
NUCLEAR
NuclearPhysicsB 367 (1991) 177—214 P H VS I CS B
North-Holland ________________

Quantumscatteringof BPSmonopolesat low energy

B.J. Schroers

DepartmentofAppliedMathematicsand TheoreticalPhysics,SilverStreet,CambridgeCB3 9EW, UK

Received4 March 1991
(Revised1 August1991)

Acceptedfor publication5 August 1991

The quantumscatteringof non-relativisticBPS monopolesis investigatedby supposingthat
the hamiltonian is proportional to the covariantlaplacianon the spaceof collective coordinates
of the monopolesequippedwith the Atiyah—Hitchin metric. Using a partial-waveanalysisand
numerical methods we find a rich quantum mechanical structure, including inelastic and
resonancescattering.Quantitativeestimatesof certaincrosssectionsare given.It is pointedout
that a similar method couldbe usedto discussnucleon—nucleonscatteringin the Skyrmemodel.

1. Introduction

The so-called geodesicapproximationhasprovento be a very useful tool for

understandingthe classicaldynamicsof slowly moving BPS monopoles.The idea
that the motion of monopolesmight be well describedby geodesicmotion on the
manifold of static multimonopole solutions,called the moduli space,was formu-

latedin ref. [1]. Atiyah andHitchin found the relevantmetric for the two-mono-
pole caseby an indirect methodwhich is describedin some detail in their recent
book [2]. The moduli space M2 for two-monopolesis eight dimensionaland
decomposesinto EI~~x (S

1 X M~)/Z
2.Its metric is block diagonalwith respectto

this decomposition.The flat ~ X S’ part parametrizesthe centreof massposition
and an overall phaseangle. M~is the interestingpart of the metric: it describes
the relative motion of the monopoles.The riemannianmetric on M~has four
crucial properties: it is finite, geodesically complete, SO(3) symmetric and
hyperkähler.Asymptotically(in a sensethat will be madepreciselater) the metric
on M~equalsa modified euclideanTaub-NUT metric. The Taub-NUT metric is
also hyperkahlerbut it is not finite andis actedon naturallyby SU(2)rather than
SO(3). In four dimensionshyperkahleris equivalentto anti-self-dual,soboth the
Atiyah—Hitching and the Taub-NUT metric are examplesof gravitationalinstan-
tons.
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The classicalmotion of monopolesin the geodesicapproximationhas been
investigatedin a numberof publications.Atiyah and Hitchin discussgeodesicson

certaintwo-dimensionalgeodesicsubmanifoldsof M~in ref. [2].Theseincludethe
90 degreescatteringof pure monopolesin a head-oncollision and processesin
which orbital angular momentum is transformed into internal rotation, thus
turning pure monopolesinto electrically chargeddyons. In ref. [2] more general
geodesicswere consideredand it was shown that this transferof orbital angular
momentuminto electricchargeis in fact generic.Furthermoreit was arguedthat
the geodesicmotion is not integrable and that there are regions of chaotic
behaviour. Motion in the asymptotic region of M~,where the Atiyah—Hitchin
metriccanbe approximatedby the Taub-NUTmetric, modelsthe dynamicsdueto
the long-rangeforcesbetweenBPSmonopoles.Theseforcescanalsobe derivedby
assumingthat the monopolesarepointparticleswith suitablescalar,magneticand
electric charges[41.Thus one may think of the Taub-NUT metric as a point-par-
ticle approximationto monopolemotion.The Taub-NUT metric hasan additional
SO(2) symmetry leadingto the conservationof the relative electric charge.As a
result, the geodesicmotion in Taub-NUT space is completely integrablewith a

remarkablycloseanalogyto the Coulomb problem[5]. Of coursethe moduli space
picture cannot replace a full field-theoretic treatment of classical monopole
motion. The authors of ref. [6] arguedthat the main correctionto the geodesic
picture is energy loss to the long-wavelengthmodesof the masslessfields. They
also showedthat this radiation asa fraction of the total energyis 0(v3) in a typical
scatteringprocess,where v is the initial speedof eachmonopole.

In the spirit of the geodesicapproximation, the quantum dynamicsof two
monopolesis approximatedby supposingthat the Schrodingeroperatoris propor-
tional to the covariant laplacianon M~.Gibbonsand Manton first discussedthe

quantum problem in ref. [5] and their paper will be our standardreference
throughout.They were able to solve the quantum problem completely in the
Taub-NUT limit. However, in the regionof M~whichmodelstwo monopolesclose
together, the Atiyah—Hitchin metric differs substantiallyfrom the Taub-NUT
metric. In particular the relative electric charge,which is exactly conservedin
Taub-NUT space,is no longerconservedin close encountersof monopoles.It was

therefore difficult to estimate how good the Taub-NUT approximationto the
quantumdynamicson M~really is. In ref. [7] Manton studiedboundstatesin the
Atiyah—Hitchin metric numerically, but avoidedcoupledproblems.He found the
bound-stateenergiesto be in very good agreementwith thoseobtained in the
Taub-NUT approximation.Herewe study the quantumscatteringin the Atiyah—
Hitchin manifold at low total angular momentum:taking the laplacian on the

Atiyah—Hitchin manifold as the generatorof the “interacting” dynamicsandthe
laplacian of the Taub-NUT manifold as the generatorof the “free” dynamicswe
use numericalandWKB methodsto calculateelementsof the S-matrixthat relates
the two dynamics.In the quantumtheory it is moredifficult to estimatethe range



B.J. Schroers/ Quantumscatteringof BPSmonopoles 179

of validity of the moduli spaceapproximation. As in the classical theory one
expectsa truncationof the field theory to be sensibleat low energies.But there
are now additional complications,pointed out in ref. [5]. In the quantisedfield
theory the scalarfield acquiresa small mass,so that static monopolesrepel each
other. One also expectsthe zero-pointenergyof the field fluctuationsorthogonal
to M2 to varyoverM2. Both theseeffectssuggestthatwe shouldadda potential of
order h to the hamiltonian.But this is veryhardto estimatequantitatively.We will
insteadadoptthe point of view of ref. [5]: the geometryof the moduli spacealone
gives rise to interestingphysical phenomena.The concreteaim of this paper is a
detailedunderstandingof the low-energyscatteringof monopoles.But in present-
ing a carefulcasestudywealsowant to illustrate the importanceof the topological
and geometricalstructureof the spaceof collective coordinatesfor an adequate
descriptionof slowly moving solitons. In particularwe will highlight some implica-
tions of this insight for the physically interestingcaseof skyrmions.

2. Quantum scatteringin the Atiyah—Hitchin metric

Wefollow ref. [5] in derivingtheSchrodingerequation(6) on the Atiyah—Hitchin

manifold M~.
Sincealmost all the orbits of the SO(3)actionon M~are threedimensional,M~

canbecoordinatizedby a radial coordinater andEulerangles0 ~ U ‘~ir, 0 ~
2~,0 ~ ~li~ 2~.Introducingthe standardright invariant forms on S0(3)

= —sin cli dO + cos ~frsin U

= cos iji dO + sin cli sin 0 dq~,

u3=d~/i+cosOd~, (1)

the metric on M~can bewritten

ds
2=f(r)2 dr2 + a(r)2if~+ b(r)2cr~+ c(r)2o-~. (2)

The self-dualityof the metric implies

2bc da

y~=(b_c)2_a2, +cycl., (3)

where“cycl.” meanswe addthe two further equationsobtainedby cyclic permuta-
tion of a, b, c. Atiyah andHitchin discussvarioussolutions of eq. (3) in ref. [2].
They find the essentiallyunique solution that leads to a completemanifold in
which the genericorbit of the SO(3) action is threedimensionaland show that it
canbe expressedin termsof elliptic integrals.A plot of the numericalsolution is
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presentedin ref. [5]. We follow the conventionadoptedtherefor the choiceof the
radial coordinateby setting

f= -b/r.

