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Quantum scattering of BPS monopoles at low energy
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The quantum scattering of non-relativistic BPS monopoles is investigated by supposing that
the hamiltonian is proportional to the covariant laplacian on the space of collective coordinates
of the monopoles equipped with the Atiyah—Hitchin metric. Using a partial-wave analysis and
numerical methods we find a rich quantum mechanical structure, including inelastic and
resonance scattering. Quantitative estimates of certain cross sections are given. It is pointed out
that a similar method could be used to discuss nucleon-nucleon scattering in the Skyrme model.

1. Introduction

The so-called geodesic approximation has proven to be a very useful tool for
understanding the classical dynamics of slowly moving BPS monopoles. The idea
that the motion of monopoles might be well described by geodesic motion on the
manifold of static multimonopole solutions, called the moduli space, was formu-
lated in ref. [1]. Atiyah and Hitchin found the relevant metric for the two-mono-
pole case by an indirect method which is described in some detail in their recent
book [2]. The moduli space M, for two-monopoles is eight dimensional and
decomposes into R* X (S§' X MY)/Z,. Its metric is block diagonal with respect to
this decomposition. The flat R? X S! part parametrizes the centre of mass position
and an overall phase angle. MY is the interesting part of the metric: it describes
the relative motion of the monopoles. The riemannian metric on MJ has four
crucial properties: it is finite, geodesically complete, SO(3) symmetric and
hyperkahler. Asymptotically (in a sense that will be made precise later) the metric
on MY equals a modified euclidean Taub-NUT metric. The Taub-NUT metric is
also hyperkihler but it is not finite and is acted on naturally by SU(2) rather than
SO(3). In four dimensions hyperkihler is equivalent to anti-self-dual, so both the
Atiyah—Hitching and the Taub-NUT metric are examples of gravitational instan-
tons.
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The classical motion of monopoles in the geodesic approximation has been
investigated in a number of publications. Atiyah and Hitchin discuss geodesics on
certain two-dimensional geodesic submanifolds of Mg in ref. [2]. These include the
90 degree scattering of pure monopoles in a head-on collision and processes in
which orbital angular momentum is transformed into internal rotation, thus
turning pure monopoles into electrically charged dyons. In ref. [2] more general
geodesics were considered and it was shown that this transfer of orbital angular
momentum into electric charge is in fact generic. Furthermore it was argued that
the geodesic motion is not integrable and that there are regions of chaotic
behaviour. Motion in the asymptotic region of MY, where the Atiyah—Hitchin
metric can be approximated by the Taub-NUT metric, models the dynamics due to
the long-range forces between BPS monopoles. These forces can also be derived by
assuming that the monopoles are point particles with suitable scalar, magnetic and
electric charges [4]. Thus one may think of the Taub-NUT metric as a point-par-
ticle approximation to monopole motion. The Taub-NUT metric has an additional
SO(2) symmetry leading to the conservation of the relative electric charge. As a
result, the geodesic motion in Taub-NUT space is completely integrable with a
remarkably close analogy to the Coulomb problem [5]. Of course the moduli space
picture cannot replace a full field-theoretic treatment of classical monopole
motion. The authors of ref. [6] argued that the main correction to the geodesic
picture is energy loss to the long-wavelength modes of the massless fields. They
also showed that this radiation as a fraction of the total energy is O(¢?) in a typical
scattering process, where v is the initial speed of each monopole.

In the spirit of the geodesic approximation, the quantum dynamics of two
monopoles is approximated by supposing that the Schrodinger operator is propor-
tional to the covariant laplacian on M$. Gibbons and Manton first discussed the
quantum problem in ref. [5] and their paper will be our standard reference
throughout. They were able to solve the quantum problem completely in the
Taub-NUT limit. However, in the region of M9 which models two monopoles close
together, the Ativah—Hitchin metric differs substantially from the Taub-NUT
metric. In particular the relative electric charge, which is exactly conserved in
Taub-NUT space, is no longer conserved in close encounters of monopoles. It was
therefore difficult to estimate how good the Taub-NUT approximation to the
quantum dynamics on MY really is. In ref. [7] Manton studied bound states in the
Atiyah—Hitchin metric numerically, but avoided coupled problems. He found the
bound-state energies to be in very good agreement with those obtained in the
Taub-NUT approximation. Here we study the quantum scattering in the Atiyah—
Hitchin manifold at low total angular momentum: taking the laplacian on the
Atiyah—Hitchin manifold as the generator of the “interacting” dynamics and the
laplacian of the Taub-NUT manifold as the generator of the “free” dynamics we
use numerical and WKB methods to calculate elements of the S-matrix that relates
the two dynamics. In the quantum theory it is more difficult to estimate the range
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of validity of the moduli space approximation. As in the classical theory one
expects a truncation of the field theory to be sensible at low energies. But there
are now additional complications, pointed out in ref. [5]. In the quantised field
theory the scalar field acquires a small mass, so that static monopoles repel each
other. One also expects the zero-point energy of the field fluctuations orthogonal
to M, to vary over M,. Both these effects suggest that we should add a potential of
order # to the hamiltonian. But this is very hard to estimate quantitatively. We will
instead adopt the point of view of ref. [5]; the geometry of the moduli space alone
gives rise to interesting physical phenomena. The concrete aim of this paper is a
detailed understanding of the low-energy scattering of monopoles. But in present-
ing a careful case study we also want to illustrate the importance of the topological
and geometrical structure of the space of collective coordinates for an adequate
description of slowly moving solitons. In particular we will highlight some implica-
tions of this insight for the physically interesting case of skyrmions.

2. Quantum scattering in the Atiyah—-Hitchin metric

We follow ref. [5]in deriving the Schrédinger equation (6) on the Atiyah—Hitchin
manifold M.

Since almost all the orbits of the SO(3) action on M9 are three dimensional, M9
can be coordinatized by a radial coordinate r and Euler angles 0 <80 <7, 0 < ¢ <
27, 0 <y < 2. Introducing the standard right invariant forms on SO(3)

o, = —sin ¢ d@ + cos ¢ sin # do,
o, =cos ¢ df + sin ¢ sin 6 do,
o;=diy +cos 0 do, (1
the metric on MY can be written
ds?=f(r)> dr2+a(r)’e2 +b(r)’o? +c(r)’ ol (2)

The self-duality of the metric implies

2bc da b 5 , |

— —=(b—-c) " —a°, +cycl, 3
7 ( ) y (3)
where “cycl.” means we add the two further equations obtained by cyclic permuta-
tion of a, b, c. Atiyah and Hitchin discuss various solutions of eq. (3) in ref. [2).
They find the essentially unique solution that leads to a complete manifold in
which the generic orbit of the SO(3) action is three dimensional and show that it
can be expressed in terms of elliptic integrals. A plot of the numerical solution is
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presented in ref. [5]. We follow the convention adopted there for the choice of the
radial coordinate by setting

f=-b/r.

The range of r is then [, »), and for large values r can be thought of as the
distance in physical space between the centres of the monopoles. More generally
the kinetic energy for the relative motion of two monopoles derived from (2) is
similar to that for an asymmetric body with principal moments of inertia propor-
tional to a?, b? and c2. Since these vary with r (and hence with time) the body is
not rigid but has a one-parameter family of shapes. When r =7 the monopoles
coincide and the field configuration becomes axially symmetric. The moments of
inertia about the axes orthogonal to the axis of symmetry then become equal and
as a result b= |c| =. Moreover a vanishes at r = 7 showing that there is zero
distance in field configuration space between configurations related by a rotation
about the axis of symmetry. As a result, the three-dimensional orbit of the SO(3)
collapses to an RP? called a “bolt” by relativists. For a qualitative understanding
of monopole scattering it will be useful to recall that near the bolt »r — 7 is
approximately equal to te proper radial distance from the bolt and that a, » and ¢
have the following form to lowest order in r — 7r:

a=2r—m), b=w+i(r-m), c=-—-m+3(r—m). (4)

/ 2 2
a=b=r 1—7, Cz——‘/i_———ﬁ (5)

with corrections of order e ~”. The metric obtained from (2) by replacing a, b and ¢
with the asymptotic expressions is a modified euclidean Taub-NUT metric. Be-
cause a = b, it has the additional SO(2) symmetry mentioned in sect. 1. The radial
coordinate r, again defined by f= —b/r, now has the range (2, «).

