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l. Introduction

Simple mathematical models have had considerable success in explaining
basic epidemiological features, such as threshold phenomena and cyclical out-
breaks. This chapter presents a sensitivity analysis of some simple models for
endemic diseases such as rabies, and shows that there are unresolved problems in
making quantitative use of them, especially in the crucial area of evaluating
control strategies. '

This is not to say that it is wrong to look at simple models. On the contrary,
what I try to do here is to go a step further in simplification and argue as far as
possible in terms of the basic components which any model for endemic rabies
must include. Such coarse data as exist for diseases like rabies can be used to
confirm that we have included the essential components in our epidemic model,
and to calibrate each such component correctly. It is much more difficult to get
adequate data to determine the quantitative details of each component, yet these
details are important if our model is to have predictive value.

I shall illustrate these problems mainly with reference to a basic differential
equation model for endemic rabies introduced by Anderson et al. (1981; see also
Anderson, 1981, 1982), and presented in this volume by Dr. Smith (Chapter 6);
and particularly to the possibility of making quantitative use of this model, as
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suggested by those authors. This rabies model differs from standard epidemic
models (see e.g. Bailey, 1975) chiefly in including a density-dependent popula-
tion growth term. This is a welcome improvement, as such a term is clearly
important for a proper discussion of diseases like fox rabies in which the disease
itself regulates the population density.

Anderson et al. cite as support for their model its predictions relating to (1)
threshold densities, (2) contact rates between infectious and susceptible foxes,
(3) average levels of prevalence of infection, (4) the 3- to 5-year cycle sometimes
observed in fox populations infected with rabies, and (5) an association between
unstable (i.e. cyclical) endemic conditions and areas of high carrying capacity.
Encouraged by this agreement, they base a quantitative discussion of possible
control strategies on their model.

The crucial model component for consideration of control, whether by vac-
cination or culling, turns out to be the infection term. These authors follow
conventional lines in using a multiplicative term, BXY, for the rate of infection
between susceptible and infectious populations of respective densities X and Y.
Unfortunately, as I shall show here, the use of a multiplicative infection term in
the case of varying population density makes strong implicit assumptions, which
critically influence the conclusions on control strategies. However, once the
importance of the exact form of the infection term is recognised, we can look for
relevant observational evidence which will allow us a more reliably based discus-
sion of control strategies.

The other two main components of a basic rabies model are the terms repre-
senting population growth and the generation gap of the disease (see Section II).
We find that the level of prevalence and period of oscillations of the disease are
fairly robustly determined, but that conclusions on the stability of oscillations are
very sensitive to the detailed assumptions concerning these components.

The considerations presented here should also be relevant to a wide range of
applications of simple epidemic models, the main theme being that the quan-
titative assumptions implicit in such models need careful consideration, es-
pecially if we wish to draw quantitative conclusions. The problem of controlling
tuberculosis in badgers (see e.g. Henderson, 1982) is similar to that of rabies in
foxes. The estimation of required vaccination rates in non-fatal diseases, such as
measles and whooping cough, is cited as another example.

I shall also refer more briefly to other simple epidemic models, and to some
factors which all these models omit, particularly spatial, stochastic and seasonal
effects.

Il. Components of Basic Epidemic Models

I here identify three basic components essential for modelling the endemic
state of a disease such as rabies: (1) the population dynamics in the absence of
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disease, (2) the infectious contacts made by a diseased individual, and (3) the
generation gap of the disease, that is the time interval between an individual’s
becoming infected and passing on the disease.

First are the population dynamics in the absence of disease. Diseases that are
not usually fatal, such as human colds or measles, have little effect on population
numbers; the latter can therefore be modelled separately. Often, it is reasonable
to assume a constant equilibrium population, with deaths (from other causes) at a
constant rate and births introducing fresh susceptibles occurring at the same
constant rate.

