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SUMMARY

Power spectrum analysis is often used to determine whether population time series are dominated by
particular frequencies. Results for chaotic time series are often reported in terms of the colour of the
spectra whereby red spectra indicate a dominance of low frequency (long-term) fluctuations, white
spectra indicate that all frequencies are equally dominant and blue spectra indicate a dominance of high
frequency (short-term) fluctuations. Several studies have employed such analysis and much discussion has
been provoked by an apparent conflict between the fact that the time series of natural populations
produce reddened power spectra whereas chaotic, single species ecological models can produce blue, white
or red spectra. Here, we resolve the question of which parameter values give rise to particular colour
spectra by analysing simple models in terms of ‘universal’ parameters allowing direct comparisons
between models to be drawn. This suggests that some models are not capable of producing reddened
spectra, which would question their usefulness in describing ecological systems. The population behaviour
associated with each colour spectrum is described and compared with models that incorporate simple

modifications to represent delayed density dependence, spatial structure and environmental effects.

1. INTRODUCTION

There has long been a desire to interpret and explain
empirical population dynamics data by the use of
theoretical population models. Although approaching
an exact correspondence between models and natural
systems is fraught with difficulties, there is a hope that
model systems embody the fundamental features of the
dynamics exhibited by their natural counterparts. It is
commonly perceived that one such fundamental
feature is that patterns in the dynamics of natural
populations are dominated by low frequency fluctua-
tions (Ma 1958; Diamond & May 1977; Pimm &
Redfearn 1988; Sugihara 1995; Halley 1996). Power
spectrum analysis can be used to determine whether
population dynamics are dominated by particular
frequencies, with the results often reported in terms of
spectral colour. Here, spectra can be red, indicating a
dominance of low frequency (long-term) fluctuations,
white, indicating no overall frequency dominance, or
blue, indicating a dominance of high frequency (short-
term) fluctuations {for examples of these spectra see
figure 2a{i), b(i) and ¢(i}). Thus, it has been suggested
that the spectral analysis of the time series of natural
populations would produce reddened spectra (Sugihara
1995; Halley 1996). However, Cohen (1995) reported
that the time series of a number of chaotic, single-

* Present address: Institute of Terrestrial Ecology, Edinburgh
Research Station, Bush Estate, Penicuik EH26 0QB, UK

Proc. R. Soc. Lond. B (1996), 263, 1731-1737 1731

Printed in Great Britain

species ecological models have blue power spectra. In
other words, the dynamics of real populations are
apparently dominated by longer-term trends, but
population models, of one common type at least, fail to
capture this crucial characteristic, being dominated
instead by shorter-term responses. This calls into
question both the usefulness of the models and the
applicability of chaotic dynamics to natural systems.
Cohen’s (1995) paper, highlighting this apparent
red-blue power spectra conflict in ecological time
series, stimulated a number of responses. Blarer &
Doebeli (1996) showed that for different choices of
parameter values, some of the models in Cohen’s
(1995) study can exhibit reddened or white spectra in
addition to the blue spectra which Cohen reported.
They remarked that the question posed by these results
is to understand when and why some parameter values
give rise to blue spectra and others red. Other studies
have shown how reddened spectra may be expected in
the case of explicitly spatial models (White et al.
1996a), as here, the response of the whole meta-
population to its own total density may occur on much
longer timescales that allow initially local effects to
spread and to influence the whole. Kaitala & Ranta
(1996) analysed the same single-species models as
Cohen (1995) for the same parameter values but added
delayed density dependence. This converted the power
spectra of the time series from blue to white. They
raised the question of whether the colour of the
spectrum was related to the route by which chaos was
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obtained (period doubling, quasiperiodicity or inter-
mittency). Finally, Sugihara (1995, 1996) suggested
that although biotic models {such as those described
above) can produce reddened spectra, it is equally
likely that external forcing by the climate or other
factors could be the main cause of high dominance at
low frequencies in the natural spectra. All these studies
suggest that chaotic population dynamics may still be
important in explaining the red spectra seen in natural
populations, but exemplify the difficulty of the debate
over whether natural population fluctuations represent
regulation by biological mechanisms (Blarer & Doebeli
1996; Kaitala & Ranta 1996; White ef al. 19964) or
whether they are mostly the result of environmental
forcing (Ma 1958; Cohen 1995; Sugihara 1995).