For our partial-wave analysis of the quantum scattering of monopoles we will
need an estimtate of the range R of the core region of the Atiyah—Hitchin space,
where its meric differs significantly from the Taub-NUT metric. To define R we
first note that naively one might expect the moments of inertia a> and b? of the
two-monopole system about axes perpendicular to the line joining the monopoles
to be proportional to r? for r sufficiently large. Actually this proportionality is
modified even in the Taub-NUT limit by the factor (1 —2/r)"/? which is a
reflection of the long-range forces between monopoles. For small r, the deviation
of the Atiyah—Hitchin metric coefficients from the asymptotic form (5) is due to
the short-range forces between monopoles. We therefore define R to be that value
of the radial coordinate r at which the difference between the Atiyah—Hitchin and

For large r one finds
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the Taub-NUT expressions for a and b is “small” compared to the long-range
correction r —r(1 —2/r)'/?. As in the definition of the range of potentials, the
vagueness of “small” makes this definition somewhat arbitrary. If we take “small”
to mean “half as big” we find R = 5.

To discuss the quantum scattering of monopoles in the geodesic approximation
we study the scattering solutions of the Schrédinger equation

1 8 [abc oW &2 ¢ £
abcf ar ( ) - (

T; F-l-ﬁ“i'c—z)q’:&q’. (6)

The operator on the left-hand side is minus the covariant laplacian on M9 and & is
a rescaled dimensionless energy, e =47 E /hz. As in ref. [5] we choose units in
which a single monopole has both mass and magnetic charge 47 and the Higgs
field of the single monopole solution given in ref. [5] has a range of 1. The range of
the Higgs field will henceforth be referred to as the size of the monopole. We also
fix the speed of light to be 1. £, &,, £ are the vector fields on SO(3) dual to o,
0y, O3

d d cosdg @
&, = —cot 0 cos p— —sin f— + — —
I 30  sin 0 3¢
. d d sing 9
&,=—cot@sinp—+cosp—+ ———,
P 30 sin 6 d¢d
0
53_ ﬁ (7)

In order to separate variables we introduce Wigner functions following the
convention of ref. [8],

D} (.8, y) =e""d],(8) e,
which form an orthogonal set and are normalised so that

2

s 2
J =
f]Dsml dy d¢ d cos @ YRR

They have the symmetry property

dl,(8) = (=1)"""dL,,(m ~6)
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and satisfy

— (&1 + £ +&3)D), =i(j + 1) DL,

J
—i—D! =mD}
a¢ sn sm?
d )
~igy Dl =D}y, ()

Here the operator —#2(¢2 + €2 + £2) represents the squared total angular momen-
tum (in the center-of-mass frame), —ihd/d¢ the angular momentum about the
space-fixed 3-axis, and —ifd/d¢ the angular momentum about the body-fixed
3-axis, which corresponds to the relative electric charge of the two monopoles.
Quantum states which are eigenstates of the electric charge operator will be called
pure monopoles if s =0, and dyons of relative electric charge s if |s| > 1. If we
simply say monopoles, this may refer to pure monopoles or dyons.

Both d/d¢ and — (& + ¢5 + £2) commute with the hamiltonian, but in our
ansatz for a scattering solution we fix only m and consider a sum over the total
angular momenta j > |m|,

o s=j
V(r,d,0,¢)=3 Y ul(r)D](¢,0,¢). (9)
j=lmjs=-j

For fixed j and m the 2j+ 1 radial functions u/, have to satisfy the 2j + 1
coupled ordinary differential equations

abcf dr

1 d (abc dul, =i . .
— + 2 M, r)ul, = sul,. (10)
fdr Py

The matrix elements M (r, j) are the expectation values of the rigid-body hamilto-
nian

g & &
a>  b* c?

s 87T2

sm

S < j

Since the ¢; are cartesian tensor operators of rank 1, £ has non-vanishing matrix
elements only if |s —§| =0 or 2. As a result, states with odd s do not mix with
states where s is even. The equations are further simplified by discrete symmetries.
The rigid-body hamiltonian and the commutation relations of the ¢, are invariant
with respect to a simultaneous change in sign of any two of the §;. The full group
corresponding to this symmetry is the vierergruppe but we want to consider
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specifically the transformation which, at least for large r, corresponds to the
exchange of the position of the two monopoles and the simultaneous reversal of
their relative electric charge:

x-x, y—o -y, z—-z, (11)
in body-fixed cartesian coordinates, or
6 —->m7—0, o7+ P, ¢ — —. (12)

in terms of the Euler angles. It follows from the symmetries of the Wigner
functions that under this transformation

D (m+d, m—0, —¢) =(-1)'Di . (d,0,¥).

We can therefore assume s to be non-negative and consider positive “parity”
states

(D, +(—1)'D},) ifs+0,

$iom =\ V2 Dj,, if s=0and j even,
not defined if s=0and j odd,

separately from the negative “parity” states

(D’,,—(-1)'D},) ifs=#0,
Yism = V2 D, if s=0and j odd,
not defined if s=0and j even.

In the Atiyah—Hitchin manifold points related by (12) are identified. This is a
consequence of the fact that even classically one cannot consistently identify and
label individual monopoles. While it does make sense, for well-separated
monopoles, to say “a monopole of electric charge s, is at position r, and another
of electric charge s, is at r,”, it is, strictly speaking, meaningless to say “monopole
A with electric charge s is at r, and monopole B with electric charge sg is at
r;”. The use of such individual labels for the monopoles corresponds to using the
coordinates ¢, 6, ¢ without making the identification (12). Such labelling is often
helpful and allowed as long as we make sure that all our wave functions are
invariant under the map (12) and hence well defined on the true Atiyah—Hitchin
space. This requirement implies that the angular dependence of any permissible
wave function must be expressible purely in terms of the ¢,. Note that this
means in particular that pure monopoles cannot exist in a state of odd total
angular momentum (which equals the orbital angular momentum in this case).
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We should mention another consequence of discrete symmetries of M,, which is
explained in detail in ref. [5]. The conserved total electric charge is an integer S
which can differ from s only by an even number. The value of S does not affect
the dynamics, so we set S =0 if s even, and S =1 if s odd.

In order to evaluate the matrix elements M:(j, r) we first notice that they are
independent of m. Physically this is due to the fact that the energy of a free top
does not depend on its orientation in space. More formally it is evident because we
can compute Mf( J, r) just using the algebraic properties of the ¢; and their action
on states with well defined j and s. First we rewrite the rigid-body hamiltonian as
follows:

£ &6 & _aretg é?2(1 1)+§32(1 1)‘

4 — —
a2 b2 C2 b2 1 C2 b2

a®>  b?
Writing | js) for {(2j + 1) /87* D}, and | js*) for {(2j+1) /167% ¢, we only
need to calculate {j§|&21js). From simple angular momentum theory one finds

(Js|e2lisy= —1(i(j+ 1) —s?),

(slérlics +2))=(i(s +2)| €2 is)

= -G -9 =s-DU+s+D(+s+2),
(stletlis)=(slétlis), s#1,
(irrfezlinr )= (ilerlin) + (-v/(fezlic-1),
(s*letliGs +2) " )= (Usle2li(s +2)), s =#0,
(j0*|e2liz™ )= vz (jol&2]i2). (13)