The rangeof r is then [~, x~l,and for large values r can be thoughtof as the
distancein physical spacebetweenthe centresof the monopoles.More generally
the kinetic energyfor the relative motion of two monopolesderivedfrom (2) is
similar to that for an asymmetricbody with principal momentsof inertia propor-
tional to a2, b2 and c2. Since thesevary with r (andhencewith time) the body is
not rigid but has a one-parameterfamily of shapes.When r = ‘~r the monopoles

coincide andthe field configurationbecomesaxially symmetric.The momentsof
inertia aboutthe axesorthogonalto the axis of symmetrythenbecomeequaland

as a result b = I c I = ir. Moreover a vanishesat r = ir showingthat thereis zero
distancein field configurationspacebetweenconfigurationsrelatedby a rotation
aboutthe axis of symmetry.As a result, the three-dimensionalorbit of the SO(3)
collapsesto an ~P2 calleda “bolt” by relativists. For a qualitativeunderstanding
of monopole scattering it will be useful to recall that near the bolt r — ir is
approximatelyequalto te proper radial distancefrom the bolt andthat a, b and c
havethe following form to lowest order in r —

a ~2(r—ii-), b~r+~(r—ir), c—~—~+~(r—’~r). (4)

For large r onefinds

a=b~r~/1——, C_~_%R~r (5)

with correctionsof ordereT. The metric obtainedfrom (2) by replacinga,b and c
with the asymptoticexpressionsis a modified euclideanTaub-NUT metric. Be-
causea = b, it hasthe additionalSO(2)symmetrymentionedin sect. 1. The radial
coordinater, againdefinedby f = — b/r, now hasthe range(2, ~

For our partial-waveanalysisof the quantum scatteringof monopoleswe will
needan estimtateof the rangeR of the core regionof the Atiyah—Hitchin space,
where its meric differs significantly from the Taub-NUT metric. To define R we
first note that naively one might expectthe momentsof inertia a2 and b2 of the

two-monopolesystemaboutaxesperpendicularto the line joining the monopoles
to be proportionalto r2 for r sufficiently large. Actually this proportionality is
modified even in the Taub-NUT limit by the factor (1 — 2/r)t~~’2which is a
reflectionof the long-rangeforcesbetweenmonopoles.For small r, the deviation
of the Atiyah—Hitchin metric coefficientsfrom the asymptoticform (5) is due to
the short-rangeforcesbetweenmonopoles.We thereforedefineR to be thatvalue
of the radial coordinater at which the differencebetweenthe Atiyah—Hitchin and
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the Taub-NUT expressionsfor a and b is “small” comparedto the long-range

correction r — r(1 — 2/r)”2. As in the definition of the rangeof potentials,the
vaguenessof “small” makesthis definition somewhatarbitrary.If we take “small”
to mean“half as big” we find R 5.

To discussthe quantumscatteringof monopolesin the geodesicapproximation
we study the scatteringsolutionsof the Schrodingerequation

1 8 abc8~I’
— ++~ ~PE~1’. (6)

abcf 8r f t9r a2 b2 ~2

The operatoron theleft-hand side is minus the covariantlaplacianon M~ande is

a rescaleddimensionlessenergy,s = 4ir E/h2. As in ref. [5] we chooseunits in
which a single monopolehas both massand magneticcharge4~7- and the Higgs
field of the singlemonopolesolutiongivenin ref. [5] hasa rangeof 1. The rangeof
the Higgs field will henceforthbereferredto asthe sizeof the monopole.We also
fix the speedof light to be 1. ~ ~2’ ~3 are the vectorfields on S0(3) dual to cr

1,
02, if3

a a coscli ~
~1=—cot0coscli———sinclt—+ . —,80 sin 0 9~

8 8 sinclia
~2 —cot 0 sin cl’— +cos itt— + ~

80 sin 0 a~

a
(7)

In order to separatevariables we introduce Wigner functions following the
conventionof ref. [81,

D~m(4~,0, cl’) = e~d~m(0)etm
4,

which form an orthogonalset and arenormalisedso that

2 8~~2
JiDs)m~ d~id4dcos0=.

They havethe symmetryproperty

I j+m ~
dsm(O)=(—1) d_sm(~T~O)
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andsatisfy

~ 1)D~m,

a
— ~~Ds~m = mD~m,

a
~ (8)

Heretheoperator— h2(~+ ~ + ~) representsthe squaredtotal angularmomen-
tum (in the center-of-massframe), —iha/84 the angularmomentumabout the

space-fixed3-axis, and —iha/acli the angularmomentum about the body-fixed
3-axis, which correspondsto the relative electric chargeof the two monopoles.
Quantumstateswhichareeigenstatesof the electricchargeoperatorwill becalled

puremonopolesif s = 0, anddyonsof relativeelectric charges if I s I ~ 1. If we
simply say monopoles,this may refer to puremonopolesor dyons.

Both 8/34 and — (~+ + ~) commutewith the hamiltonian, but in our
ansatzfor a scatteringsolution we fix only m and considera sum over the total
angularmomentaj ~‘ I m I,

00 5=)

~ u~m(r)D~m(4~i,0,~Ii). (9)
i=Im~S-j

For fixed j and m the 2j + 1 radial functions U~m have to satisfy the 2j + 1

coupledordinarydifferential equations

1 d abc dU~m ~ - .

+ ~ M~(J, r)u~m=au~m. (10)
abcfdr f dr

The matrix elementsM(r, j) are the expectationvaluesof the rigid-bodyhamilto-
nian

- 2j+1 I . ~

M~ 8~r2 ~ima2~2~2’~sm)

Since the ~, are cartesiantensoroperatorsof rank 1, ~ hasnon-vanishingmatrix
elementsonly if I s — § I = 0 or 2. As a result, stateswith odd s do not mix with
stateswhere s is even.The equationsare furthersimplifiedby discretesymmetries.
The rigid-bodyhamiltonianandthe commutationrelationsof the ~ are invariant
with respectto a simultaneouschangein sign of any two of the ~. The full group
correspondingto this symmetry is the vierergruppebut we want to consider
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specifically the transformationwhich, at least for large r, correspondsto the
exchangeof the position of the two monopolesand the simultaneousreversalof
their relative electric charge:

x—4x, y—~—y, z—~—z, (11)

in body-fixed cartesiancoordinates,or

0—*i~-—O, 5—~-+~, ~ (12)

in terms of the Euler angles. It follows from the symmetriesof the Wigner
functionsthat underthis transformation

D~m(~+ ~, ~ — 0, —~)= (— 1)~D~sm(~,0, ~).

We can therefore assumes to be non-negativeand considerpositive “parity”
states

(DJsm+(~1)~D~Jm) ifs*0,

= if s = 0 and j even,

not defined if s = 0 and j odd,

separatelyfrom the negative“parity” states

(DJsm ~(~1)~D~m) if s~0,

cl’jsm = if s = 0 and j odd,

not defined if s= 0 and I even.

In the Atiyah—Hitchin manifold points related by (12) are identified. This is a
consequenceof the fact that evenclassicallyone cannotconsistentlyidentify and
label individual monopoles. While it does make sense, for well-separated
monopoles,to say “a monopoleof electriccharges1 is at position r1 andanother
of electriccharges2 is at r2”, it is, strictly speaking,meaninglessto say “monopole
A with electriccharges~is at rA andmonopole B with electriccharge SB 15 at
rB”. The useof such individual labelsfor the monopolescorrespondsto usingthe
coordinates4, 0, i/i without making the identification (12). Such labelling is often
helpful and allowed as long as we make sure that all our wave functions are
invariantunderthe map(12) and hencewell defined on the true Atiyah—Hitchin
space.This requirementimplies that the angulardependenceof any permissible
wave function must be expressiblepurely in terms of the clJ~m~Note that this
meansin particular that pure monopolescannotexist in a state of odd total
angularmomentum(which equalsthe orbital angularmomentumin this case).
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We shouldmentionanotherconsequenceof discretesymmetriesof M2, which is
explainedin detail in ref. [5]. The conservedtotal electricchargeis an integerS
which candiffer from s only by an evennumber.The value of S doesnot affect
the dynamics,so we set S = 0 if s even,and S = 1 if s odd.

In order to evaluatethe matrix elementsM(j, r) we first notice that they are
independentof m. Physicallythis is dueto the fact that the energyof a free top
doesnot dependon its orientationin space.Moreformally it is evidentbecausewe
cancomputeM(j, r) just usingthe algebraicpropertiesof the ~ andtheir action
on stateswith well definedI and s. First we rewrite the rigid-body hamiltonianas
follows:

~ _________ 2 1 1 1 1
b~ ~ ~

Writing Ifs> for ~/(2j+1)/8~T2DIm and Ifs~>for ~/(2j+1)/16~r2~I!J~m,we only
needto calculate~ ~ Ifs>. From simple angularmomentumtheoryonefinds

(js~fljs)= -~(J(f+1) _s2),

(js~flj(s+ 2))= (j(s + 2)~fljs)

(jsjs~)=(js~fljs), s*1,

(j1j1~)=(j1jj1)+(-1)’(j1~j(-1)),

(js~flj(s +2)~)=(js~flj(s +2)),

(jo÷~flJ2~)=~/~(j0~flj2). (13)

Finally we haveto choosethe quantumnumberm. If we were looking for the
bound stateenergiesas in ref. [7] the value of m would be immaterial,but in a
scattering problem the angular dependenceof the wave function is crucial.
Physically we envisagea scatteringsituation where two monopolesare very far
apart long before and long after the scattering,thus having well-defined initial
relative(andhenceindividual) electriccharge,which we shallmomentarilydenote
by q. In our model this correspondsto q units of relative angularmomentum
about the body-fixed 3-axis, which asymptoticallypoints in the direction of the
straightline joining the two monopoles.If we now chooseour space-fixedcoordi-
natesystemfor the relative motion so that the monopolestravel towardseach
other along the space-fixed3-axis, we seethat space-fixedand body-fixed 3-axis
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areparallelor antiparallelfor the incomingbeamin the asymptoticregion, andwe
mustset m = ±q.At leastfor dyon scatteringthe choiceof thesign allows us to fix
the orientationof the z-axisrelativeto the beam.By setting m = q wechoosethe
z-axis so that, in the center-of-masssystem, the monopolewith positive electric
chargecomes in from the positive z-direction and the one with negativeor no
electric charge enters the collision from the negative z-direction. Since the
space-fixedangularmomentumis conservedin the scatteringprocess,the outgoing

particleswill be in an eigenstateof —iB/84 with the sameeigenvalueq but in a
superpositionof eigenstatesof — i8/thji with possibleeigenvaluess determinedby
the aboveselectionrules.