In contrast, fatal diseases such as rabies will reduce a population below its
usual level, and this may both increase the birth rate and decrease the death rate
from other causes. We may reasonably assume that the per capita net population
growth rate in the absence of disease, g, is a decreasing function of the popula-
tion density N, varying from a value r at low density to negative values at high
densities. The population density K for which the net growth rate is zero defines
the carrying capacity of the environment. For example, for their deterministic
non-spatial model, Anderson et al. suggested 0 = r(1 — N/K), which yields the
familiar Jogistic growth curve for a population below carrying capacity (in the
absence of disease).

Second are the infectious contacts made by an infectious individual. Not
surprisingly, the total number of potentially infectious contacts made by an
infectious individual, sometimes called the basic reproductive rate, C, of the
epidemic, is a crucial parameter. Indeed, for non-spatial models, in which homo-
geneous mixing of infectives and susceptibles is assumed so that in the initial
stage of an epidemic almost all infectious contacts are with susceptibles and
therefore successful, the basic threshold result states simply that the disease has a
chance of spreading widely if and only if C is greater than 1. In models with
more realistic (local) mixing, the probability of contacting another infective
cannot be neglected, even in the earliest stages of an epidemic; C is still a crucial
parameter, but its threshold value may be significantly greater than 1.

Unfortunately, the basic reproductive rate does not usually feature explicitly in
epidemic models, but enters indirectly through the overall rate of infectious
contacts, which is of course an important variable in analysis of such models.
The relation between the two is quite straightforward, at least in the case of
models with homogeneous mixing, and is as follows.

We take 7,' = 1/a to be the mean infectious period, so that an individual
makes contacts at average rate aC while infectious; and assume that contacts are
made indiscriminately among the population so that their probability of success
is equal to the proportion of susceptibles in the population, X/N. Multiplying by
the density of infectious individuals ¥, we have that the overall rate of infectious
contacts (per unit area) is BXY, where 3 = aC/N is a constant which in general
must depend on the population density and its relation to the carrying capacity,
that is on N and K. Taking [ to be a constant, as is often done (e.g. Bailey, 1975;
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Anderson et al., 1981), is equivalent to assuming that the reproductive rate C =
BN/a, i.e. that C is proportional to N and independent of K. [Indeed Bacon (see
Chapter 7 of this volume) has explicitly used this relationship to produce a
‘dimensionless’ model, scaled relative to K. ]

Third and last, is the generation gap T, defined as the time interval between an
individual’s becoming infected and passing on the disease. The generation gap’s
mean value 7 is important in determining the speed with which an epidemic
develops, and in endemic conditions is closely related to the level of prevalence,
that is the mean proportion of the population suffering from the disease. Less
obviously perhaps, the variability of the generation gap turns out to be important
for such features as the dependence of an epidemic’s velocity on population
density, and for determining whether endemic conditions are stable or oscillatory.

It is important in principle to distinguish between the mean generation gap and
the mean survival time after infection. However, the difference between the two
in practical terms is usually small, at least for rabies where the infectious period
is short compared with the latent period; and in several of the simplest models,
including all those described in the next section (Equations 1-3), the generation
gap and survival time are actually assumed to have the same distribution.

lil. Some Basic Models and Their Assumptions

As described in the previous section, the models I shall discuss are each made
from three basic components: population growth, infection, and the generation
gap of the disease. In this section I shall first define some simple deterministic
models, and then bring out some of the assumptions implicit in the particular
form of components Chosen for each of them.