Finally we have to choose the quantum number m. If we were looking for the
bound state energies as in ref. [7] the value of m would be immaterial, but in a
scattering problem the angular dependence of the wave function is crucial.
Physically we envisage a scattering situation where two monopoles are very far
apart long before and long after the scattering, thus having well-defined initial
relative (and hence individual) electric charge, which we shall momentarily denote
by ¢g. In our model this corresponds to g units of relative angular momentum
about the body-fixed 3-axis, which asymptotically points in the direction of the
straight line joining the two monopoles. If we now choose our space-fixed coordi-
nate system for the relative motion so that the monopoles travel towards each
other along the space-fixed 3-axis, we see that space-fixed and body-fixed 3-axis
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are parallel or antiparallel for the incoming beam in the asymptotic region, and we
must set m = +q. At least for dyon scattering the choice of the sign allows us to fix
the orientation of the z-axis relative to the beam. By setting m = g we choose the
z-axis so that, in the center-of-mass system, the monopole with positive electric
charge comes in from the positive z-direction and the one with negative or no
electric charge enters the collision from the negative z-direction. Since the
space-fixed angular momentum is conserved in the scattering process, the outgoing
particles will be in an eigenstate of —id/d¢ with the same eigenvalue g but in a
superposition of eigenstates of —id/d with possible eigenvalues s determined by
the above selection rules.
Using all this we can modify our ansatz (9) and try instead

V(r,$,0,¢) = g Yu(r)i,(d, 0, 9). (14)

We are then led to the slightly simplified set of coupled differential equations for
the u.
s>

1 d {abc du > 5 5
- — + S(7 = i
abef dr\ f dr - sy ryujs = e, (15)
where now
S. & & .
MS=—<]S+?+?+C—2]S+

and the sums over s and § are over either all even or all odd non-negative integers
< J, depending on whether ¢ is even or odd.

It is clear that, as j increases, the size of the above system of coupled ordinary
differential equations will become arbitrarily large. In the language of scattering
theory: for fixed j we will have to consider two separate systems of 3(j + 2)[3(j + 1)]
and j[3(j — D] coupled channels if j is even [odd]. Here we will restrict ourselves
to the single- and two-channel problems. These occur for j < 5. Representing
single-channels by ®, channels which are part of a doublet by *, and channels
which are part of a triplet by a, we arrive at table 1.

If, in eq. (6), we replace a, b, ¢ and f= —b/r by the asymptotic expressions (5)
we obtain the Schridinger equation corresponding to the Taub-NUT metric. Due
to the extra SO(2) symmetry the ansatz (14) leads to decoupled ordinary differen-
tial equations for the u . Setting ;= ru, we obtain

%_LLJ':-\;_D B (2e:s ) +(e—s4“2))h"(r)=o. (16)
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TABLE 1
Single and coupled channels at low angular momentum j. Explanations in text

s J

0 1 2 3 4 5
0 [ * A
1 [} ° * * A
2 * ) A *
3 * * A
4 A *
5 A

This equation is formally identical to the radial equation for the standard Coulomb
problem, but note that in eq. (16) the strength of the Coulomb potential depends
on the energy. It is also remarkable that the point r = 2, where the Taub-NUT
metric is singular and which classical geodesics cannot cross, is a regular point of
the radial equation (16). The quantum problem in the Taub-NUT space was
completely solved in ref. [5] using parabolic coordinates. In particular it was found
that for each s> 1 there are infinitely many bound states with energy below

=57 /4. Scattering takes place above that energy. We want to study quantum
scattering in Mg by comparing the solution of (15) with the partial wave solutions
u;, of (16) at large r.

In order to do this, we have to carry out a partial wave analysis of the scattering
problem in Taub-NUT space. This will differ from the standard Coulomb problem
because we expand the incoming plane wave in terms of the angular states i,
rather than in Legendre polynomials (which would correspond to m = 0). In fact,
other authors [9,10] have derived a partial-wave expansion of the Taub-NUT
scattering amplitude purely algebraically, exploiting the existence of a Runge-Lenz
type conserved quantity in this problem. We are interested in both a partial wave
decomposition of the scattering amplitude and of the entire scattering wave
function found in ref. [5] (the two being intimately connected, of course). We will
compute these by an elementary method, which will also be useful for fixing our
notation and normalisation conventions.

For ¢ > s%/4 it is convenient to introduce the momentum k = ye —s?/4, and a
parameter 7 = (g —s?/2)/k =k —s?/4k characterizing the strength of the
Coulomb potential. Eq. (16) then becomes

d? i(j+1 2k
1D 2 ey o, (17)

dr? r? r s

A solution which is regular at the origin is

F(kr) =C, e* (kr) " 'F(j+1+in, 2j+2, —2ikr).
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Here F(a, b, u) is the confluent hypergeometric function and the constant C; is
chosen so that asymptotically

F(kr) = sin(kr— n In 2kr — %j#“'ﬂ'js), (18)
where
g,=arg I'(j+1+in). (19)

One can also obtain a solution G, of the radial equation which is irregular at the
origin. We normalise it so that we have asymptotically

G (kr) = ~cos(kr = In 2kr — 5jm + g,). (20)
Having solved the radial equation, we can write the general regular solution of

eq. (6) (with Taub-NUT coefficients a, b, ¢, f) for a fixed s, and respecting the
identification (12), as

1 =<}
VIN(r, 6, 0, 9) = - X Bt ¢, 0, ¢) Fo(kr). (21)
j=s

We want to determine the constants B so that the above solution agrees with the
scattering solution found in ref. [5] for fixed s. We digress briefly to describe this
solution, which we write as

D, =C(P} + (1)’ D),
where (z =r cos 6)
D (r, b, 0, %) =TV (r+2) e R F(x —in, 25+ 1, ik(r +2)),
D (r, b, 0, ) =e" Pk (r—2z) e*F(s—in, 25+ 1, ik(r—z)) (22)

and C; is a normalisation constant chosen so that ¢, has the asymptotic form

2+T]2

ik(r—z)

ei(kr-‘n In2kr)

(e 0, 4)———. (23)

ei5(¢‘l//) ei(kz-k'r]lnk(r—z)) 1+

Here f; is the scattering amplitude found in ref. [5],
(S _ i,n) e—in Insin28 /2

(b 0 — is(d W)
[, 0, 4)=e 2k sin’8,2

eXon(~1)",
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The corresponding quantities @;" and f, are determined by

D (r,d,0,0)=(-1)’O (r, ¢ +m, -0, —).

The scattering amplitude in Taub-NUT space is therefore

M= (fF+(=1)'f7) (24)

which is invariant under (12), as required. The interpretation of this scattering
amplitude requires some care. Formally one would calculate the Taub-NUT
approximation to the differential elastic cross section for monopole scattering by
taking the square of the modulus of f™ and averaging over . This average is
required because the internal angle ¢, being conjugate to relative electric charge,
is not measured in the initial or final state. This would give a symmetrized cross
section which corresponds to counting al/l outgoing monopoles as part of the
scattered current. For pure monopoles, this is satisfactory because one could not
tell experimentally which of the outgoing pure monopoles originated from the
“incoming beam” and which from the “target” anyway. The resulting cross section,
first derived in ref. [5], has the form characteristic for scattering of identical
bosons:

( d )TN . s W 8 ’9 2k 1 i 25
—_— - pp— —_ + — + t — .
ae ), A cosec > sec 2 cosec cos( n an2 (25)

For dyons, the interference term 2Re(f;(f)*) is proportional to cos sy, and
vanishes when averaged over . The resulting symmetrized differential cross
section is

|f IP(0) +| £ 1°(6). (26)

But now a symmetrized differential cross section is less satisfactory: If we wanted
to measure the cross section for elastic scattering of dyons of relative charge 2, say,
we could very well set up a (thought) experiment such that, in the center of mass
frame, negatively (positively) charged dyons enter the collision along the negative
(positive) z-axis, and only the scattered negatively charged dyons are counted in
measuring the scattered current. This gives more detailed information about the
scattering than counting all scattered dyons, and since it is available experimen-
tally, we should be able to calculate it from the theory. To do this we go back to
the coordinates (¢, 8, ) without the identification (12) and, for large separation,
label the monopoles 4 and B, their position vectors r, and ry and their charges
54 and s;. We also introduce a (directed) relative position vector r =r, —ryz and a
relative electric charge (with sign) s =s, —s,. In fig. 1 we use this notation to
illustrate the “different” scattering processes described by the scattering wavefunc-
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b)

Fig. 1. The situation before and after the scattering described by (a) @5 and (b) @3 . The processes are

related by the simultaneous reversal of the relative position coordinate r = r, — rg, whose direction is

indicated by the arrows, and of the relative electric charge s = 5, — s5. Physically they are indistinguish -
able.

tions @5 and @;. The point is that ¢~ and @* describe the same physical
scattering process using different labels for the monopoles and hence different
relative coordinates. In particular, the direction of the outgoing negatively charged
dyon is given by 8 in fig. Ia but by 7 — 0 in fig. 1b. But clearly

| fo [(0) =|f3 [((m—0).