Using all this we can modify our ansatz(9) andtry instead

~ ~ (14)
j=q S

We are then led to the slightly simplified set of coupleddifferential equationsfor
the

1 d abcdu. -

+ ~M(j, r)u~~eu~~, (15)

wherenow

M= + ~2 +

andthe sumsovers and § areovereitherall evenor all odd non-negativeintegers
~<j,dependingon whetherq is evenor odd.

It is clear that, as f increases,the sizeof the abovesystemof coupledordinary
differential equationswill becomearbitrarily large.In the languageof scattering
theory: for fixed j wewill haveto considertwo separatesystemsof ~(j + 2)[~(j + 1)]
and ~j[~(j— 1)] coupledchannelsif j is even[odd]. Herewe will restrictourselves
to the single- and two-channelproblems. Theseoccur for I ~ 5. Representing
single-channelsby •, channelswhich are part of a doublet by *, and channels
which arepart of a triplet by A, we arrive at table 1.

If, in eq.(6), we replacea, b, c and f= —b/r by theasymptoticexpressions(5)
we obtain the Schrodingerequationcorrespondingto the Taub-NUT metric. Due
to the extraSO(2) symmetrythe ansatz(14) leadsto decoupledordinarydifferen-
tial equationsfor the u15. Setting h10 = ru15 we obtain

d
2 j(j+1) (2~—s2) s2

- ___ - r + (E_ _) h
15(r) =0. (16)
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TABLE 1
Single andcoupledchannelsat low angularmomentumj. Explanationsin text

5 1
0 1 2 3 4 5

0 * A

1 * * A

2 * A *

3 * * A

4 A *

5 A

This equationis formally identical to the radial equationfor the standardCoulomb
problem,but note that in eq. (16) the strengthof the Coulomb potentialdepends
on the energy. It is also remarkablethat the point r = 2, where the Taub-NUT
metric is singularandwhich classicalgeodesicscannotcross, is a regularpoint of
the radial equation (16). The quantum problem in the Taub-NUT spacewas
completelysolvedin ref. [5] usingparaboliccoordinates.In particular it was found
that for each s ~ 1 there are infinitely many bound stateswith energy below

= s2/4. Scatteringtakesplace above that energy. We want to study quantum
scatteringin M~by comparingthe solution of (15) with the partial wave solutions

of (16) at large r.
In orderto do this, we haveto carryout a partial wave analysisof the scattering

problem in Taub-NUT space.This will differ from thestandardCoulomb problem

becausewe expandthe incomingplanewave in terms of the angularstates
rather than in Legendrepolynomials(which would correspondto m = 0). In fact,
other authors [9,10~1have derived a partial-waveexpansionof the Taub-NUT
scatteringamplitudepurely algebraically,exploiting the existenceof a Runge—Lenz
type conservedquantityin this problem.We are interestedin both a partial wave
decompositionof the scattering amplitude and of the entire scatteringwave
function found in ref. [5](the two being intimately connected,of course).We will

computetheseby an elementarymethod,which will also be useful for fixing our
notationandnormalisationconventions. _______

For ~ > ~2/4 it is convenientto introducethe momentumk = vI~is2/4, anda
parameter i~= (~— s2/2)/k = k — s2/4k characterizing the strength of the
Coulombpotential. Eq. (16) thenbecomes

d2 j(j+1) 2k’q

,.2 __~~~_+k2)h
35=0.

A solution which is regularat the origin is

F15(kr) = C15 eikr(kr)3±IF( I + I + is~, 2j + 2, —2ikr).
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Here F(a, b, u) is the confluenthypergeometricfunction andthe constantC~5is
chosenso that asymptotically

F~5(kr) sin(kr — ~ In 2kr — ~jir + ~ (18)

where

o,5=argF(j+1+is~). (19)

Onecan also obtain a solution G35 of the radial equationwhich is irregularat the
origin. We normaliseit so that we haveasymptotically

G~5(kr) —cos(kr—s~in 2kr— 4j~~r+o,.5). (20)

Having solved the radial equation,we canwrite the generalregularsolution of
eq. (6) (with Taub-NUT coefficients a, b, c, f) for a fixed s, and respectingthe
identification (12), as

~TN(r ~, 0, ~) = LB10~5(~,0, ~)F~(kr). (21)

We want to determinethe constantsB1~so that the abovesolutionagreeswith the
scatteringsolution found in ref. [5] for fixed s. We digressbriefly to describethis
solution,which we write as

= C5(ct~+ (— 1)~ct~),

where(z = r cos 0)

cI~(r, ~, 0, clj) = e’~~
4~k~(r+z)0 e~zF(x— is~,2s+ 1, ik(r +z)),

~ 4, 0, cli) = eb5(4~kS(r—z)5e’~F(s— i~,2s+ 1, ik(r —z)) (22)

and C
5 is a normalisationconstantchosenso that c15; hasthe asymptoticform

~2 + ~2 ekT~h1

2kl~

eb5(4~ ~ + ik(r _z)) +f;(~,0, ~ r . (23)

Heref~ is the scatteringamplitude found in ref. [5],

(s — ii~) et’~Insin2o/2

f;(q~,0, cl’) = et5(4_~ 2ik sin20/2 e2’~s(— i)~.
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The correspondingquantitiesP~and f~aredeterminedby

~(r, ~, 0, ~i) = (—1)0~(r,~ +~, ~—O, —~i).

The scatteringamplitude in Taub-NUT spaceis therefore

fTN = (f7 + (-I)5f~) (24)

which is invariant under (12), as required.The interpretationof this scattering
amplitude requires some care. Formally one would calculate the Taub-NUT
approximationto the differential elastic crosssection for monopolescatteringby
taking the squareof the modulusof fSTN and averagingover ~j. This averageis
requiredbecausethe internal anglecl’~beingconjugateto relative electric charge,
is not measuredin the initial or final state.This would give a symmetrizedcross
section which correspondsto counting all outgoing monopolesas part of the
scatteredcurrent.For pure monopoles,this is satisfactorybecauseone could not
tell experimentallywhich of the outgoing pure monopolesoriginated from the
“incoming beam” andwhich from the “target” anyway.The resultingcrosssection,
first derived in ref. [5], has the form characteristicfor scatteringof identical
bosons:

difTN 1 0 o o
= — cosec4— + sec4— + 8 cosec20 cos 2k in tan— . (25)

dQ
0 4 2 2 2

For dyons, the interferenceterm 2Re(f~(f~)*)is proportional to cos scl’, and
vanisheswhen averagedover cl’. The resulting symmetrized differential cross

section is

If~ 2(~) ~If~ 2(~)• (26)

But now a symmetrizeddifferential crosssection is lesssatisfactory:If we wanted
to measurethe crosssectionfor elasticscatteringof dyonsof relativecharge2, say,
we could very well set up a (thought)experimentsuch that, in the centerof mass
frame, negatively(positively) chargeddyonsenterthe collision along the negative
(positive) z-axis, and only the scatterednegativelychargeddyonsare countedin
measuringthe scatteredcurrent. This gives more detailedinformation about the
scatteringthan counting all scattereddyons, and since it is availableexperimen-
tally, we shouldbe able to calculateit from the theory. To do thiswe go backto
the coordinates(4., 0, cli) without the identification (12) and, for largeseparation,
label the monopolesA and B, their positionvectorsrA and rB andtheir charges
5A and5B~We alsointroducea (directed)relativepositionvectorr = rA — rB anda
relative electric charge(with sign) S = SA — 5B~ In fig. 1 we use this notation to
illustrate the “different” scatteringprocessesdescribedby the scatteringwavefunc-
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a) e
a A