2. APPROACH AND METHODS

We consider here the models examined by Cohen {1993)
and undertake parameter space investigations aimed at
characterizing the ‘colour’ of the spectra obtained at each
point. First, though, we describe how the power spectra were
generated and a method by which we can quantity the
different colour types.

To produce power spectra for the models, 100 sample
paths of 512 time steps were generated for each model (after
10000 time steps were eliminated to remove transients) from
an initial population size F, distributed randomly and
uniformly. Spectra produced from longer time series vary
only minimally in shape and will not alter the results
reported here. Hence, for consistency with Cohen (1995) and
subsequent responses, 512 steps are used. The average of the
power spectra over the 100 simulations was then computed at
the appropriate frequencies between 0 and 0.5 (per time
step). Because the power varied widely over frequencies we
choose to work with log,, (power). For a more detailed
explanation of the technique used to calculate power spectra
see Cohen (1995).

To characterize the colour of the power spectra, we
propose an index, /,, for each spectrum as follows:

I=
(area under spectrum for) (area under spectrum for)

frequencies 0-0.25 frequencies 0.25-0.5

The lower boundary, above which the area is calculated,
must be at most the minimum power value across all the
frequencies for each spectrum.

For the purposes of this study, white spectra have an index
in the region of zero { —0.05 < I, < 0.03), blue spectra have
a more negative index (I, < —0.05) which decreases as the
‘blueness’ increases and red spectra a more positive index
(I, > 0.05) which increases as the ‘redness’ increases. This
index is preferred to the one outlined by Blarer & Doebeli
{1996, which uses the ratio of the respective areas, because
in their index the dominance of low to high frequencies is
relative {to log,,(1}) and sensitive to scale. For instance,
altering the size of a parameter which only alters the scale of
the dynamics alters their ratio index. The difference index,
however, is not sensitive to scale, giving the absolute
dominance of low versus high frequencies, and hence allowing
a quantitative comparison of indexes for different parameter
values and between different models. However, [, is a
heuristic measure of spectral colour and should be used in
conjunction with the spectrum portrait to avoid errors. For
example, a bell shaped spectrum portrait, centred at 0.25,
would have an index of zero but is clearly not white.
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3. ANALYSIS OF THE MAYNARD SMITH
MODEL

Using the above method we present a thorough
parameter space analysis of the chaotic region of one of
Cohen’s (1995) models, that of Maynard Smith {1974).
This model is sufficiently versatile to exhibit red, white
and blue spectra and it transpires that the results and
descriptions generalize to explain the behaviour in
other models. The Maynard Smith model is

o7

Pm=m=ﬂp:)- (1)

Here P, denotes the population size at generation ¢, and
the dynamics are determined by the intrinsic growth
rate r and by the parameter o, describing the type and
‘strength’ of competition. Here, ‘strength’ is used in
the sense of describing the fact that for any £, above
P* (the carrying capacity, where F,, = F), and with
all other parameters fixed, a higher value of b will force
the population to crash to lower levels over the next
time step. The parameter a does not influence the
qualitative dynamics but scales the densities and in
particular the carrying capacity, P*¥. The r—b
parameter space analysis, for the chaotic region of the
model, is portrayed in figure 1 in terms of contour lines
for I,, the difference index, with regions shaded to
indicate where the different colour spectra are found.
The behaviour of the population causes a discontinuity
at the chaos boundary (where ‘bell’ shaped spectra
centred at 0.25 are observed) and parameter values
that produce periodic solutions within the chaotic
region are ignored.