In the model by Anderson et al. (1981) the densities of susceptible (X),
incubating (/) and infectious (Y) individuals is as follows:

dX/dt = oX — XY
di/dt = BXY — ol — [(b+yN)1] (1)
dy/dt = ol — a¥ — [(b+yN)Y]

where N = X+I+Y is the total population density, and o, B, 'y, o and b are
constants; ¢ denotes the per capita net population growth rate, which Anderson
et al. take equal to r(1—N/K), where K denotes the carrying capacity of the fox
habitat. An interpretation of the constants 8, o, o and r, and of the correspond-
ing constants in the following models [Equations (2) and (3)] is given later; for
estimates, appropriate to fox rabies, of the values of all these constants, see
Section IV. The terms in square brackets (involving the constants -y and b) relate
to mortality from natural causes of incubating and infectious individuals; their
effect is negligible in most respects, and discussion of the model will be much
clearer if we omit them.
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A somewhat simpler family of models is described by the equations

dX/dt = oX — B'XV @
dvidt = B'XV — o'V

This equation covers several well-known models, in each case keeping B’ and o’
as constants. First, we can regard it as an epidemic model in which we fail to
distinguish between incubating and infectious individuals; thus V replaces I+7Y.
If o = ¢/X we obtain a standard model for diseases such as measles (Bartlett,
1960) in which we assume the ‘immigration’ of susceptibles at constant rate c.
For rabies it would be more appropriate to follow Anderson et al. in taking o =
r(1-N/K). If we take the slightly different formula ¢ = r(1—X/K), we have a
special case of Verhulst’s model, with V representing predators and X prey; while
the simpler formula ¢ = r similarly yields a special case of Lotka and Volterra’s
classic predator—prey model (see e.g. May, 1974, or Chapter 7, this volume).

So far, I have referred only to differential equation models. A possible alter-
native is to use a discrete-time model, such as the following, in which we have
discrete generations of infectious individuals, at time intervals of fixed length T:

X, .=X + (pX,—B'X Y )1
Yon. = BXYT

t

(3)

For infection, each of these models includes a conventional multiplicative
term, BXY. As described in the previous section, this essentially amounts to
taking the reproductive rate C = BN/a; while the effective reproduction rate, the
mean number of successful contacts, is R = C. (X/N) = BX/a. Similarly, for
Equation (2) we obtain C = B’'N/a'; for Equation (3), C = B’tN. Thus if we take
B (or B') to be a constant, we are assuming that the reproductive rate C of the
epidemic is proportional to N, and independent of K. These are strong assump-
tions, which go well beyond the observational evidence. The dependence of C on
N and X is crucial for the evaluation of control strategies, as will be discussed in
Section IV.

Each of the three models also includes a net population growth term X,
representing the excess of births over deaths from natural mortality. As already
mentioned, Anderson et al. take o = r(1—N/K). The qualitative assumption
here, that ¢ decreases from a value r in low-density populations to zero at the
carrying capacity, is very reasonable and a welcome improvement on standard
models. The quantitative assumption, that this decrease is linear with increasing
population density N, has no particular justification, and we must be sceptical of
any conclusions which depend on it.

Last is the distribution of the disease’s generation gap. Here the three models
make different detailed assumptions, in each case chosen to give the simplest
mathematical equations. In each case the transfer rates out of certain states are
assumed proportional to the numbers in those states. In the differential equation
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models, this amounts to assuming that the sojourn times in each state are expo-
nentially distributed; while in discrete-time models they are assumed to be of
fixed length or geometrically distributed.

Thus for Equation (2), the generation gap has exponential distribution with
mean 7 = l/a’. For Equation (1), the terms o/ and «Y essentially assume
exponential distributions for the incubation and infectious periods, respectively,
with means 7, = 1/0 and 7, = 1/«; then the generation gap T has mean 7 =
7,+7,, and probability density function

[ac/(a—a)|(e ™9t — e~ ) 4)

The discrete-time model [Equation (3)] assumes a fixed incubation period of
length T and an instantaneous infection period, so that the generation gap is of
fixed length 7. This is clearly an extreme case; a more realistic discrete-time
model for rabies will be mentioned in the discussion of Section V.

To sum up, the infection term involves a parameter 3, which has traditionally
been assumed to be a constant. The consequences of this assumption in the
context of fox rabies will be examined in Section IV. The models discussed also
include basic parameters r (the net population growth rate in low-density popula-
tions) and T (the mean generation gap), which can both be estimated fairly
reliably from observations. The detailed forms of the population growth and
generation gap terms are less easy to estimate from data, and all the models
considered here make simple assumptions based on mathematical convenience.
As we shall see in Section V, some features of the models depend principally on
r and 7 and are thus insensitive to the modelling details, while others are not.