B

e
e .~ B

Fig. 1. Thesituationbeforeandafterthe scatteringdescribedby (a) P~and(b) D~.Theprocessesare
relatedby the simultaneousreversalof the relativeposition coordinater = TA — rB, whosedirection is
indicatedby the arrows,andof therelative electric charges = sA — SR. Physicallytheyareindistinguish-

able.

tions D~and ~ The point is that tli and tj~~describethe samephysical
scatteringprocessusing different labels for the monopolesand hence different
relative coordinates. In particular,the directionof the outgoingnegativelycharged
dyon is given by 0 in fig. Ia but by ~r— 0 in fig. lb. But clearly

f- 2~ ~

Thus we seethat in the caseof dyon scatteringthe amplitudesf~and f~,when
properly interpreted,give the samecrosssectionanddo not interfere.Hencethe
Taub-NUT approximation to the elastic cross section for dyon scattering that
shouldbe comparedwith one measuredin the hypotheticalexperimentdescribed
aboveis not (26) but

TN 2 2(~)(0) =~ 2(0) =~
2(~_o) = ~(I + ~)cosec~~, (27)

which is the formula given in ref. [5].
The constantsB~

5in (21) can be evaluatedby matching lfiTN and P0 near r = 0
and using the orthogonality propertiesof the Wigner functions.This is done in
appendixA. We find

B10 = i~(2j + 1) e’°~0.

Substitutingthe asymptoticexpressionfor F10 into eq.(21) andcomparingwith eq.
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(23) we find the partial-waveexpansionof the scattering amplitude

f5
TN(& 0, ~)

00 e2bol, — 1
= ~ (21 + ~ 0, ~ 2ik

00 e2~°~’— I
= e15(b~ ~, (2j + 1)d~

5~(0) 2k
i—S I

00 e
2i01,_1

+ ~ ~ (2] + 1)( — 1)~dI
0(0)

3_S I

00 e
2”~’— 1

= e~4~L (21 + 1)d~.
55(0) 2ik

00 e

2i0/,_1

+ ( — 1)s et5(4~0)E(2j + 1)d~..
05(~r— 0) 2ik

= (-1)
0f;(~, 0, ~) +f~, 0, ~). (28)

In principle we now haveall thenecessaryingredientsto carry out a partial-wave
analysis of quantum scattering in the Atiyah—Hitchin metric. In practicewe still
have to evaluate F~and G

35 for large kr more accurately than (18) and (20). This
canbedone numericallyusingthe asymptoticexpansiongiven in ref. [11]. Thus we
obtain asymptoticstates

I~~(kr) G35(kr)
and

r r

with respectto which the solutionsof eq. (10)canbe analysed.To do this we have
to study the eqs. (15) numerically. The details of this will be the topic of the
subsequentsections,but in all caseswe will generatethe valuesfor a, b and c
simultaneouslyby integratingeq.(3) numerically.This canonly be donereliably by
integratingourtwardsfrom thebolt. We thereforehaveto payparticular attention
to the behaviourof eq. (15) near the bolt in order to impose the right initial
conditionsthere.

Our partial-wave calculationswill provide us with certain elementsof the
S-matrix. In order to extract information about the differential cross sectionsof
variousprocesseswe thenhaveto carefully takeinto accountthe underlying“free”
dynamicsin Taub-NUT space.Our treatmenthere is analogousto the discussion
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of modified Coulombpotentialsin atomic andnuclearphysics andwe simply state
the formulae for the scatteringamplitudesderived, for example, in ref. [12]. We
introduce the notation 5) for the restriction of the S-matrix to the subspace

characterisedby the total angularmomentum1, anddenoteits matrix elementsby
S~.

The scatteringamplitude f50(0) for elasticscatteringof puremonopolesCs = 0)
or dyons (s ~ 1) canbe expressedin termsof the diagonalelementsof S~:

ffTN+f (29)

where.~~(0)is given by the partial-waveexpansion

100 S~—l
f~(~ 0, ~) = ~ (21+1) e210l, 2 ~ o~~).

i=2

Becauseof the symmetry of the ij~(4,0, i4r) the whole scattering amplitude is
automaticallyinvariantunder (12). The decomposition

~J~=D~05+ (—1)’Df~

allows us to split f~into two parts,

f55= (~1)
0J~+J~,

suchthat (—i)~f~is an infinite suminvolving only the D~.
05and ~ is an infinite

sum involving only the Df~.We thenhave

f~0= (- 1)
0(f~+~) + (f~ +~).

For s = 0 we retain both parts of the scatteringamplitude.But, by the argument
given in the discussionof the Taub-NUT scattering amplitude, we keep only
(f~+f~)(~,0, ~

1li)if we want to calculate the differential cross sectionfor scatter-

ing of dyons of a definite electric chargeinto an interval (0, 0 + do). As in the
Taub-NUT approximation we obtain the elastic differential cross section by

squaring(29) and averagingover cl’. For pure monopoles,this averageis trivial,
since f00 is independentof cl’. Thus

(~)= lf~ 2,

while for dyonswe have

(~)= ~fdcli~f~ ~ 2
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This expression is complicated by the interferencebetweenthe long-rangeandthe

short-range part of the scatteringamplitude. The inelastic processesinvolve no
such interference. The scatteringamplitudefor a processin whichdyonsof relative
electriccharges turn into dyons of relative electic charge § ~ s is given

f~, 0, ~) ~ 0, ~) = ~ (21 + 1) e~joS~~ 0, ~) (30)

2W Js

andthe correspondinginelasticdifferential crosssection is

do- k 2 do- k ~2

sO = ‘ soo =

if § * 0. The total crosssectionsareobtainedfrom the differential crosssections
by integratingovercos 0 and 4.i as usual.

3. Single-channelscattering

We investigatethe four single-channelproblemscharacterizedby

(j, s) = (0, 0), (1, 1), (2, 1), (3, 2).

Physically, the first of thesedescribespuremonopolescatteringwith no (relative)
angularmomentum.Thereare no boundstatesin this channelso scatteringtakes
place at all positiveenergies.(j, s) = (1, 1) and(2, 1) correspondsto scatteringof

dyons with relative electric charge 1 and total angular momentum 1 and 2
respectively.There are boundstateswith energies0 ~ e ~ 0.25 in thesechannels
[7] and the continuumbegins at ~ = 0.25. Finally (1, s) = (3, 2) refers to dyons
having total angularmomentum3 whoseelectricchargediffers by 2 units.Because
of the selection rule mentionedin sect. 2 such dyons cannot turn into pure

monopolesand consequentlythey canform bound statesat energiese ~ 1. These
were overlooked in refs. [5,7]. Scatteringtakes place above that energy. The
equationsfor the radial part of the wave function obtainedfrom (15) read

1 d abcdu. 1 m n
+ ~———-——— u. =0, (31)

abcf dr f dr a2 b2 c2 ~

where

(0, 0) (0, 0, 0)

(I s) = (1, 1) ~ (1 m n) = (0, 1, 1) (32)
(2, 1) (4, 1, 1)

(3, 2) (4,4, 4)



B.i Schroers/ Quantumscatteringof BPSmonopoles 193

In all casesthe behaviournearthe bolt canbe found by approximating

a~2h, b—~ir, c—~—~,

where h = r — ~. The radial equationthen simplifies to Bessel’sequationnearthe
bolt and the uniquesolution regularat the bolt is the usualBesselfunction

j(j+ 1)-p
2 h).

p Vi, whosedependenceon (1, s) can be read off from eq. (32), is always an
eveninteger.Using the well-knownvaluesof Besselfunctionsof integerorder and
their derivativesfor small h, numerical integrationfrom slightly outsidethe bolt
h = 10~0is straightforward.Asymptotically the solution may be expressedas a
linear combination of the regular and the irregular solution of (17), with the
appropriate values for (1, s). Wedefine andcalculatetherelativephaseshift ~ by
requiring

F
3~(kr) G15(kr)

u15(r) a r cos — r sin ~ (33)

Surprisingly, ~ is found to be zero at all energies (to five decimal places,
which is the accuracy that we can numerically achievewith our method). The
phase shifts for the other channels are not trivial, and we plot them against 8 in
fig. 2. There are two plots of ~ with different energy ranges. In the first plot the
range is chosenso that the interestingbehaviournear 8 = 0.5 is clearly visible.
Note that this is precisely the energy for which the parameter~ describing the
strength of the Coulomb potential is zero.