The dynamical behaviour of the population itself

“varies with the colour of spectrum observed. A general

description of this behaviour will also prove informative
when results are extended to include model com-
parisons.

strength of competition, b

0 510 15 20 25 30
intrinsic growth rate, r

Figure 1. Ther— b parameter space portrait for the Maynard
Smith model (a = 0.5), where the shaded regions are labelled
to indicate where the different spectral colours are found.
The contour lines for [,, reading clockwise are 0.1, 0.05, 0.0,
—0.05, —0.1, —0.2 respectively and the r—& portrait is
bordered below by the boundary of the chaotic region.
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Figure 2. Portraits for the Maynard Smith model for: (a) blue spectra (¢ = 0.5, b = 3.7, r = 10): (b) white spectra
{a=0.5, b =30, r=130): and () red spectra (a = 0.5, b = 60, r = 1.5) indicating the typical (i) power spectra
patterns, (ii) maps profiles of P plotted against f{P), and (iii) population behaviour.

(a) Blue spectra

Blue spectra (higher power at high frequencies)
indicate that the population dynamics are dominated
by short-term trends (figure 2a(i)). They occur for all
values of r but typically require low strength com-
petition (low b for this model). Figure 2a(ii) depicts a
typical plot of £, = f{F) against F, for parameters that
produce blue spectra. By using this plot we can
calculate the maximum length of the ‘quasi-cycle’
obtainable for these parameter combinations.

Here, a quasi-cycle is a description of the gross level
dynamics in terms of symbolic dynamics (often used to
describe chaotic systems (Ott 1993)). We represent the
population time series at each iteration by a 1 if £, >
Fora0ifB,, < F. The dynamics are ‘symbolic’ in the
sense of describing only whether the population is
increasing or decreasing. Starting at 0 (population
decrease), the quasi-cycle is defined as the number of
iterations until the next 0. For the maximum quasi-
cycle {after transients) we must iterate forwards from
P = max f{P), as the next time step will incur the largest
possible crash (note, crashes for blue spectra are never
too severe, figure 2a(iii)}. In this case a quasi-cycle of
‘period’ 3 is the maximum (011’ - follow the dotted
line in figure 2a(ii)). Note, one dimensional maps of
this kind will always have growth following a crash (i.e.
‘00’ is not possible). The only other possible quasi-
cycle is of period 2 {*01°) and so here, all dynamics are
constructed from quasi-cycles of period 2 or 3. This
domination of short period (high frequency) fluctua-
tions gives rise to the blue spectra.

(b) White spectra

White spectra indicate that there is an equal
dominance of (attainable) frequencies (figure 24 (i)).
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Again, they can occur for all values of r, but, for given
r, require competition to be stronger than for blue
spectra. The typical behaviour involves the (1 step)
population crash to very low levels (after P* is
breached) followed by many steps of population
growth (*0111...7), which occurs effectively at the
intrinsic growth rate. Because the population drops to
such low levels, the abundance is low for many
generations of population growth, and moderate or
high abundance is observed for only two or three steps
per quasi-cycle (figure 25 (iii)). The maximum quasi-
cycle here is 28. However, sometimes a crash to only
moderate levels occurs, followed by relatively few steps
of growth before the next crash. Hence, considerably
more frequencies within the spectrum are attainable:
the period between these population outbreaks (i.e. the
period of the quasi-cycle) varies considerably from two
up to 28 generations, resulting in approximately equal
power spectrum values for frequencies between 1/28(~
0.04) and 1/2, and explaining the drop in power for
frequencies smalier than 0.04.

(¢) Red spectra

Red spectra indicate that the population dynamics
are dominated by long-term (low frequency) trends
(figure 2¢(i)). They occur where competition is strong,
but, for given strength of competition require r to be
lower than for white spectra. The typical population
behaviour has similarities to that associated with white
spectra, in that there is a crash to low population levels
followed by an increase over many generations
(maximum quasi cycle 47 generations for figure 2¢).
The behaviour differs however, in that short quasi-
cycles are uncommon, and as a result of the lower
intrinsic growth rate, abundance can be observed at
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significant levels for 1015 steps before the 1 step crash
(figure 2c¢(iii)).