Thus we see that in the case of dyon scattering the amplitudes f; and f., when
properly interpreted, give the same cross section and do not interfere. Hence the
Taub-NUT approximation to the elastic cross section for dyon scattering that
should be compared with one measured in the hypothetical experiment described
above is not (26) but

( do\"
dn/;
which is the formula given in ref. [5].

The constants B, in (21) can be evaluated by matching ¥,"~ and &, near r =0

and using the orthogonality properties of the Wigner functions. This is done in
appendix A. We find

s2

N 1
| I? N F B = — -
(0) _|fx , (0) _'fs I (ﬂ- 0) - 4 1+ 4k2

0
) cosec“E, (27)

B, =i/(2j+ 1) e,

Substituting the asymptotic expression for Fj, into eq. (21) and comparing with eq.
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(23) we find the partial-wave expansion of the scattering amplitude

N, 0, )

GZins _ l

= jgs (2] + 1)‘1[’1;((1)’ 0’ dj)—ﬂ—_

is(d wi 2i+1Vd’ (8 e’ —1
=¢e'Se~ j +
j:S( j+1Ddl () ——

_ © o CZIUf"' -1
T T (2] 4+ 1)(~1) d(0) —5—
1

j=s

=e”‘¢“’”§(2j+l)df (0)_6_21:__1
e e 2ik
+(—1)" el i (2j+ 1)d’ (m~ e)iﬁl
- o 2ik
= (=11, (¢, 0,9) +f7($.0,4). (28)

In principle we now have all the necessary ingredients to carry out a partial-wave
analysis of quantum scattering in the Atiyah—Hitchin metric. In practice we still
have to evaluate F;; and G, for large kr more accurately than (18) and (20). This
can be done numerically using the asymptotic expansion given in ref. [11]. Thus we
obtain asymptotic states

F.(kr G, (kr
isCkr) ind js(kr) ,
r r

with respect to which the solutions of eq. (10) can be analysed. To do this we have
to study the eqs. (15) numerically. The details of this will be the topic of the
subsequent sections, but in all cases we will generate the values for a, b and ¢
simultaneously by integrating eq. (3) numerically. This can only be done reliably by
integrating ourtwards from the bolt. We therefore have to pay particular attention
to the behaviour of eq. (15) near the bolt in order to impose the right initial
conditions there.

Our partial-wave calculations will provide us with certain elements of the
S-matrix. In order to extract information about the differential cross sections of
various processes we then have to carefully take into account the underlying “free”
dynamics in Taub-NUT space. Our trecatment here is analogous to the discussion
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of modified Coulomb potentials in atomic and nuclear physics and we simply state
the formulae for the scattering amplitudes derived, for example, in ref. [12]. We
introduce the notation S/ for the restriction of the S-matrix to the subspace
characterised by the total angular momentum j, and denote its matrix elements by
Si..

The scattering amplitude £, (6) for elastic scattering of pure monopoles (s = 0)
or dyons (s > 1) can be expressed in terms of the diagonal elements of S':

fos = FN+ £, (29)
where f,,(6) is given by the partial-wave expansion
; LS i1y ez S5 1)
fss(d)’a’ l/l)= 7 2(2]+1) e —— (pjss((»b’g’ lp)
k i—2 2i

Because of the symmetry of the (¢, 8, ) the whole scattering amplitude is

automatically invariant under (12). The decomposition

W=Dl + (=)D}

jss —ss

allows us to split fA” into two parts,
N sA &
fSS=(—1) fSS+;;7

such that (—1)°f;, is an infinite sum involving only the D’ _ and f7 is an infinite
sum involving only the D/. We then have

Fu= (0 (F7 +15) + (5 +15).

For s = 0 we retain both parts of the scattering amplitude. But, by the argument
given in the discussion of the Taub-NUT scattering amplitude, we keep only
(f7 + f;_s)(qﬁ, 8, ) if we want to calculate the differential cross section for scatter-
ing of dyons of a definite electric charge into an interval (8, 8 + d8). As in the
Taub-NUT approximation we obtain the elastic differential cross section by
squaring (29) and averaging over ¢. For pure monopoles, this average is trivial,
since fy, is independent of ¢. Thus

do | 2
“nh‘ﬂ”’
while for dyons we have

I 2

do 3 1 L
(m)“_ E/dl[l fs +fss
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This expression is complicated by the interference between the long-range and the
short-range part of the scattering amplitude. The inelastic processes involve no
such interference. The scattering amplitude for a process in which dyons of relative
electric charge s turn into dyons of relative electic charge § # s is given

A 1z N
fil(d,0,9) =f (b, 8, 9) = —= Y (2j+ 1) e“uS] i (o, 8, ¢) (30)

iVkk j=s

and the corresponding inelastic differential cross section is

2 do k

’ an ). &
if §+# 0. The total cross sections are obtained from the differential cross sections
by integrating over cos 6 and ¢ as usual.

~

do B k
(E)sﬂ— E f

2
>

S
fs§

s0

3. Single-channel scattering

We investigate the four single-channel problems characterized by

(J,5)=1(0,0), (1, 1), (2’ 1), (3, 2).

Physically, the first of these describes pure monopole scattering with no (relative)
angular momentum. There are no bound states in this channel so scattering takes
place at all positive energies. (j, s) = (1, 1) and (2, 1) corresponds to scattering of
dyons with relative electric charge 1 and total angular momentum 1 and 2
respectively. There are bound states with energies 0 < ¢ < 0.25 in these channels
[7] and the continuum begins at & = 0.25. Finally (j, 5) = (3, 2) refers to dyons
having total angular momentum 3 whose electric charge differs by 2 units. Because
of the selection rule mentioned in sect. 2 such dyons cannot turn into pure
monopoles and consequently they can form bound states at energies £ < 1. These
were overlooked in refs. [5,7]. Scattering takes place above that energy. The
equations for the radial part of the wave function obtained from (15) read

1 d (abc duy { m n 0 31
e — +le—-— - — — J— =0,
abef dr\ f dr (8 PRI (31)
where
(0, 0) (0,0, 0)
(1,1) (0,1, 1)

(J,8)= =, m,n)= (32)

(2, 1) (4,1, 1)
(3,2) (4,4, 4)
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In all cases the behaviour near the bolt can be found by approximating
a=2h, b=1, c= —1,

where h =r — 7. The radial equation then simplifies to Bessel’s equation near the
bolt and the unique solution regular at the bolt is the usual Bessel function

j(i+1) —-p?
L,

p =4I, whose dependence on (j, s) can be read off from eq. (32), is always an
even integer. Using the well-known values of Bessel functions of integer order and
their derivatives for small A, numerical integration from slightly outside the bolt
h =107 is straightforward. Asymptotically the solution may be expressed as a
linear combination of the regular and the irregular solution of (17), with the
appropriate values for (j, s). We define and calculate the relative phase shift 3, by
requiring

up(r) « i_’s'rkgcos 8, — %kr)sin s (33)

Surprisingly, §,, is found to be zero at all energies (to five decimal places,
which is the accuracy that we can numerically achieve with our method). The
phase shifts for the other channels are not trivial, and we plot them against ¢ in
fig. 2. There are two plots of §,, with different energy ranges. In the first plot the
range is chosen so that the interesting behaviour near ¢ = 0.5 is clearly visible.
Note that this is precisely the energy for which the parameter n describing the
strength of the Coulomb potential is zero.