A qualitative analysis suggests that the Taub-NUT approximation should be

good for elastic scatteringof puremonopolesbelow thedyon productionthreshold
in all partial waves exceptthe s-wave.Although all partial wavescontributeto this

process, the expectationvalueof ~ cannot vanish for I � 0 and s = 0. Hencethere
will always be a repulsive“centrifugal” term 1/a

2 which prevents the monopoles

from reaching the region near the bolt where the Atiyah—Hitchin metric differs
substantially from the Taub-NUT metric. For 1 = 0 there is no such term and one
would expect the phaseof the Atiyah—Hitchin radial wave function to be shifted
substantiallyrelativeto the phaseof the Taub-NUTwavefunction. This is why it is
remarkablethat this phaseshift turnsout to vanishat all energies.

At high energy,i.e. short wavelengths,the WKB approximationgives a geomet-
rical interpretationof this fact. While the high energybehaviourof phaseshifts is
not directly relevant for a partial-wave analysis of low-energy scattering, the
application of the WKB method for scattering on a riemannian manifold is
interesting,becauseit exhibits the interplay between geometricand quantum
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Fig. 2. Phaseshifts for single-channelsas a function of the energya. b~is shownon two different
energyscales.

phenomena.Considerfirst the Taub-NUT radial equationfor the 1 = 0 channel.

Eq. (31) with (I, m, n) = (0, 0, 0) and the Taub-NUT expressionsfor a, b and c
canbebrought into standardform by introducinga new coordinateT via

abc dr =f dr,

or

rf

‘r(r) = f —dF. (34)
r
0 abc
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We fix the constantof integrationby setting r0 = 2 andfind that

1 2
r(r)=— 1——

4

so that T rangesfrom — ~ to 0 as r variesfrom 0 to 2 andT rangesfrom 0 to 3~as
r variesfrom 2 to ~. The radial equationnow reads

d
2

-~—~ +E(abc) u
00=0. (35)

This looks like a one-dimensionalSchrodingerequationwith “potential” —e(abc)
2

at zero energy. For s ~ 0 this “potential” is zero only at r = 2 Cr = 0). Thus
classical trajectories in the potential at zero energywhich startoutside r = 2 will
reach r = 2, stop and escapeto r = ~ Cr = 3.). This is the classical motion we
should keep in mind when applying the WKB method,althoughit differs from the
geodesicmotion in Taub-NUT space, which has a singularity at r = 2. The
quasi-classicalitycondition requires

d(1/p)
4(1,

d’r

where

2 __
p~~e(abc) =~‘;~~1 2

(~—r)

so that for large a and T not too closeto 0 we have indeed

d(1/p) 1
a 4(1.

dT

Applying the standardWKB formulaeto the radial wave function onefinds

u~’~(r)= C sin(fT~p(~)d~+
Vp(r(r)) 4

Here C is some normalisation constant and r
0 is the classicalturningpoint, i.e.

= 0 for the Taub-NUT metric. Using the definition of ‘r(r) and k = we can
write

u~B(r)= C sin(frkf(p) dF+ (36)
~p(r(r)) 2 4
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Wesee that, up to the ir/4 stemmingfrom the standard connection formulae in
semiclassicalanalysis,the WKB phaseis given by the proper radial distancefrom
any pointwith radial coordinater to the singularity(r = 2) timesthewavenumber.
For the Taub-NUT metric the integralcan beworked out explicitly

f dF=~r(r-2) _ln(r_l+~r(r_2))

r — 1 — ln 2r for larger. (37)

So the WKB phaseis

q~WKB(r)=kf f(f) di+ ~

s~k(r—1—ln2r)+3.irforlarger. (38)

The exact partial-waveanalysisof the Taub-NUT scatteringproblem yields the

Coulomb phasefor I = 0 and i~=

~c(1)k,~’1 ln2kr+argF(1+ik)

which is obviously not equal to (38). However for large k one can use Stirling’s

formula for the F-function,

1
argF(1+ik)-~—k+klnk+3.1T+O ~

Then

k(r —1—ln 2r) + 3.ir.

Thus the WKE approximation(38) agreeswith the exactphasefor large k, asone

expects.
Turning to the radial equationin the Atiyah—Hitchin manifold, we follow the

samesteps,but now the integral defining T(r) divergeslogarithmically as r ~~r.
However,we neednot botherwith an exactdefinition of r since it is only usedin
intermediate steps. We read off from eq. (35) (now with the Atiyah—Hitchin
coeffientsa, b, c) that the turningpoint is the valueof ~r correspondingto r0 =

But r0 is all we needto evaluate the WKB wave function, which is now

C r
u~J~’

3(r) = ______ sin f kf(F) dF+ — . (39)
~p(r(r)) 4

The integral is again the proper radial distance fron any point with the radial
coordinate r to the bolt, where r = r

0 = ~. In the Atiyah—Hitchin case the



B.J. Schroers/ Quantumscatteringof BPSmonopoles 197

integrationhas to be done numerically,but the phaseis found to be identical to
the Taub-NUT result(38) for sufficiently larger: the valuesagreeto sevendecimal
placesat r = 200. In the WKB approximationthe absenceof a relativephaseshift
is thus seen to be a consequence of the fact that a point in Taub-NUT spacewith
large radial coordinate r hasthe sameproperradial distancefrom the singularity
(r = 2) as a point with the sameradial coordinate r in the Atiyah—Hitchin space
has from the bolt (r = ir).

Sucha geometricalinterpretationof the scatteringdatais a commonfeatureof
scattering by metrics. The (classical) relative motion of two vortices can also be
modelled by a curved riemannian manifold, namely a roundedcone. In ref. [13] it
was shown that the WKB approximationto thequantumscatteringof two vortices
gives an s-wave phase shift which is proportional to the length deficit of the
rounded cone relative to the standard cone with the same opening angle, i.e. the
difference in geodesic distance to the apex in each case.

Wehave only managedto explain the absenceof a relativephaseshift for high
energies. Comparison of 4~with

4~B shows that the WKB approximationis not
exact at lower energies. It remains an open question why the relative phase shift
shouldvanishat all energies.

For the other three single-channelproblems we can again understandthe

behaviourfor large a in terms of the WKB approximation,but now we haveto
keep track more carefully of the classical turning points. The equation generalising
eq. (35) reads

(~~+(abc)2(e_4_~_~))uio=O, (40)

where a, b and c may stand for either the Atiyah—Hitchin or the Taub-NUT
expressionand T(r) is definedas before. For large but fixed r we can certainly
choosea so largethat the “potential”

_(abc)2(a_4— —

is negative,but now it may have zeros other than r0, giving rise to “classical
turningpoints” r5 whosepreciselocationwill dependon a. The expressionfor the
WKB phasegeneralising(38) is

~ (41)

By carefully estimatingthe energydependenceof r~it is possible to derive the
high-energylimit of this expressionanalyticallyand to find an asymptoticexpan-



198 B.J. Schroers/ QuantumscatteringofBPSmonopoles

sionof the phaseshiftin powersof e_1,’2. For (1, s) = (1, 1) we find the following
asymptotic formula for both the Atiyah—Hitchin (r0 = ~r) and the Taub-NUT
(r0 = 2) metric

4B(r) V~ff dF+ — + dF.

Hence, for a —~ ~, the leadingterm in a 1/2 for the phaseshift 8~comesfrom

-=/:(~+ 4)fdf.

We calculatethis integralnumericallyfor the Taub-NUT and the Atiyah—Hitchin
spaceand find that the resultsdiffer by 0.612. Thuswe get an asymptoticformula
for the phaseshift 5~,

0.612
2~/~

For (1, s) = (2, 1) and (3, 2) a similar analysisshows that the asymptoticform of
821 and 832 for high energyis

‘IT 1-—+0
2

These asymptoticexpressionsapproximatethe high-energypart of the graphs
shown in fig. 2 very well.

We can now useformula (29) to estimatesome elastic crosssections.Consider
the caseof pure monopoles.Because800 = 0 at all energiesthe first correctionto
the crosssectioncalculatedin the Taub-NUT approximationstemsfrom phase
shift of the partial wave with j = 2. In sect.4 we will show that this phaseshift is
indeed small at low energies(a ~ 0.7) so that in this energy regime the cross
section is to a good approximationgiven by the Taub-NUT expression(25). Note
that for small k the interferencein this crosssection term is slowly varying and
would be importantin an experimentalcheck.This is the oppositesituationfrom
the standardCoulomb problem where the low-energy limit correspondsto the

semiclassicallimit in which the interferenceterm becomesrapidly oscillating.
At low energythe elasticcrosssectionfor dyonsof relativeelectriccharge1 can

similarly be estimatedby neglectinghigher partial waves.~ is non-trivial so one
shouldkeepat leastthelowestpartial wave.Numericallywe find that for a —~ 0.25,
~ tendsto somefinite value 0.22 but 821 tends to zero.Thus we keeponly the
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first term in the expressionfor f~to estimatethe scatteringamplitude at low
energy:

3 (1—coso)
(f~+f~)(~,0, ~) =f~(~,0, cli) — ~e21U1etôlI sin ~ ~ 2

The resultingcrosssectionis

2

sin~O/2

— ~ (i + ~-~) sin ~ cos(Oii+ s~In sin2~— arctan~~_)

9 0
+—~sin28

12sin
4-~. (42)

The interferenceterm is interestingbecauseit dependson the sign on ~ and the
last term shows that the Atiyah—Hitchin metric predicts a cross section for

scatteringin the backwarddirections(0 = IT) that is significantly enhancedrelative
to Taub-NUT crosssection.