4. COMPARING MODELS: A UNIVERSAL
PICTURE

To compare the behaviour of different models, we
must be able to analyse each model in terms of an
equivalent set of parameters. This can be achieved by
analysing the models in terms of the ‘boom” and “bust’
of the population dynamics. The boom parameter is
the maximum growth rate of the population (it is
equivalent to the per capita rate of increase at low
densities for many of the models), and the bust
parameter is a measure of the ‘strength’ of the density
dependence, i.¢. the ability of the dynamics to force the
population back to low levels after the carrying

(@ -
Chaos boundary
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=30+
~35
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50 L. ; : s
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(®)
0

Chaos boundary

Bust

-6 Bust=1-In(Boom)

0 100 200 300 400 500 600 700 800 900 1000
Boom

Figure 3. A parameter space portrait in terms of the universal
parameters boom and bust where the shaded regions are
labelled to indicate where the different spectral colours are
found. Here, the boom-—bust portrait represents: {(a) the
Maynard Smith model (a = 0.5), the contour lines for I,
reading clockwise are —0.2, —0.1, —0.05,0.0,0.05,0.1,0.2;
and (b) the Hassall model with contour lines —0.2, —0.1,
—0.05. In the Hassall model the limiting magnitude of the
bust parameter, for fixed levels of boom, is finite (it is
constrained by the relation Bust = 1~In(Boom)), meaning
red spectra cannot be produced.
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capacity is breached. A suitable choice for the bust
parameter is the slope of the map, df{P)/dP = f*(P) at
P*_ the carrying capacity. As the severity of the density
dependence increases, f'(P*) will become more nega-
tive. We choose P* as the evaluation point as it has
neat analytical properties.

The equivalent portrait to figure 1 for the Maynard
Smith model, but in terms of ‘boom’ plotted against
‘bust’, is displayed in figure 3a. Note that the chaos
boundary line has been transformed into a straight line
at f'(P) & 1.7 and that r > | to ensure that population
values are biologically realistic (i.e. to ensure positive
populations). In terms of the new ‘universal’ par-
ameters, blue spectra require low density-dependent
pressures {low bust) but occur for any boom (although
there is clearly a threshold effect for fixed bust),
whereas red spectra require low boom but occur for
any bust (with a similar threshold effect). It is
important to note that in the Maynard Smith model,
boom and bust values can be set quite independently
and, in particular, the density dependent strength
(bust) can be increased to any severity (i.e. the slope of
the curve at P* will be vertical for high enough 4). To
see this note that

f(P¥)y=1=b(r—1)/r and f'(P¥)>—o0
as b->00.

This means that when boom is low the bust component
can still be made arbitrarily large, thereby producing
red spectra. Crucially, this is not a feature of all single
species models.

For example, the behaviour of the Hassall (1974)
model, described as,

B

Pt+1—(l+aP‘)b’ (2)
in terms of boom plotted against bust is portrayed in
figure 3b. While blue and white spectra are possible,
this model cannot produce dynamics with reddened
spectra, because for any fixed level of the boom, the
bust parameter is constrained to a finite limit. In
particular, at low boom, the strength of the bust
parameter cannot be increased to levels where red
spectra would be observed. To see this for the Hassell
model note that:

J(Pr) = l—b+b/v/r and f/(P*)>1—In(r)

as b—o00.

Models that cannot produce red spectra typically have
the property that the strength of density dependence is
constrained to a finite limit. The models studied by
Cohen (1995) are characterized in terms of the
boom—bust parameters in table 1.

The table is partitioned into models that cannot
produce red spectra (bust is confined to a relatively low
limit for fixed boom) and those which can produce red
spectra (limit of —c0). Note, here, the models which
depend on one parameter only (Moran-Ricker,
Verhulst) will be curves in parameter space that do not
pass through the red region and that bust -—c0
indicates red spectra but is not a strict requirement.
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Table 1. Nonlinear population models from Cohen (1995) partitioned into those whick cannot produce red spectra (top) and those

which can (bottom)

(The results here apply only to the chaotic regions of the models. For models references see Cohen (1995)).