&

IV. Control Strategies and the Reproductive Rate

The first two points of observational evidence cited by Anderson ef al. (1981)
relate to threshold densities, and contact rates between infectious and susceptible
foxes.

Firstly, they note evidence that there exists a threshold value K for the
carrying capacity K, below which rabies cannot become endemic (their estimate
is K = 1 per km?). This supports the common assumption that the contact rate
between foxes increases with K, but not necessarily the further assumptions
implicit in the BXY infection term, i.e. that the reproductive rate C = N/K.

Secondly, the authors cite observations suggesting that the contact rate be-
tween normal foxes at around the threshold population density, BK, is approx-
imately equal to the death rate o of infectious foxes, as predicted by their model.
However, it is axiomatic that at the threshold population density (if such exists)
each infected fox gives rise on average to one secondary case. Thus if foxes are
rabid for an average period of 5 days, they must in these conditions contact on
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average one susceptible every 5 days. The prediction that K, = « is thus not
dependent on their particular model.

Two notes of caution should be sounded here. Firstly, we really need data on
the rates of contacts by rabid rather than normal foxes. Secondly, if we take a
model which more accurately reflects the local structure of the population, e.g. a
stochastic lattice model, we will find that the deterministic model’s assumption
that R = C when N = K, i.e. that initially almost all infectious contacts are with
susceptibles, is incorrect; in fact R may be significantly lower than C because the
few infectious cases tend to be clumped together. Thus BK = « is not strictly
correct, the threshold value of C being rather greater than unity for a more
accurate model (see Mollison, 1981, or Chapter 12, this volume). In this context,
it should be noted that the definition of Anderson et al. of the basic reproductive
rate is also unsatisfactory in that it ignores the difference between contacts within
and outwith a fox’s family.

However, ignoring these complications, we may sum up by saying that the
evidence of the existence of a threshold population density, together with ‘BK
=~ «’, support the general form of the infection term, but not necessarily its
quantitative detail, especially its implicit assumption that 3 does not depend on N
or K. But if we do assume the quantitative form, this evidence serves to calibrate
our model.

This is a convenient point at which to summarise the calibration of all three
models [Equations (1-3)] for the case of fox rabies. For Equation (1), Anderson
et al. estimate r = § year—!. They take T, = 28 days and 7, = 5 days for the
mean incubation and infectious periods, respectively, leading to o = 1/7; = 13
year—!, @ = 1/1, = 73 year—!, and 7 = 1,+7, = 1t years. The threshold
population density K ig estimated =~ 1 per km?, as mentioned previously, so
that using BK; = o we have that 3 = a = 73. For Equations (2) and (3), the
corresponding estimates are given by o’ = 1/7 = 11 year—!, and 'Kt = o', so
that B’ = o' = 11.

We now turn to the discussion of control strategies. Simply put, the aim of any
control strategy must be to reduce the effective reproductive rate R to less than
unity. As we have seen, the use of a BXY infection term by Anderson et al.
implicitly assumes that R = X/K; and, thus, immediately implies the core of
their conclusions, namely that a control policy will succeed if and only if it
reduces the density of susceptibles below the threshold carrying capacity K.