A qualitative analysis suggests that the Taub-NUT approximation should be
good for elastic scattering of pure monopoles below the dyon production threshold
in all partial waves except the s-wave. Although all partial waves contribute to this
process, the expectation value of £7 cannot vanish for j = 0 and s = 0. Hence there
will always be a repulsive “centrifugal” term 1/a® which prevents the monopoles
from reaching the region near the bolt where the Atiyah—Hitchin metric differs
substantially from the Taub-NUT metric. For j = 0 there is no such term and one
would expect the phase of the Atiyvah—Hitchin radial wave function to be shifted
substantially relative to the phase of the Taub-NUT wave function. This is why it is
remarkable that this phase shift turns out to vanish at all energies.

At high energy, i.e. short wavelengths, the WKB approximation gives a geomet-
rical interpretation of this fact. While the high energy behaviour of phase shifts is
not directly relevant for a partial-wave analysis of low-energy scattering, the
application of the WKB method for scattering on a riemannian manifold is
interesting, because it exhibits the interplay between geometric and quantum
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Fig. 2. Phase shifts for single-channels as a function of the energy e. §,; is shown on two different
energy scales.

phenomena. Consider first the Taub-NUT radial equation for the j= 0 channel.
Eq. (31) with (I, m, n)=(0, 0, 0) and the Taub-NUT expressions for a, b and ¢
can be brought into standard form by introducing a new coordinate 7 via

abc dr=fdr,
or

)= [ 2-ar (34

o abc
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We fix the constant of integration by setting r, =2 and find that

wn-1-2),

¥

so that T ranges from —o to 0 as r varies from 0 to 2 and 7 ranges from 0 to § as
r varies from 2 to «. The radial equation now reads

2
(—d—2 +s(abc)2)u00=0. (35)
dr

This looks like a one-dimensional Schrédinger equation with “potential” —e(abc)?
at zero energy. For £+ 0 this “potential” is zero only at r=2 (r=0). Thus
classical trajectories in the potential at zero energy which start outside r = 2 will
reach r=2, stop and escape to r=o (r=1). This is the classical motion we
should keep in mind when applying the WKB method, although it differs from the
geodesic motion in Taub-NUT space, which has a singularity at r=2. The
quasi-classicality condition requires

’d(l/p) l

—_— <1,
dr

where

\/;
p= \/6(abC)2 = \/g(—l_—)2

so that for large £ and 7 not too close to 0 we have indeed

’d(l/p) ‘or L <1
dr Ve )

Applying the standard WKB formulae to the radial wave function one finds

upB(r) = < sin(fr(r)p('F) 47+ =
Vp(T(r)) 7o 4

Here C is some normalisation constant and 7 is the classical turning point, i.e.
7o =0 for the Taub-NUT metric. Using the definition of 7(r) and k = V& we can
write

wkB () = — il [kf(7) a7+ © 36
U (r)-msm(f2 f(F) r+z). (36)
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We see that, up to the 7w /4 stemming from the standard connection formulae in
semiclassical analysis, the WKB phase is given by the proper radial distance from
any point with radial coordinate r to the singularity (r = 2) times the wavenumber.
For the Taub-NUT metric the integral can be worked out explicitly

[1(7) aF=r(r=2) ~n(r =1+ (r=2))

~yr—1—In2r forlarge r. (37)
So the WKB phase is

SYEP(r) = k[ F(7) dF + bm
2

=k(r—1-=1In2r) + 37 for large r. (38)

The exact partial-wave analysis of the Taub-NUT scattering problem yields the
Coulomb phase for j =0 and n =k:

¢c(r)=kr—k In 2kr +arg I'(1+ik)

which is obviously not equal to (38). However for large k one can use Stirling’s
formula for the I'-function,

1
arg I'(1+ik)~ ~k+k In k+%w+0(z).

Then
do(r) ~k(r—1—1In2r) + 17.

Thus the WKB approximation (38) agrees with the exact phase for large k, as one
expects.

Turning to the radial equation in the Atiyah—Hitchin manifold, we follow the
same steps, but now the integral defining 7(r) diverges logarithmically as r | 7.
However, we need not bother with an exact definition of 7 since it is only used in
intermediate steps. We read off from eq. (35) (now with the Atiyah—Hitchin
coeffients a, b, ¢) that the turning point is the value of = corresponding to r, = .
But r, is all we need to evaluate the WKB wave function, which is now

uW)KB(r) — ¢

0 7
yp(7(r))
The integral is again the proper radial distance fron any point with the radial
coordinate r to the bolt, where r=r,=m. In the Atiyah—Hitchin case the

sin(erf(F) dF + %) (39)
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integration has to be done numerically, but the phase is found to be identical to
the Taub-NUT result (38) for sufficiently large r: the values agree to seven decimal
places at r = 200. In the WKB approximation the absence of a relative phase shift
is thus seen to be a consequence of the fact that a point in Taub-NUT space with
large radial coordinate r has the same proper radial distance from the singularity
(r =2) as a point with the same radial coordinate r in the Atiyah—Hitchin space
has from the bolt (r = 7).

Such a geometrical interpretation of the scattering data is a common feature of
scattering by metrics. The (classical) relative motion of two vortices can also be
modelled by a curved riemannian manifold, namely a rounded cone. In ref. [13] it
was shown that the WKB approximation to the quantum scattering of two vortices
gives an s-wave phase shift which is proportional to the length deficit of the
rounded cone relative to the standard cone with the same opening angle, i.e. the
difference in geodesic distance to the apex in each case.

We have only managed to explain the absence of a relative phase shift for high
energies. Comparison of ¢ with ¢¥4® shows that the WKB approximation is not
exact at lower energies. It remains an open question why the relative phase shift
should vanish at all energies.

For the other three single-channel problems we can again understand the
behaviour for large ¢ in terms of the WKB approximation, but now we have to
keep track more carefully of the classical turning points. The equation generalising
eq. (35) reads

2
(d—+(abc)2(e—i—ﬁ—£))u- =0 (40)
dr2 PR 2 [ [His =Y

where a, b and ¢ may stand for either the Atiyah—Hitchin or the Taub-NUT
expression and 7(r) is defined as before. For large but fixed r we can certainly
choose ¢ so large that the “potential”

is negative, but now it may have zeros other than r,, giving rise to “classical
turning points” r, whose precise location will depend on e. The expression for the
WKB phase generalising (38) is

r l m n ™

By carefully estimating the energy dependence of r, it is possible to derive the
high-energy limit of this expression analytically and to find an asymptotic expan-
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sion of the phaseshift in powers of £~1/2. For (j, s) = (1, 1) we find the following
asymptotic formula for both the Atiyah-Hitchin (ry=m) and the Taub-NUT
(ry = 2) metric

4 w 1 r 1 1
WEB(r) = di+ ———= [ | 5 + 5 |f dF.
dis= (1) ﬁfrof T 2\/Z/r(, p2 vl dr
Hence, for ¢ — «, the leading term in & ~!/? for the phase shift 8, comes from
1 ~(1 1

ry

We calculate this integral numerically for the Taub-NUT and the Atiyah—Hitchin
space and find that the results differ by 0.612. Thus we get an asymptotic formula
for the phase shift §,;,

5 0.612
11~ 2‘/8— .

For (j, s)=(2, 1) and (3, 2) a similar analysis shows that the asymptotic form of
d,, and 8;, for high energy is

These asymptotic expressions approximate the high-energy part of the graphs
shown in fig. 2 very well.

We can now use formula (29) to estimate some elastic cross sections. Consider
the case of pure monopoles. Because 8y, = 0 at all energies the first correction to
the cross section calculated in the Taub-NUT approximation stems from phase
shift of the partial wave with j = 2. In sect. 4 we will show that this phase shift is
indeed small at low energies (¢ <0.7) so that in this energy regime the cross
section is to a good approximation given by the Taub-NUT expression (25). Note
that for small k the interference in this cross section term is slowly varying and
would be important in an experimental check. This is the opposite situation from
the standard Coulomb problem where the low-energy limit corresponds to the
semiclassical limit in which the interference term becomes rapidly oscillating.