boom limit of bust

AP {= maxf'(P)) bust (= f"(P*)) for fixed boom
Moran-Ricker Pexp (r(1—P)) exp (7) 1—r 1 —In (boom)
Verhulst P{l+r(1—P})) 147 l—r 2—boom
Hassell rP/{(1 +aP)* r l=b+b/¥r 1 —In {boom)
Maynard Smith rP[(1+ (aP)?) r L=b(r—1)/r —a0
Pennycuick rP[{1+exp (—b(1—P/a))) r/{1+exp(—5)) I—(1—-1/r) (b+In(r—1)) —o0
Varley B,=+P if FC r (1-5) —00

or 7P if B>C

5. DISCUSSION

The results here, for chaotic single-species ecological
models, resolve the open question posed by Blarer &
Docebeli (1996) of ‘ why some parameter values give rise
blue spectra and other red spectra’. The answer
explained in terms of universal parameters, boom and
bust, clearly shows why some models are incapable of
producing the full range of spectral colours. Thus, if
red spectra are a feature of natural systems, this
provides a criteria for selecting more appropriate
models.

What then can be said of the other responses to
Cohen’s (1995) original study? Kaitala & Ranta
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(1996) reported that adding delayed density depen-
dence to the single species models would reduce the
dominance of high frequency oscillations and either
whiten or redden the power spectra (by using ourindex,
I,, their results would be categorized as white). The
effect of delayed density dependence, for any set of
parameter values, is similar to that of increasing the
strength of competition in the simpler models. To
observe this we will examine the Pennycuick (1968)
model with delayed density dependence:

rh
Ba= L+exp (—b(1—(B+cB_)/a)) (3)

Here, the dynamics are determined by the scaled
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Figure 4. Portraits for the Pennycuick model of: (i) the three dimensional map profile, the three dimensions being
F, F_;, and f(F,F_,); and (ii) the power spectrum. The parameters r =5, b = 3, a = 10 and (a) ¢ = 0.1 producing
blue spectra ([, =0.36); (4) ¢ =3 producing white spectra ([, = 0.005); and (c) ¢ = 20 producing red spectra

(I, = 0.063).
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Figure 5. A power spectra portrait for the Maynard Smith model {a = 0.5, b = 4.8, r = 10} where birth is coupled
to a 1/f environmental effect. The solid line represents the power spectrum when the environmental effect is
included; and the broken line represents the spectrum without environmental coupling. The 1/f effect is modelled
as e(t) = 1+ d{w]'sin 2nw, t + w5 sin 2mw, {+ w3t sin 27w, £) where o, = 1/40, w,=1/23, w,=1/10 and 4=
0.5/{w]' + ;' +w;t). So, e(l) is the sum of three sine waves, where the wave of the lowest frequency (27w,) is given
the greatest amplitude (4/w,), where here, 4 acts as a normalizing parameter to confine ¢(!) to varying between 0.5
and 1.5 only. Thus, r becomes re(f) which can vary between r/2 and 3r/2 and has a mean of r. The shape of ¢{t)
resembles a sine wave of frequency 27, with sine waves ol smaller amplitude (d/w,, 4/w,) and frequencies 27w, and

27w, superimposed on top.

growth rate r, the parameter b and the delay parameter
¢ which describe the type and *strength’ of competition,
and by a which does not influence the dynamics but
scales the densities. We can see the effect increasing the
delay parameter ¢ has on the dynamics directly, from
the equation, or visually, by examining a three
dimensional profile of the map (namely B, B_,, and
P.,=flR,P_), figure 4). We choose the parameters
such that when ¢ = 0 (delayed density dependence is
absent) the power spectra of the dynamics would be
blue, then increase ¢ to establish its effect on behaviour.
When ¢ is small the dynamics are not significantly
altered and the spectrum remains blue (figure 4a(ii)).
To see the effect on the three dimensional profile we
note that whatever value B, attains, £_, will take that
value two time steps later. Now, small ¢ does not
significantly alter the profile for fixed £_, (figure 4a(i))
and so the behaviour will be very similar to that of the
system without the delay dimension. However, when ¢
is increased to moderate levels the profile changes
dramatically. It becomes “skewed’ such that f(F, F_;)
remains near previous levels (for¢ = 0) only as £,_, = 0,
and f{R,B_,) rapidly tends towards zero as B_,
increases above zero (figure 44(i)). Thus, if B,
becomes “high’ then two time steps later F_; takes that
value and the population will crash to very low levels.