Consider first a vaccination programme among an undisturbed population,
where the density N is equal to the carrying capacity K, and K is greater than K.
If we vaccinate a proportion p, the density of susceptibles will be (1—p)K, so that
according to Anderson ef al. (1981) the vaccination programme will succeed if
and only if p > 1—K/K. (Note that the more complex spatial simulation model
of Berger (1976) also assumes a XY infection term, and therefore not surpris-
ingly leads to numerical conclusions in good agreement with this.) Experiments
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cited by Anderson er al. suggest that the maximum achievable value of p for
foxes is about 3, leading to the conclusion that vaccination alone can only be
effective if K is less than about 3K;. However this conclusion depends on the
assumption that contact rates are proportional to density (C = N/Ky). This does
not seem a realistic assumption for territorial animals such as foxes, since the
number of neighbours of a fox family will increase only slightly if at all as the
population density increases. If, for instance, we take C proportional to VN [i.e.
C= \/(N/KT)], we find that vaccination will be successful if p > 1—\/(KT/K);
so that for the same vaccination success rate (p = %), we would predict that the
disease can be prevented in populations of density up to 9K rather than 3K .

The effects of culling (or of a mixed programme of vaccination.and culling)
are more difficult to assess. Anderson ef al. (1981) consider two types of culling
policy, of which the ‘constant effort’ strategy seems the most relevant, the
alternative of quota culling being more appropriate to red herring (May, 1981).
In any case, their main conclusion is that control by culling will succeed if and
only if the population density is held down below K. This assumes that contact
numbers in a population held down to density K will be the same as in an
undisturbed population in territory of carrying capacity K. There are obvious
ecological reasons why this might not be so. For instance, when N = K << K,
competition between foxes for available food will be much reduced, tending to
reduce contacts; while on the other hand, families will be broken up by the
culling, and this social disturbance is likely to cause more contacts. The poor
record of practical attempts at control by culling, to which Anderson ef al.
refer, suggests that the latter may be the stronger effect. Of course, rabies is itself
a culling policy of sorts, so that observations of equilibrium densities in endemic
areas will be of use, especially in areas where the carrying capacity can be
estimated. However, the effect on the contact rate will depend on the method of
culling: whether it kills one fox at a time or whole families, and whether it selects
relatively more itinerant or settled foxes. Quantitative conclusions clearly require
more evidence. >

V. Endemic Equilibrium and Oscillations about It

Anderson et al. (1981) cite three pieces of evidence relating to the population
growth rate and generation gap: namely, the observed level of prevalence, the
period of oscillations, and their stability. The first of these concerns the level of
prevalence, that is the proportion of incubating plus infected cases when the
disease is in endemic equilibrium. This can be more simply explained without
reference to any particular model as follows: in equilibrium, the net population
growth rate X (in their model ¢ = r(1—N/K)), and the transition rates from
susceptible to incubating, incubating to infectious, and infectious to dead, must
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all be equal. It is easily deduced that the ratio X :7/:Y (susceptibles : incubat-
ing : infectious) must be approximately ¢ ~1': o~ !:a~! (approximately because
natural mortality among infected cases is here neglected). If we let 7 denote the
mean generation gap (as previously), we then have that the level of prevalence is
approximately o7. Thus we need only the qualitative assumption, that ¢ varies
from a value r when N << K down to 0 when N = K, to predict that levels of
prevalence in-endemic areas will vary up to a maximum of »7. In fact, the cited
observation that levels of prevalence in endemic areas lie in the range 3—7%,
together with the relatively exact estimate for 7, = 7 (years), suggests values of
r up to about § {per head per year), slightly higher than the authors’ estimate of r
~ %. However, the evidence available does not appear adequate to determine the
detailed form of p.-

The period of oscillations also turns out to depend principally on the two
parameters r and 7 (rather than primarily on r alone as suggested by Anderson et
al.). For instance, for all the models defined previously [Equations (1) to (3)],
we find that oscillations close to the equilibrium point have period approximately
T, = 211'\/(7/ 0), = 217\/(7/ r) for endemic areas of stable rabies where we may
assume ¢ = r and for oscillations further from equilibrium the period rises in
each model. Taking the authors’ figures (r = 3, T = 1), we find that periods of
around 3 years upwards are predicted in each case.