The phaseshift 832 does not give the main correction to the Taub-NUT cross
section for scatteringof dyonswith relative electric charge2. This stemsfrom a
two-channelproblem to which we now turn.

4. Multi-channel scattering

A typical two-channelproblem arises in the I = 2 sector. We will use it to

explain the general formalism for multi-channelscatteringand to illustrate the
qualitatively new featuresthat occur whenchannelswhich were uncoupledin the
Taub-NUT approximationbecomecoupled. In accordancewith the remarks in

sect.2 we seeksolutions to the Schrödingerequation(6) of the form

~1’~(t~,4,0, cl’) =u
2O(r)clI~O(4,0, cl’) +u22(r)cli~0(4,0, i/i), (43)

if we areinterestedin processeswherethe incomingparticlesarepuremonopoles,
and

~‘2(T, 4~0, 4.~)=u20(r)cli~2(4.,0, cl’) +u22(r)clJ~2(4.,0, cl’) (44)

if the colliding particles are initially dyons of relative electric charge 2. For
definitenesslet us considerthe first of thesepossibilities.The systemof second
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order coupleddifferential equationsfor the radialwave functionscorrespondingto
(15) does not dependon this choice, but the interpretation of the S-matrix

elements in terms of scatteringamplitudesdoes, as eq. (30) shows. Using the
formulae (13) we find that the system of differential equations(15) takesthe form

+ (a_I_ ~)U20+v~(~ — 4)u22=o~

(45)

Since the incomingparticlesarepure monopoles,we haveto distinguishbetween
two energyregimes,belowandabovethe thresholdfor dyon productiona = 1. We
first look at the scatteringproblem for a ~ 1. Then both u20 and u22 will be
oscillatory for large r. Asymptotically we may neglectexponentiallysmall terms,
the equationsdecoupleandwe get two equationsof thetype (16) for h5(r) = ru15(r)

with the appropriatevaluesof I and s. We set

k0=V~, k2=V~i

as well as

1

i~0=k0, ~2=k2——.

It is also convenientto introducethe notation

u20(r)
u22(r)

Wethen try to find solutions that behave asymptotically like

133
+

1 1k0 11k()
U(r) — (46)

r a2 132
~-F22(k2r) +

for constantvectors

A= , B= J3~
a2 132



B.J. Schroers/ Quantumscatteringof BPSmonopoles 201

We will seeexplicitly that thereare two linearly independentsolutionswhich are

regular at the origin. This will give us two setsof vectors,

A°, B° and A1, B1

andwe can ask for the matrix R that satisfies

RA°=B°, RA’ =B’.

This is the restriction of the so-called reactancematrix R to the subspaceof
asymptoticstatesdefined by I = 2, s = 0, 2. R is related to the S-matrix via a
Cayley transformation

S = (1 —iR)(l +iR)1.

It follows from generalargumentsof formal scatteringtheory [14] that S is unitary
and symmetric. Hence R is real and symmetric. We will explicitly check the
symmetryof R later. In order to find the two solutions numericallywe have to
analyse(45) near the bolt. Settingagain h = r — ~r and usingthe approximations

a=2h, b=IT, c=—ir,

we find that near the bolt the term (b2 — c2) vanishesandwe candecouplethe

equationsusingthe transformation

T-—

2~ i~

The differential equation for the pair

L
20(r)

V(r)~ ,, =TU(r) (47)
L22c r)

is then

+ (a_ ~ — ~‘2o+~(~ — 4)v22o~

(48)

Near the bolt this simplifies to

d
2v

20 1 dv20 6
+—~+ a——v =0

dh
2 h dh IT2 20

d2v
22 1 dv22 2 1

dh
2 + +(a —_~ — ~~v

22=O. (49)
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Wecaneasilywrite down two linearly independentsolutionsof thissystem,regular
at h = 0, in termsof BesselfunctionsJ,~of integerorder n. Labelling the solutions
of eq.(48) by the order of the Besselfunction to which theyreduceat the bolt, we
have,for small h.

U
IT / 2 . (50)

0 J1
IT

Using the well-known values of the Bessel functions and their derivativesnear
h = 0 we canimposetheseas initial conditionsslightly outsidethe bolt (in practice
at h = 10 10) and integrate(48) outwards.Having obtainedthe two independent
solutionsV

0 and V’, we translatetheir asymptoticbehaviourinto that of the U’
by inverting the linear transformation(47).

As in the case of potential scattering one shows the symmetry of R by
consideringthe generalizedwronskian

du’ du° du1 du°
0 20 1 20+0 22 1 2U

20 dr U22 dr U22 dr

Wefind, usingeq.(45),

dW lb b b
2

—(r)=—— —+—+1——- W(r).
dr r a c ac

As a result of the boundary conditions at the bolt we have

W(IT) = 0,

andhence

W(co)=0.

Expressing W in termsof the asymptoticform of the wave functions

7==-sin(k0r—~70ln2k0r+o-20) + ~~os(k0~~0 ln 2k0r+o-20)

r~c05(k2r~72 ln 2k2r+o-22)

1
—~==-sin(k2r — fl2 ln 2k2r + u22) + T=~os(k2r — ~12 In 2k2r +
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we find that, in the normalisationwe havechosen,

R02 =R20.

We can thereforeparametrizeR by two eigenphases6~and 8 andone mixing
anglea as follows [12]. We write

R=O(E)(tan 6~ 0

\ 0 tan8/

where0 is the orthogonalmatrix

0~~(cosa _sinE)
\sin� cosa

The parameters6~,6 and a are useful for translating the R-matrix into the

S-matrix:

e2)01~

They are also sometimesusedin the literatureto displaytheresult of a partial-wave
analysis,andwe will follow that practice.Anotherexpedientset of parametersare
the so-called “bar” parameters:

8~+6= ~ 8

— — tan2g . sin2~
sin(6~—6) = , sin(6~—6)= . . (51)

tan 2� sin 2�

Onefinds ~o2= i e’~’~ sin 2~.Togetherwith eq. (30) this showsthat sin 2~is a
direct measure of the probability for dyon production in a collision of pure
monopoles.We thereforecalculateand plot ~ as well.

The parameters6~,8, a, ~ aredisplayedin fig. 3 as a function of the energya,
which is dimensionless.The differential elastic cross section dependson the
parameters8~,6 and a in a fairly complicatedway and moreoverinvolves the
interferencewith the Taub-NUT scatteringamplitude. The total elastic cross
sectionis alwaysinfinite dueto the long-rangeCoulombforcesbetweenmonopoles.
Thuswe will not attemptto discusselasticprocessesquantitativelybut simply point
out somenoteworthyqualitative featuresof our plots. Firstly we notice that the
energyat which the Coulomb potentialvanishesplays a specialrole, as it did for
the phase shift ~ Near a = 2.0, 6~,6 and a have maxima. The second
observationconcernsthe behaviourof ~ as one approachesthe thresholdenergy

= 1.0 for dyon production from above. ~ decreasesrapidly but tends to a
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Fig. 3. j = 2 coupledproblem.Parametersfor S-matrix above thresholdandphaseshift for scatteringof

puremonopolesbelowthreshold.

non-zerovalue at the threshold.This is the thresholdbehaviourone expectsin
coupledchannelproblemsif bothchannelshaveCoulomb-likepotentials[15].