Proc. R. Sac. Lond. B (1996)

This is followed by many steps of population growth
before the next crash occurs. This behaviour is similar
to that for white spectra in the simple models and the
population dynamics of the delay system does produce
white spectra (figure 45 (ii)). If ¢ is increased further,
the profile becomes more skewed (figure 4¢) and red
spectra can be observed (as for the simpler models this
additionally requires that growth levels are low
enough).

Kaitala & Ranta (1996) suggest that the change in
spectral colour occurs because delayed density de-
pendence changes the route to chaos. The results for
the simple models, with no delayed density depen-
dence, indicate that a change in the route to chaos is
not a necessary condition for changing the colour of the
spectra.

The white and red spectra observed for the simple
models of Cohen (1995) and their delay counterparts
require the population dynamics to experience a crash
to a very low level and to remain low for many
generations. Such pronounced fluctuations are unlikely
to be common in natural population. In explicitly
spatial models however (Rhodes & Anderson 1996;
White et al. 19964) reddened spectra are produced
without populations dropping to low abundance. Here,
space is modelled as a lattice of # x r patches with each
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patch linked locally to its nearest neighbours. In this
way the effect of local population crashes are counter-
balanced by increases in other patches, preventing the
metapopulation from becoming unreasonably low.
Because only local dispersal is possible, the timescale on
which local effects can spread and influence the whole
metapopulation is increased, which may explain the
increased dominance at lower frequencies. Hence, the
chaotic population dynamics generated by spatially
explicit systems may more realistically explain the
reddened spectra associated with natural populations.
Here, the trajectories are classified as chaotic by using
algorithmic complexity measures (White ef al. 19966)
and phase plane portraits, but conclusive proof of
chaos is very difficult in such high dimensional systems.
We also acknowledge that the systems examined in the

studies of Rhodes & Anderson (1996) and White ef al.

{19964) are not simple extensions of one dimensional
models and thus the result may be reliant on space
interacting with other factors.

As an aside, it is worth noting that in spatial models,
the power spectra would be the same colour regardless
of whether the time series represented readings for the
whole metapopulation, the population in just one
patch or the sum from any combination of patches, as
the fourier transforms that define power spectra are
linear operations.

Finally, we return to the issue of whether external
forcing by the climate or other factors could be
responsible for producing reddened spectra (Sugihara
1995, 1996). Adding realistic environmental effects
into the simple ecological models is difficult. One
approach would be to couple the environmental effect
directly to a model parameter, thereby producing
model variability which is proportional to environ-
mental change. Halley (1996) reported how 1/f noise
might be the best method by which to model the effects
of environmental fluctuations and this can be approxi-
mated by summing sine waves whose amplitude
decreases as their frequency increases (see figure 5). A
1/f approximation of the environmental effect implies
low frequency fluctuations are given higher domi-
nance. Hence, we are intrinsically modelling an
environment in which long-term trends are dominant.
Anderson & May (1981) uvsed a similar strategy to
model effects which represent annual periodicity of the
environment by coupling the reproductive rate to a
sine wave distribution. Figure 5 shows how the 1/f
effect acting on the growth rate 7 in the Maynard
Smith model produces isolated spikes of power at
frequencies which correspond to those producing the
environmental effect, without significantly altering the
underlying shape of the spectra and thus, in particular,
without reddening them. This is also observed for the
other simple models and if the 1/f effect is coupled to
density dependence rather than growth. So, modelling
the effect of environmental fluctuations on single
species models in this manner does not redden the
underlying spectra.
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The results here indicate that there are models in
which parameter values can be chosen to generate
dynamics which produce reddened spectra, although
importantly, some models cannot produce red spectra
regardless of the parameter combination chosen. Thus,
if red spectra are a feature of natural populations there
is a basis on which some simple models may be deemed
inappropriate. However, in all non-spatial models
examined here, large population fluctuations, where
population abundance reached very low levels, are
required to produce red and white spectra. Spatial
models produced reddened spectra without such
dramatic fluctuations, indicating that a more rigorous
study of the effects of the spatial dimension (in
combination with other factors) may prove useful.
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