All these models share the authors’ assumption that the disease’s effective
reproduction rate R is proportional to the density of susceptibles, R = X/K. Itis
easy to analyse oscillations near equilibrium without making this assumption,
and it is found that their period is approximately T,g ~*, where T, = 27V (/)
as previously, and g = (X/R)(dR/dX), evaluated at the equilibrium value X,. For
instance, if R is proportional to X!/” instead of to X, the period is increased by a
factor of V. Thus observed periods of 3—5 years suggest that R does indeed
increase with population density, but are also equally consistent with a consider-
ably slower than linear dependence of R on X.

The form of the population growth term X has much less influence on the
period. Whether we assume o = r(1—N/K), or take any of the three alternative
forms for ¢ mentioned following Equation (2), makes very little difference to the
period, at least for small oscillations.

Lastly, Anderson et al. cite evidence of a tendency for unstable, i.e. cyclical,
dynamic behaviour to be associated with areas of high carrying capacity, K >>
K. This supports the use of a density-dependent growth term, as in their model
or Verhulst’s equations, rather than the constant birth rate of the Lotka—Volterra
model or the constant growth term of the epidemic with immigration.
Qualitatively, their use of a more realistic growth term thus appears to be an
improvement on previous deterministic epidemic models, though it should be
noted that cyclical behaviour can arise through the seasonal and stochastic factors
which they neglect (Bartlett, 1960; Stirzaker, 1975). However, the quantitative
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details of their model are very sensitive to their precise assumptions concerning
both the population growth rate and the distribution of the generation gap. For
instance, while their model is unstable for K greater than K, =~ 9K, the discrete-
time model [Equation (3)] is unstable when K > K_ = 2K. It is not clear that the
discrete-time model, with its fixed generation gap, is a worse approximation than
their model, which assigns a probability of about ; to the generation gap’s being
shorter than the minimum observed value (12 days). Clearly we need to model
the distribution of the generation gap better if we are interested in the conditions
for stable population dynamics. A more realistic generation gap distribution,
intermediate between the fixed gap of the discrete-time model and Equation (4),
will presumably lead to intermediate values for K. (For instance, a discrete-time
model with geometrically distributed incubation period, and constant infection
period of 1 week so that the minimum generation gap is 2 weeks—yields K. =
5.6K.)

Unfortunately, the value of K, is also sensitive to the form of the per capita
growth rate 0, which is difficult to estimate from observations. For instance, K.
will be significantly lower if @, instead of declining linearly as the population
density N increases, is near constant for low values of N, decreasing rapidly to
zero as N nears K. In the extreme case, where ¢ = r for N < K, and ¢ = O for N
> K, we find that K. = K, i.e. that endemic conditions are always unstable.
The formula g = r(1 — (N/K)?, is suggested by R. M. May (personal communica-
tion), with values of z perhaps between 2 and 3. Figure 1 shows the dependence
of K./K on z for Equation (1). Remembering that seasonal and stochastic factors
may also tend to increase instability, K, does seem likely to be less than Ander-
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Fig. 1. The dependence of K./Kr on z for Equation (1), when p = {1 —(N/K)?] (values of r, o,
B and o as given in Section III).
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son et al.’s value of approximately 9K, but it is clear that no quantitative
conclusions can be drawn at present.

VI. Conclusions

The cardinal virtue of a simple model is that it should be possible to see clearly
which assumptions lead to which conclusions. Judged by this criterion, even the
simplest models for endemic disease are too complex when considered as a
whole.

What I have tried to do here is to show how such models can be dissected into
their basic components, and that much of the discussion of their behaviour can be
conducted in terms of these components. This dissection clarifies the implicit
assumptions which are present in even the simplest models, and makes it easier
to assess the dependence of any conclusions on those assumptions.

The most crucial questions concern the likely success of various possible
control strategies. This turns out to depend almost entirely on the infection term
alone and in particular on its assumptions as to how the basic reproductive rate C
will change under the strategy considered. It becomes clear that if we are to make
reliable predictions for the control of fox rabies, we need more information on
the dependence of C on the population density N and the carrying capacity K. It
should not be too difficult to investigate these factors, except that, ideally,
studies of rabid foxes are required.