At low energy the elastic cross section for dyons of relative electric charge 1 can
similarly be estimated by neglecting higher partial waves. 8,, is non-trivial so one
should keep at least the lowest partial wave. Numerically we find that for ¢ — 0.25,
8,, tends to some finite value = 0.22 but §,, tends to zero. Thus we keep only the
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first term in the expression for fﬁ to estimate the scattering amplitude at low
energy:

- A - 3 dion ity < i(¢—w)(1 — cos 6)
(f1 +fll)(¢7 0, ¢) =f1(¢,0,1//)—;e e sin 8y e 5
The resulting cross section is
do 1 1\ 1
PR =—{1+ — | ==
e /,, 4 4k* ) sin*0/2
3 1 ) .0 1
- E(l + W) sin §,, cos{ 8, +n Insin 5~ arctan;
9 .0
+ 2 8y, sin 5 (42)

The interference term is interesting because it depends on the sign on &,; and the
last term shows that the Atiyah—Hitchin metric predicts a cross section for
scattering in the backward directions (8 = =) that is significantly enhanced relative
to Taub-NUT cross section.

The phase shift 6, does not give the main correction to the Taub-NUT cross
section for scattering of dyons with relative electric charge 2. This stems from a
two-channel problem to which we now turn.

4. Multi-channel scattering

A typical two-channel problem arises in the j=2 sector. We will use it to
explain the general formalism for multi-channel scattering and to illustrate the
qualitatively new features that occur when channels which were uncoupled in the
Taub-NUT approximation become coupled. In accordance with the remarks in
sect, 2 we seek solutions to the Schrodinger equation (6) of the form

Wo(r, &, 0, ) =us(r)¥n(d, 0, &) +”22(’)‘//2+20(¢a 6, 4), (43)

if we are interested in processes where the incoming particles are pure monopoles,
and

Vo(r, @, 0, ) =uy(r)0.(db, 0, ¢) Fup(r)n(6, 0, ¥) (44)

if the colliding particles are initially dyons of relative electric charge 2. For
definiteness let us consider the first of these possibilities. The system of second
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order coupled differential equations for the radial wave functions corresponding to
(15) does not depend on this choice, but the interpretation of the S-matrix
elements in terms of scattering amplitudes does, as eq. (30) shows. Using the
formulae (13) we find that the system of differential equations (15) takes the form

rod duiy 303 11
b—:r( ar )*(87‘?)“%*@(?‘;f)“zfo’

r d du,, 1 1 4 1 1

Since the incoming particles are pure monopoles, we have to distinguish between
two energy regimes, below and above the threshold for dyon production £ = 1. We
first look at the scattering problem for ¢ > 1. Then both u,, and u,, will be
oscillatory for large r. Asymptotically we may neglect exponentially small terms,
the equations decouple and we get two equations of the type (16) for 4, (r) = ru (r)
with the appropriate values of j and s. We sct

ko=ve, k,=ve—1
as well as
k k !
Mo = y M2 = - 5 -
0 0 2 2 k2
It is also convenient to introduce the notation
Uog( T
Vi) = ( 2 ))_
uy(r)
We then try to find solutions that behave asymptotically like
*g Bo
—F k + ?G k r
oo 1 V/E s0(kor) v/ko 20(kor) »
r)y= —
( r a, B

Fy(kyr) + Gy(k,r)
2

T =

for constant vectors
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We will see explicitly that there are two linearly independent solutions which are
regular at the origin. This will give us two sets of vectors,

A% B® and A4', B!
and we can ask for the matrix R that satisfies
RAO =B[) RAI :Bl.

This is the restriction of the so-called reactance matrix R to the subspace of
asymptotic states defined by j=2, s =0, 2. R is related to the S-matrix via a
Cayley transformation

S=(1-iR)(1+iR) "

It follows from general arguments of formal scattering theory [14] that S is unitary
and symmetric. Hence R is real and symmetric. We will explicitly check the
symmetry of R later. In order to find the two solutions numerically we have to
analyse (45) near the bolt. Setting again 4 =r — 7 and using the approximations

a=2h, b=7w, c=-m,

we find that near the bolt the term (b2 — ¢ ~2) vanishes and we can decouple the
equations using the transformation

R ]
2\v3 1)
The differential equation for the pair
Uy(r)
Vir)= =TU 47
() (()) (r) (47)
is then
r d dvy, 3 3 1 1
b_d_( O )* (5_ i ?)”20“/3—(? - —)= :
rod dv,, 4 1 1 1 1
he E(acr P ) + (e— prinlys i C‘z)U22+ ﬁ(p - ?)vzozo. (48)

Near the bolt this simplifies to

d?v,, 1 duy, 6
+— +le—— vy =
dh’ " h dh (E w2)b2" 0.

d?v,, 1 duy, 2 1
+ — +le—-—=—— =
dh2 h dh ( 2 hz )UZZ 0. (49)
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We can easily write down two linearly independent solutions of this system, regular
at i =0, in terms of Bessel functions J,, of integer order n. Labelling the solutions
of eq. (48) by the order of the Bessel function to which they reduce at the bolt, we
have, for small A.

6
LlVe—=h 0
V0: ks

, V= / 5 . (50)
0 Jl( £ — Ph)

Using the well-known values of the Bessel functions and their derivatives near
h = 0 we can impose these as initial conditions slightly outside the bolt (in practice
at h =1071°) and integrate (48) outwards. Having obtained the two independent
solutions V9 and V!, we translate their asymptotic behaviour into that of the U’
by inverting the linear transformation (47).

As in the case of potential scattering one shows the symmetry of R by
considering the generalized wronskian

dul, dud, dub, dub,
W(r) = ugo dr 50 d ugZ dr u;z d
We find, using eq. (45),
dw 1/(b b ) b? W
— () ===+ —+1-— .
dr r ria ¢ ac (r)

As a result of the boundary conditions at the bolt we have
W) =0,

and hence
W(x) =0.

Expressing W in terms of the asymptotic form of the wave functions

ROO

o

R b
—(Ecos( kyr—m, In2k,r +0,,)

7

R
—zo—cos(kor =1 In 2kyr + 0oy)

7

1
—sin(k,r —m, In 2k,r +0y,) +

75

1
—=sin(kyr — 7o In 2kgr +059) +

ko

cos(kgr —mg In 2kgr + oy)

~

~ |

R22

7,

cos(k,r —m, In2k,r + 0y,)
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we find that, in the normalisation we have chosen,
Ry =Ry
We can therefore parametrize R by two eigenphases 8 and & and one mixing

angle € as follows [12]. We write

R= 0(6)(tan06+ tan()s_ )O(e)_l

where O is the orthogonal matrix

O(e) = (cos € —sin e)
sine cose /

The parameters 8%, 8~ and e are useful for translating the R-matrix into the
S-matrix:

+

_ . e2i8 0 . -1
s-o( 5 ot

They are also sometimes used in the literature to display the result of a partial-wave
analysis, and we will follow that practice. Another expedient set of parameters are
the so-called “bar” parameters:

St +6 =56%+6"

- = tan 2¢€ ) sin 2¢€
sin(6*—67) = sin(8"—687) =

(51)

tan 2¢’ sin 2e
One finds Sy, =i ¢’®" +%7) sin 2. Together with eq. (30) this shows that sin 2€ is a
direct measure of the probability for dyon production in a collision of pure
monopoles. We therefore calculate and plot € as well.