For energiesbelow the dyon production threshold U
22 will be exponentially

increasingor decreasingfor sufficiently large r. Only the latter solution makes
sensephysically, but onecannoteasily characterizeit by its behaviourat the bolt.
We find it numericallyby an iterative method.The u20 part of that solution can
then be comparedwith the correspondingsolution of the Taub-NUT radial
equation(16) andwe obtain the relative phaseshift ~20 as in sect. 3. 620 is also
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Fig. 4. Radialwave function for j = 2 coupledproblembelowthreshold.u
20 is shownwith a full line,

u22 is shownwith a dashedline.

plotted in fig. 3 as a function of the energy. It tends to zero monotonicallyfrom
aboveas a —‘0 and is small (a~0.1) for a ~ 0.7. For a > 0.8, however,it showsa
very interestingbehaviour.As the energyincreasesfrom 0.8 to 0.9 the phaseshift
increasesvery rapidly by IT, passingthrough IT/

2 at a 0.85. It then rises even
more quickly, taking on the value 3IT/2 at about a = 0.925 and reaching2IT at
a = 0.94. This is accompaniedby changesin the wave function displayed in fig. 4.
Below a = 0.75, u

22 is a monotonically increasingfunction having some finite
negativevalueat the bolt and tendingto 0 for large r. At an energyof about 0.8,
U22 developesa local minimumjust outsidethe bolt which movesoutwardsas the
energy increasesfurther. Also, the amplitude of U22 relative to u20 increases,
reachinga maximum at a 0.85. At a 0.9, u22 shows anotherlocal extremum,
whoserelativeamplitudepeaksat about a = 0.92. The specialvaluesa = 0.85 and
a = 0.925 are close to the energiesof the two lowest bound statesof the second
equationin (45) with the coupling term removed.In fact, that Sturm—Liouville
problemhasinfinitely many discreteeigenvalueswhich accumulateat a = 1.0. The
numerical results shown in fig. 3 suggestthat the phaseshift increasesby ~r
wheneverthe energycrossesoneof thesediscreteeigenvaluesand hencetends to
~ as a —~1.0. This behaviouris typical of threshold resonanceswith Coulomb

potentialsin bothchannels.The phenomenonhasbeeninvestigatedin somedetail
for the case of potential scattering [15] and this analysis can presumablybe
adaptedto our situation without much difficulty. We will not do this here,but

makea qualitative remark instead.It is known that resonancesare relatedto the
time delayobservedin the scatteringof wavepackets[16]. On the other hand,such
a time delayoccursalso in the classicalscatteringof puremonopolesundercertain
conditions, describedin refs. [2,5]. These scatteringprocessesare modelled by
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Fig. 5. i-parameterfor i = 3 and j = 4 (left) and i = 5 (right).

geodesicson the so-calledAtiyah—Hitchin trumpet, a two-dimensionalgeodesic
submanifoldof M~.It is asymptoticto a coneat one end andto a cylinder at the
other. Geodesicscrossingthe “neck” of the trumpetandpassinginto the cylindri-
cal region correspondto pure monopolesturning into dyons. But only for an
impactparameterb <2 will suchgeodesicscontinueinfinitely far into thecylinder

or, in the languageof particle scattering,will the dyonsescapeto infinity. For
2 <b <IT pure monopolesturn into dyonswhich move back-to-backin the line
perpendicularto planeof the initial motion, but thenreturn andturn into pure
monopolesagain. The time delay in such a processincreasesindefinitely as b 12.
It would be fascinatingif one could relate this classical phenomenonto the
thresholdbehaviourof the phaseshift describedabove.

We havesimilarly analysedthe coupledchannelproblemslabelled by 3 <1 < 5
(cf. table 1). As we do not intend to give a detailedquantitative descriptionof
elastic crosssectionswe only report our findings concerningthe inelastic cross
sectionsand the thresholdbehaviour.All coupledchannelsdisplay the threshold
behaviourfound in the I = 2 case.Below the thresholdenergythereis only one
phaseshiftandin all casesit shows qualitativelythe sameresonancebehaviouras
620. In fig. 5 we show the variationof ~ with energy.Thepartial waveswith j = 3
and j = 4 both contribute to scattering processesinvolving dyons of relative
electric charge 1 and 3 so we haveplotted the parameters~ for theseangular
momentatogether.The j = 5 partial waves give the leading contributionto the
scatteringof dyonsof relative electric charges2 and 4, and the corresponding
parameter~ is shownseparately.Again we find that ~ tends to a non-zerovalueat
the threshold.We canuse that limit to estimatesome inelastictotal crosssections
at the thresholdenergy.
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Assuming§ > s we can use(30) and the orthogonalityof the i/iJ~
5to write down

the partial inelasticcrosssectionfor a processin which the relativeelectric charge
changesfrom s to §,

IT(
2j+l) . 2

Q~
0=2 k

2 ~ if~=0

and,for § * 0,

IT(2j+l) . 2

Qi= Si
k2

The total crosssectionfor such a processis

(J- 1)~
~Si.

Nearthe threshold,we canestimatethe crosssection for the productionof dyons
of relative electric charge2 in a collision of pure monopolesby consideringonly

SIT

= —(sin 2~)2.

Taking ~ 0.4 at the threshold,we estimateQ~
2 2~. Recallingthat our unit of

length is the size of a monopole,we find that the inelastic cross section for
productionof dyonswith relative electriccharge2 is roughly threetimesthe cross
sectionalarea of a monopole.It is instructive to comparethis with the classical
cross section of the special scatteringprocessesmodelled by geodesicson the
Atiyah—Hitchin trumpet described above. There we saw that for an impact
parameterb < 2 puremonopolesturn into dyons. This correspondsto a classical
cross sectionof

4IT, which is close to our quantum mechanicalestimate.We can
also estimatethe angulardistribution of the emitteddyonsfrom the angularwave
function multiplying ~o2 in the partial-waveexpansionof the cross section (30).
This is D~

0,which is proportionalto sin
20. Thus dyonsemergepreferentiallyat

right anglesto the beamaxis, just as in classicalscatteringof monopoles.We have
not checkedthat the next partial cross section Q~

2is much smaller than Q~2,
becausewe did not calculatecoupledproblemswith more than two channels.For
the processin which the relative electricchargechangesfrom 1 to 3, however,we
canestimateboth Q~3and Q~3.We find, nearthreshold,that

Q~3~3IT, Q~’~0.4IT

so that only a modestincreaseof j from 3 to 4 reducesthe partial crosssectionby
a factor of 7. Finally we calculate,againat the thresholdenergy

0.
9IT.



208 B.J. Schroers/ Quantumscatteringof BPSmonopoies

5. Conclusion

In this paperwe extendedthe work of ref. [5] on the moduli spaceapproxima-

tion for the quantumscatteringof BPSmonopolesby consideringthe true moduli
spaceof two monopoles(the Atiyah—Hitchin manifold) and notjust the manifold
modellingthe asymptoticdynamicsof two monopoles(the Taub-NUT space).Even
beforeone doesany detailedcalculationsit is clear from the different geometries
of the two manifolds that a descriptionof the scatteringin termsof the Atiyah—

Hitchin manifoldwill differ from oneusingtheTaub-NUT approximationin that it
predictsinelasticscattering.Usinga partial-waveanalysiswe could give quantita-
tive estimatesof various elastic and inelastic scatteringprocessesby considering
only partial waves of the lowest contributing angular momentum. The most
surprisingresult of our calculationsis the vanishingof the s-wave phaseshift in the
elasticscatteringof puremonopoles.This implies that the Taub-NUTcrosssection
(25) for this processis an unexpectedlygood approximationat energiesbelow the
dyon productionthreshold.But how accurateareour estimatesat higherenergy?
One can give anestimateof the largesttotal angularmomentumthat contributes
significantly to the scatteringof puremonopolesat a given energyby requiringthat
the classicalmotion in the effective potential of the Taub-NUT radial equation
(16) remainsoutsidethe region r <R where the Atiyah—Hitchin metric differs
significantly from the Taub-NUT metric. In sect. 2 we estimatedR = 5 for the
rangeof this core region. We then find for scatteringof pure monopolesat the
threshold energy a = 1.0 that ‘max = 3. If the colliding particles are dyons of
relativeelectriccharge1, a similar analysisat the thresholdof inelasticity a = 2.25
gives ‘max = 5. Indeedwe saw that the 1 = 4 contribution to the inelastic cross
section is alreadymuch smallerthan the 1 = 3 contribution. For the scatteringof
dyonswith relative electriccharge2 we find, at the thresholda = 4.0, ‘max = 7. We
concludethat our calculationsprovidethe numericalinformation necessaryto give
a good quantitativedescriptionof the scatteringof pure monopolesand of dyons
with relativeelectriccharge1 at energiesup to andslightly abovethe thresholdsof
inelasticity. For dyons of relative charge 2 we also calculated the dominant
contributions to the scattering up to energiesslightly above the threshold of
inelasticity, but here one should expect significant correctionsfrom the partial
waveswith I = 6.