Further difficulties may however arise when we consider the effects of hetero-
geneous mixing. This is perhaps best illustrated by the example of non-fatal
diseases, such as measles and whooping cough, where the population density is
not affected by the disease, so that the dependence of C on N and KX is of less
importance. For such cases, a simple argument due to Dietz (1975) suggests that,
when the disease is in endemic equilibrium, C can be estimated as = 1+L/A,
where L is the mean lifetime and A the mean age of contracting the disease. It is
easy to construct a model in which the population consists of groups relatively
isolated from each other, where the apparent reproductive rate as estimated from
Dietz’s formula is essentially determined by the contacts between groups rather
than between individuals. The true reproductive rate can be much lower, since it
only takes C = 3 to ensure that the introduction of the disease to a ‘virgin’ group
will infect practically all (> 95%) of it (see also Chapter 8; this volume).

Returning to rabies models, we have seen that both the mean level of preva-
lence and the period of any oscillations about it are determined fairly robustly by
the net population growth rate at low densities, r, and the mean generation gap,
; being =~ rr and 27V (7/r); respectively. The stability of oscillations is a much
less robust phenomenon, being particularly sensitive to the way the net popula-
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tion growth rate depends on population density, an aspect on which it is difficualt
to find adequate data.

Even the more robust features considered here may also be sensitive to the
effects of heterogeneous mixing associated with the spatial factor omitted from
our present discussions (see Chapter 12, this volume).

References

Anderson, R. M. (1981). Infectious disease agents and cyclic fluctuations in host abundance. In
““The Mathematical Theory of the Dynamics of Biological Populations I’ (R. W. Hioms and
D. Cooke, eds.), pp. 47-80. Academic Press, London.

Anderson, R. M. (1982). Fox rabies. In ‘‘Population Dynamics of Infectious Diseases: Theory and
Applications” (R. M. Anderson, ed.), pp. 242-261. Chapman & Hall, London.

Anderson, R. M., Jackson, H. C., May, R. M., and Smith, A. (1981). Population dynamics of fox
rabies in Europe. Nature 289, 765-771.

Bailey, N. T. J. (1975). ‘‘The Mathematical Theory of Infectious Diseases,”” 2nd ed. Macmillan,
New York.

Bartlett, M. S. (1960). ‘Stochastic Population Models.”” Methuen. London.

Berger, J. (1976). Model of rabies control. /n ‘‘Mathematical Models in Medicine’’ (J. Berger, W.
Buhler, R. Repges, and P. Tautu, eds.). Lect. Notes Biomath., No. 11, pp. 75-88. Springer-
Verlag, Berlin and New York.

Dietz, K. (1975). Transmission and control of arbovirus diseases. In *‘Epidemiology’” (D. Ludwig
and K. L. Cooke, eds.), pp. 104-121. SIAM, Philadelphia, Pennsylvania.

Henderson, W. M. (1982). The control of disease in wildlife when a threat to man and farm
livestock. In “‘Animal Disease in Relation to Animal Conservation”’-(M. A. Edwards and V.
McDonnell, eds.), pp. 287-297. Academic Press, London.

May, R. M. (1974). ‘‘Stability and Complexity in Model Ecosystems,”” 2nd ed. Princeton Univ.
Press, Princeton, New Jersey. :

May, R. M. (1981). Mathematical models in whaling and fisheries management. /n **‘Some Mathe-
matical Questions in Biology’” (G. F. Oster, ed.), Vol. 2, Am. Math. Soc., Providence, Rhode
Island.

Mollison, D. (1981). The importance of demographic stochasticity in population dynamics. In ‘“The
Mathematical Theory of the Dynamics of Biological Populations I’ (R. W. Hiorns and D. L.
Cooke, eds.), pp. 99—107. Academic Press, London.

Stirzaker, D. R. (1975). A perturbation method for the stochastic recurrent epidemic. J. Inst. Math.
Appl. 15, 135-160.