The parameters 8%, 67, ¢, € are displayed in fig. 3 as a function of the energy &,
which is dimensionless. The differential elastic cross section depends on the
parameters 8%, §~ and € in a fairly complicated way and moreover involves the
interference with the Taub-NUT scattering amplitude. The total elastic cross
section is always infinite due to the long-range Coulomb forces between monopoles.
Thus we will not attempt to discuss elastic processes quantitatively but simply point
out some noteworthy qualitative features of our plots. Firstly we notice that the
energy at which the Coulomb potential vanishes plays a special role, as it did for
the phase shift 8,;. Near £¢=2.0, 8", 8~ and € have maxima. The second
observation concerns the behaviour of € as one approaches the threshold energy
e =1.0 for dyon production from above. € decreases rapidly but tends to a
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Fig. 3. j = 2 coupled problem. Parameters for S-matrix above threshold and phase shift for scattering of
pure monopoles below threshold.

non-zero value at the threshold. This is the threshold behaviour one expects in
coupled channel problems if both channels have Coulomb-like potentials [15].
For energies below the dyon production threshold u,, will be exponentially
increasing or decreasing for sufficiently large r. Only the latter solution makes
sense physically, but one cannot easily characterize it by its behaviour at the bolt.
We find it numerically by an iterative method. The u,, part of that solution can
then be compared with the corresponding solution of the Taub-NUT radial
equation (16) and we obtain the relative phase shift &,, as in sect. 3. 8,, is also
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Fig. 4. Radial wave function for j =2 coupled problem below threshold. u,, is shown with a full line,
Uy, 1s shown with a dashed line.

plotted in fig. 3 as a function of the energy. It tends to zero monotonically from
above as ¢ — 0 and is small (< 0.1) for £ <0.7. For £ > (0.8, however, it shows a
very interesting behaviour. As the energy increases from 0.8 to 0.9 the phase shift
increases very rapidly by 7, passing through 7 /2 at £ = 0.85. It then rises even
more quickly, taking on the value 37 /2 at about € = 0.925 and reaching 27 at
£ =0.94. This is accompanied by changes in the wave function displayed in fig. 4.
Below ¢ =0.75, u,, is a monotonically increasing function having some finite
negative value at the bolt and tending to 0 for large r. At an energy of about 0.8,
u,, developes a local minimum just outside the bolt which moves outwards as the
energy increases further. Also, the amplitude of u,, relative to u,, increases,
reaching a maximum at ¢ = 0.85. At € = 0.9, u,, shows another local extremum,
whose relative amplitude peaks at about ¢ = 0.92. The special values £ = 0.85 and
e =0.925 are close to the energies of the two lowest bound states of the second
equation in (45) with the coupling term removed. In fact, that Sturm—Liouville
problem has infinitely many discrete eigenvalues which accumulate at £ = 1.0. The
numerical results shown in fig. 3 suggest that the phase shift increases by =
whenever the energy crosses one of these discrete eigenvalues and hence tends to
o as £ — 1.0. This behaviour is typical of threshold resonances with Coulomb
potentials in both channels. The phenomenon has been investigated in some detail
for the case of potential scattering [15] and this analysis can presumably be
adapted to our situation without much difficulty. We will not do this here, but
make a qualitative remark instead. It is known that resonances are related to the
time delay observed in the scattering of wavepackets [16]. On the other hand, such
a time delay occurs also in the classical scattering of pure monopoles under certain
conditions, described in refs. [2,5]. These scattering processes are modelled by
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geodesics on the so-called Atiyah-Hitchin trumpet, a two-dimensional geodesic
submanifold of M. It is asymptotic to a cone at one end and to a cylinder at the
other. Geodesics crossing the “neck” of the trumpet and passing into the cylindri-
cal region correspond to pure monopoles turning into dyons. But only for an
impact parameter b < 2 will such geodesics continue infinitely far into the cylinder
or, in the language of particle scattering, will the dyons escape to infinity. For
2 < b <1 pure monopoles turn into dyons which move back-to-back in the line
perpendicular to plane of the initial motion, but then return and turn into pure
monopoles again. The time delay in such a process increases indefinitely as b | 2.
It would be fascinating if one could relate this classical phenomenon to the
threshold behaviour of the phase shift described above.

We have similarly analysed the coupled channel problems labelled by 3 <j <5
(cf. table 1). As we do not intend to give a detailed quantitative description of
elastic cross sections we only report our findings concerning the inelastic cross
sections and the threshold behaviour. All coupled channels display the threshold
behaviour found in the j =2 case. Below the threshold energy there is only one
phaseshift and in all cases it shows qualitatively the same resonance behaviour as
8,0- In fig. 5 we show the variation of € with energy. The partial waves with j =3
and j=4 both contribute to scattering processes involving dyons of relative
electric charge 1 and 3 so we have plotted the parameters € for these angular
momenta together. The j =35 partial waves give the leading contribution to the
scattering of dyons of relative electric charges 2 and 4, and the corresponding
parameter € is shown separately. Again we find that € tends to a non-zero value at
the threshold. We can use that limit to estimate some inelastic total cross sections
at the threshold energy.
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Assuming § > s we can use (30) and the orthogonality of the 7, to write down

the partial inelastic cross section for a process in which the relative electric charge
changes from s to §,

Q§o=ZT’ Ll ifs=0
and, for §# 0,
. 77(2] + 1) o2
Qls= — 78]
The total cross section for such a process is
Q= Z Qﬁs

j=5

Near the threshold, we can estimate the cross section for the production of dyons
of relative electric charge 2 in a collision of pure monopoles by considering only

ST 5
Q3= —(sin 2€)".
£

Taking € = 0.4 at the threshold, we estimate Q2, = 27. Recalling that our unit of
length is the size of a monopole, we find that the inelastic cross section for
production of dyons with relative electric charge 2 is roughly three times the cross
sectional area of a monopole. It is instructive to compare this with the classical
cross section of the special scattering processes modelled by geodesics on the
Atiyah—-Hitchin trumpet described above. There we saw that for an impact
parameter b < 2 pure monopoles turn into dyons. This corresponds to a classical
cross section of 477, which is close to our quantum mechanical estimate. We can
also estimate the angular distribution of the emitted dyons from the angular wave
function multiplying S3, in the partial-wave expansion of the cross section (30).
This is DJ, which is proportional to sin?§. Thus dyons emerge preferentially at
right angles to the beam axis, just as in classical scattering of monopoles. We have
not checked that the next partial cross section Qp, is much smaller than Qg3,,
because we did not calculate coupled problems with more than two channels. For
the process in which the relative electric charge changes from 1 to 3, however, we
can estimate both Q7 and Q7;. We find, near threshold, that

Q0L =3w, Qh=04nw

so that only a modest increase of j from 3 to 4 reduces the partial cross section by
a factor of 7. Finally we calculate, again at the threshold energy

03, ~097.



208 B.J. Schroers / Quantum scattering of BPS monopoies

5. Conclusion

In this paper we extended the work of ref. [5] on the moduli space approxima-
tion for the quantum scattering of BPS monopoles by considering the true moduli
space of two monopoles (the Atiyah—Hitchin manifold) and not just the manifold
modelling the asymptotic dynamics of two monopoles (the Taub-NUT space). Even
before one does any detailed calculations it is clear from the different geometries
of the two manifolds that a description of the scattering in terms of the Atiyah—
Hitchin manifold will differ from one using the Taub-NUT approximation in that it
predicts inelastic scattering. Using a partial-wave analysis we could give quantita-
tive estimates of various elastic and inelastic scattering processes by considering
only partial waves of the lowest contributing angular momentum. The most
surprising result of our calculations is the vanishing of the s-wave phase shift in the
elastic scattering of pure monopoles. This implies that the Taub-NUT cross section
(25) for this process is an unexpectedly good approximation at energies below the
dyon production threshold. But how accurate are our estimates at higher energy?
One can give an estimate of the largest total angular momentum that contributes
significantly to the scattering of pure monopoles at a given energy by requiring that
the classical motion in the effective potential of the Taub-NUT radial equation
(16) remains outside the region r < R where the Atiyah—Hitchin metric differs
significantly from the Taub-NUT metric. In sect. 2 we estimated R =5 for the
range of this core region. We then find for scattering of pure monopoles at the
threshold energy ¢ = 1.0 that j . =3. If the colliding particles are dyons of
relative electric charge 1, a similar analysis at the threshold of inelasticity £ = 2.25
gives j..=5. Indeed we saw that the j=4 contribution to the inelastic cross
section is already much smaller than the j = 3 contribution. For the scattering of
dyons with relative electric charge 2 we find, at the threshold e = 4.0, j_ .. =7 We
conclude that our calculations provide the numerical information necessary to give
a good quantitative description of the scattering of pure monopoles and of dyons
with relative electric charge 1 at energies up to and slightly above the thresholds of
inelasticity. For dyons of relative charge 2 we also calculated the dominant
contributions to the scattering up to energies slightly above the threshold of
inelasticity, but here one should expect significant corrections from the partial
waves with j = 6.