More generallywe believethat our discussiontogetherwith the work done in
ref. [7] on bound statescapturesthe essentialqualitative featuresof quantum
dynamics of monopolesin the moduli spaceapproximation.Theseinclude the
existenceof infinitely many bound statesof dyons,all of which are embeddedin
the continuum, the occurrence of elastic and inelastic scattering, and the
Coulomb-like resonancebehaviourof the elasticcrosssectionsnear the thresholds
of inelasticity.
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Thesephenomenaare of interestbeyond the specific questionof monopole
scattering. Scatteringin the Atiyah—Hitchin manifold is interesting becauseit
providesan exampleof scatteringby a metricdefinedon a spacethat includesboth
spatial and internal parameters.This is different from standardproblems in
non-relativisticmechanics,whereinteractionsaredescribedby a potentialdefined
on flat R3 (or severalcopiesthereoffor many body problems).While the standard
partial waveformalism hadto adaptedcarefullyto takeinto accountthe non-trivial
geometryof the configuration space(recall that the symmetrised,bosonic cross

section for puremonopolesresultedfrom purely geometricrequirements)the final
results— bound stateenergiesin ref. [7] andcrosssectionsin this paper— showthe
type of phenomenathat arefamiliar from quantummechanicsdefinedby standard
hamiltonians. In this respectour calculationsare relevant to the more general
question of low energy dynamics of solitons as discussedin ref. [17]. More
specifically they give hints for the discussionof the nuclear two body problemin
the Skyrmemodel.This model treatsnucleonsassolitonsin a classicalfield theory.
Again onecantruncatethe field theory to a finite-dimensionallagrangiandynami-
cal systemdefined on a manifold of collective coordinatesfor the two-skyrmion
system[17]. This manifold is 12-dimensionaland has a potential V as well as a
riemannianmetric definedon it. While the potentialhas beenstudiedextensively,
little attentionhasbeenpaid to the metric. It has longbeenknown that the kinetic
energyof the two-skyrmionsystemis not just the sumof the kinetic energiesof two
free skyrmions. The extra terms havebeenstudiedfor examplein ref. [18] and
were interpretedas velocity-dependentpotentials.Thesewerethen projectedinto
inter-nucleonpotentialsvia projectiontechniquesthat involvedsome ratherad-hoc
operatorordering.From the point of view adoptedin this paperoneshouldrather
think of the kinetic energy in terms of the non-trivial metric on the spaceof
collective coordinates.A natural and coordinateindependentquantum hamilto-
nian is thengiven by —~l+ V where z~is the covariantlaplacianassociatedto the

metric.
It is known that skyrmionandmonopoledynamicsevensharecertainqualitative

features— such as 90 degreescatteringin a head-oncollison [19] — andit hasbeen
conjectured[7] that the manifold of collective coordinatesfor the two-skyrmion
spacecontains a four-dimensionalsubmanifold modelling the relative motion of
two skyrmions in a fixed relative orientation (“attractive channel”), which is
topically and metrically similar to the Atiyah—Hitchin manifold. While these
possibilitiesare intriguing, the moreimmediaterelevanceof the discussionof BPS
monopolesfor skyrmion dynamicsis to emphasizethe generalremarksmade in
ref. [17]. Onecannotfully appreciatethe the predictionsof the Skyrmemodel for
nucleon—nucleoninteractionswithout a better understandingof the topological
andgeometricalstructureof the spaceof collectivecoordinatesfor two-skyrmions.

I would like to warmly thankmy supervisorDr. N.S. Manton for suggestingthe
problem addressedhere,for much useful advice and for a critical readingof the



210 B.J. Schroers/ Quantumscatteringof BPSmonopoles

manuscript.I also thankT.M. Samolsfor many helpful discussionsaboutmonopole
andvortex scattering.

An SERC researchgrantand a researchstudentshipfrom EmmanuelCollege,

Cambridge,aregratefully acknowledged.

Appendix A

We want to determineB35 so that

~TN,S(r, ~, ,0, ~s) = ~ B~5~i~5(~,0, ~i)~5(kr)

j>s

equals

cl55=C5(~t7 +(_1)~I~).

The definition of F~and c~P~involve constantsC35 andC7 whicharechosenso that
we get the asymptoticbehaviourgiven in eqs.(18) and(23). Using the asymptotic
form of the hypergeometricfunction

F(b) a(a—b+1) (_l)aeuF(b_a)
F(abU)~.s a1 +

F(b — a)( —u) U

we find

2~e~”
2IF(1 +j+ii~)I e1r~~~’2F(l+s+i~)

C
1~= (21 + 1)! , C5 = F(2s+ 1) e’~~~

2 (A.1)

Using the orthogonalityof the we have

16IT2 F. (kr) *

(21 + 1) B
1~~

5kr = cP~dq~d~i d cos 0. (A.2)

This is an identityof two analyticfunctions.To find B
35 we expandbothsidesinto

a powerseriesin r around0 andcomputethe coefficientof the lowest powerof r.
For the l.h.s. this is easy.Onefinds

16IT
2 , , 00 F(j+l+n+is~)F(2j+2) (—2ikr)’5

l.h.s. = (21 + 1) B,
5C35(kr)~e’~E F(j + 1 + i~)F(2j+ n + 2) n!

16IT
2 .

= (21 + 1) B
15C15k’r

3 + higherpowersof r. (A.3)
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On the r.h.s. only the 4 and i/i integrationare trivial:

r.h.s.= 4IT2CS(( — 1)~ij+ (— l)~Ij~), (A.4)

where

I~= f1d~
5(0)k5(r +z)

5 e kzF(s — i~,2s+ 1, ik(r +z)) d cos 0,

‘~= ~ e1k5F(s_i~, 2s+ 1, ik(r—z)) d cos 0. (A.S)

To evaluatetheseintegralswe write the Wigner functionsin terms of the Jacobi
polynomialsanduseRodrigues’formula. Setting x = cos 0 we have

d~
5(0)= ~(1 +x)~~~(x)

= (1 +x) _s(~ )iS~ —x)’
5(1 +

1
d~

55(0)=d~..5(0)= ~-~(I _x)5l~2~0(x)

(~1)~~ d ‘~

= 21(1 -s)! (1 _x)5(~) [(1 +x)~~(l_x)i+5J. (A.6)

Clearly

— ( _~ \3~~—
is ~‘. I is’

so that

r.h.s.= 8IT
2I~(— 1)1C

5,

Now

i—S
~,—1) ~kr)

I~= . . e””~I dx e~rU~0)
3’ si(j —s)!

d i5

XF(s — ii~,2s + 1, ikr(1 +x))(~) (1 —x)’
5(1 +x)’~~.(A.7)
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Integratingby parts(j — s) times,changingvariablesto y = 1 + x, we get

(kr)S 2

= SI(J_S)!efOdY

d ~

x (~) [erYF(s — i~, 2s + 1, ik,y)I(2 _y)JSyJ+5. (A.8)

Noting that the expressionin square bracketsdependson k, r, y only in the

combination ikry we write

[erYF(S — i~,2s+ 1, ikiy)] =

andfind that the expansionof I~ in the powersof r beginsasfollows:

= — s)! f(l + x)~s(1—x)~~~dx(j — s) !(ik)5ais]ri

+ higherpowersof r

(i)~52’~(j—s)!(j+s)!k1

= (21 + 1)’ a
1...5 r~+ higherpowersof r. (A.9)

Using the power series for e1~<r5and the hypergeometricfunction we get an

expressionfor the a1_5,

(_1)m 1 F(s+n—i’rj)F(2s+ 1)
= ~ m! n! F(s — i~)F(2s+ n + 1)~ (A.10)

To evaluatethis we needan amusingidentity involving F-functions.

Lemma. Forall~Candj,sER~,j~s

(~1)m 1 F(s +n —i~)F(2s+ 1) (—1)~
5(2s)! F(j + 1 + i~)

n+m=i~s m! n! F(s—i~)F(2s+n+1) — (j+s)!(j—s)! F(s+1+i~)

Proof Eliminatingthe summationindex m = j — s — n on the left andusing
the factorial propertiesof the F-function the aboveidentity is seento be equiva-
lent to

~
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Both sides are clearly polynomials of degree(j — .c) in ~. We show their equality

by evaluatingthem at I — s + 1 distinct points.For —i-q = m + s + 1, 0 <m <j — s

the expressionon the right-handsidevanishesandon the left we have

(j+s)! i~ fl(2S+m+n)!(J_S

(2s+m)! n=0 ~ (2s+n)! ~ fl

which is zerobecause(2s + m + n)!/(2s + n)! is a polynomial of degreem in n
andit is well known that

n=0 ~-1)~(~) ~m=0

for 0<m <N. Finally we consider —i-q =s. Then we get (j—s)! on the right.

Using the identity

~ (_l)~~(N~a = N!a!

~~Ja+n (N+a)!’

which canbeprovedfor all a E N by inductionoverN we find for the sumon the
left

2s‘J I. ~ niJ—5i _____(—1) I I ~J~S !.(2s)! n=0 ~ fl 12s+n

This completesthe proof.

Putting this lemmatogetherwith eqs. (A.3), (A.4) and(A.9) and inserting the

expressionsfor C~and C10 we finally get

2
3(2s)! F(j+1+i’r

7) C
B. =i~(2j+1) —f-

f’S (21+ 1)! F(s+1+is~) C15

= i’(2j + 1) e’~’. (A.ll)
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