised plan is currently going through an approval pro-

cedure by the Forestry Commission and recommends a combination

of forest design scenarios C and D for the harvesting and replanting

strategy for these forests. Moreover, model findings highlighted the

importance of a dispersal corridor between the two forests. Increasing

the habitat linkage between the forests could in the long term help con-

nectivity and provide a permanent corridor between the forests (but this

is outwith the scope of the Forestry Commission’s proposals). In gen-

eral, the processes followed in this study have been an exemplar for how

academic research can have a direct input to land management on the

ground that helps managers objectively balance the differing pressures

of multipurpose forestry.
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Supplemental information
Additional Supplemental Information may be found in the online version of this arti-

cle:

Figures S1-S8 Snapshots of the red squirrel carrying capacity according to the dif-

ferent scenarios.

Figure S9 A map showing the location of a proposed dispersal corridor between

Kildand/Tilhill and Uswayford.

Figure S10 Realisations showing the 100 year spin-up for the scenario A forest

design plans and the high density estimates for 2012.

Figure S11 Realisations showing the spin-up for the scenario A forest design plans

and the low density estimates for 2012.

Figure S12 Realisations showing the 100 year spin-up for the scenario A forest

design plans and the 3 high 1 low carrying capacity scenario for 2012.

Figure S13 Maps showing the distribution of mature forest, immature forest, no trees

and Tilhill based on the forest design plans of scenario A for 2012–2052.
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