More generally we believe that our discussion together with the work done in
ref. [7] on bound states captures the essential qualitative features of quantum
dynamics of monopoles in the moduli space approximation. These include the
existence of infinitely many bound states of dyons, all of which are embedded in
the continuum, the occurrence of elastic and inelastic scattering, and the
Coulomb-like resonance behaviour of the elastic cross sections near the thresholds
of inelasticity.
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These phenomena are of interest beyond the specific question of monopole
scattering. Scattering in the Atiyah-Hitchin manifold is interesting because it
provides an example of scattering by a metric defined on a space that includes both
spatial and internal parameters. This is different from standard problems in
non-relativistic mechanics, where interactions are described by a potential defined
on flat R? (or several copies thereof for many body problems). While the standard
partial wave formalism had to adapted carefully to take into account the non-trivial
geometry of the configuration space (recall that the symmetrised, bosonic cross
section for pure monopoles resulted from purely geometric requirements) the final
results — bound state energies in ref. [7] and cross sections in this paper — show the
type of phenomena that are familiar from quantum mechanics defined by standard
hamiltonians. In this respect our calculations are relevant to the more general
question of low energy dynamics of solitons as discussed in ref. [17]). More
specifically they give hints for the discussion of the nuclear two body problem in
the Skyrme model. This model treats nucleons as solitons in a classical field theory.
Again one can truncate the field theory to a finite-dimensional lagrangian dynami-
cal system defined on a manifold of collective coordinates for the two-skyrmion
system [17]. This manifold is 12-dimensional and has a potential V" as well as a
riemannian metric defined on it. While the potential has been studied extensively,
little attention has been paid to the metric. It has long been known that the kinetic
energy of the two-skyrmion system is not just the sum of the kinetic energies of two
free skyrmions. The extra terms have been studied for example in ref. [18] and
were interpreted as velocity-dependent potentials. These were then projected into
inter-nucleon potentials via projection techniques that involved some rather ad-hoc
operator ordering. From the point of view adopted in this paper one should rather
think of the kinetic energy in terms of the non-trivial metric on the space of
collective coordinates. A natural and coordinate independent quantum hamilto-
nian is then given by —A4 + IV where A4 is the covariant laplacian associated to the
metric.

It is known that skyrmion and monopole dynamics even share certain qualitative
features — such as 90 degree scattering in a head-on collison [19] — and it has been
conjectured [7] that the manifold of collective coordinates for the two-skyrmion
space contains a four-dimensional submanifold modelling the relative motion of
two skyrmions in a fixed relative orientation (‘“‘attractive channel”), which is
topically and metrically similar to the Atiyah—Hitchin manifold. While these
possibilities are intriguing, the more immediate relevance of the discussion of BPS
monopoles for skyrmion dynamics is to emphasize the general remarks made in
ref. [17]. One cannot fully appreciate the the predictions of the Skyrme model for
nucleon—nucleon interactions without a better understanding of the topological
and geometrical structure of the space of collective coordinates for two-skyrmions.
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Appendix A

We want to determine B; so that

1
1IITN,s(r’ ¢’a ’6’ d’) =T Z ]SS(¢ 0 d’) S(ki‘)

kr is
equals
D, =C(D +(-1)'9,).

The definition of F;; and &, involve constants C;; and C; which are chosen so that
we get the asymptotic behaviour given in egs. (18) and (23). Using the asymptotic
form of the hypergeometric function

L(b) ala—=b+1) (—-1D*e“I'(b-a)
F(a,b,u)= #|1- + b2
I'(b—a)(~u) u I'(a)u®=*°
we find
27 e ™2 M1 +j+in)| e™/2(1+s5+in)
C,= - ) C, = ——. (Al
! 2j+ D! I'(2s+1) e/

Using the orthogonality of the y;, we have

1672 (kr
(2j+ 1)

f es) ‘1’s d¢p di d cos 6. (A2)

This is an identity of two analytic functions. To find B;; we expand both sides into
a power series in r around 0 and compute the coefficient of the lowest power of r.
For the Lh.s. this is easy. One finds

b 1672 B.C (kY ok LU+1+n+in)(2j+2) (—2ikr)"
B8 = oy Bl e nZOF(j+1+in)I’(2j+n+2) n!
1672 .
B, C, k’r’ + higher powers of r. (A.3)

(2 +1) sis
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On the r.h.s. only the ¢ and ¢ integration are trivial:

rhs.=4m2C((-1)'I; + (- 1)I}), (A.4)

where

I = /_lldgs(a)kS(Hz)s e *F(s—in, 25+ 1, ik(r+2)) d cos 6,

I; = [ dl,(0)k*(r—z)° e*F(s—in, 25+ 1, ik(r—z)) d cos 6. (A.S)
1

To evaluate these integrals we write the Wigner functions in terms of the Jacobi
polynomials and use Rodrigues’ formula. Setting x = cos & we have

53(0) —(1+x) P02s(x)

(_1)} ’ I j—s j+s
= )'(1 x)” (x) [(1-x) (1 +x)*],

dl,(6) =dj_(8) = (1 ~x) P20 (x)

—1)/~* j—s
Clearly
i = (=1L,
so that
r.hs. = 87721;( - 1)jCS,
Now
I = %eik’fjldx g ~ikrl+x)

XF(s—in,2s+1, tkr(1 +x))(—;—x)j_s(1 —x) (1 +x)"T. (A7)



212 B.J. Schroers / Quantum scattering of BPS monopoles

Integrating by parts (j — s) times, changing variables to y = 1 +x, we get
kr ’ R 2
Ij_: = (_)- elkrf dy
s'(j—s)!
d

j—s
a) [e=*F(s—in, 25+ 1, ikry)[(2—y) °y/**. (A8)

X

Noting that the expression in square brackets depends on k, r, y only in the
combination ikry we write
[e=*F(s—in, 25+ 1, k)| = ¥ a,(ikmy)",
n=0

and find that the expansion of I in the powers of r begins as follows:
t= j=s j+s NIV S, i
I B j—S)'/ (1+x)" (1 —x)""" dx(j—s)(ik) "a;_,|r
+ higher powers of r

(Y 527G — )M+ ) K .

= 2+ 1)! a;_,|r’ + higher powers of r.  (A.9)
J !

|

Using the power series for e ¥ and the hypergeometric function we get an
expression for the a;_,

(=" 1 I'(s+n—in)['(2s+1)
m! nl T(s—im)[(2s+n+1)

ajfs = E

nt+m=j—s

(A.10)

To evaluate this we need an amusing identity involving I'-functions.

Lemma. Forallp€Cand j, seEN, j>s

(=D" 1 [(s+n—imlQ2s+1) (=)' 7°@2s)! L(j+1+in)
m! HF(s—in)F(2s+n+l) ()= T(s+1+in)’

)y

n+m=j—s

Proof. Eliminating the summation index m =j —s —n on the left and using
the factorial properties of the I'-function the above identity is seen to be equiva-
lent to

(=D
+s ( ) s+n—1-1i s—1i
(j+s)! Z s+ ( im)...(s—in)

=(j+in)...(s+1+in).
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Both sides are clearly polynomials of degree (j —s) in n. We show their equality
by evaluating them at j —s + 1 distinct points. For —in=m+s+1,0<m <j—s
the expression on the right-hand side vanishes and on the left we have

(j+s)' s Z2stmtn)l o
(2s+m)! Z(— (25 +n)! (jn )

which is zero because (2s +m +n)! /(2s +n)! is a polynomial of degree m in n
and it is well known that

E 0 ()wr=o

for 0 <m < N. Finally we consider —in =s. Then we get (j —s)! on the right.
Using the identity

% (—1)”(N) Nla!

a0 n a+n=(N+a)!’

which can be proved for all 4 € N by induction over N we find for the sum on the
left

(j+s)t’zs
(2s)! o

This completes the proof.

(="

) =t

Putting this lemma together with egs. (A.3), (A.4) and (A.9) and inserting the
expressions for C; and C;; we finally get

2/(25)! I'(j+1+in) C,

B, =i(2j+1
=PI ) G ) T+ 1+ i) C,

=i(2j+ 1) en. (A.11)
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