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We consider epidemics with removal (SIR epidemics) in populations
that mix at two levels: global and local. We develop a general modelling
framework for such processes, which allows us to analyze the conditions
under which a large outbreak is possible, the size of such outbreaks when
they can occur and the implications for vaccination strategies, in each case
comparing our results with the simpler homogeneous mixing case.

More precisely, we consider models in which each infectious individual
i has a global probability pG for infecting each other individual in the pop-
ulation and a local probability pL, typically much larger, of infecting each
other individual among a set of neighbors N �i�. Our main concern is the
case where the population is partitioned into local groups or households,
but our approach also applies to cases where neighborhoods do not form
a partition, for instance, to spatial models with a mixture of local (e.g.,
nearest-neighbor) and global contacts.

We use a variety of theoretical approaches: a random graph framework
for the initial exposition of the simple case where an individual’s contacts
are independent; branching process approximations for the general thresh-
old result; and an embedding representation for rigorous results on the
final size of outbreaks.

From the applied viewpoint the key result is that, compared with the
homogeneous mixing model in which individuals make contacts simply
with probability pG, the local infectious contacts have an “amplification”
effect. The basic reproductive ratio of the epidemic is increased from its
individual-to-individual value RG in the absence of local infections to a
group-to-group value R∗ = µRG, where µ is the mean size of an outbreak,
started by a randomly chosen individual, in which only local infections
count. Where the groups are large and the within-group epidemics are
above threshold, this amplification can permit an outbreak in the whole
population at very low levels of pG, for instance, for pG = O�1/Nn� in a
population of N divided into groups of size n.

The implication of these results for control strategies is that vaccination
should be directed preferentially toward reducing µ; we discuss the condi-
tions under which the equalizing strategy, aimed at leaving unvaccinated
sets of neighbors of equal sizes, is optimal. We also discuss the estimation
of our threshold parameter R∗ from data on epidemics among households.

1. Introduction.

1.1. Mixing at two levels. In the spread of infectious disease, hetero-
geneities in population behavior often play a key role in determining whether
a major epidemic outbreak occurs and, if it does, its rate of spread and the
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final size of the epidemic. Here we shall analyze in depth one of the simplest
and most basic kinds of heterogeneity, in which each infectious individual i
has not only a global probability pG for infecting each other individual in the
population, but also a local probability pL, typically much larger, of infecting
each other individual among a set of neighbors N �i�. We shall call these
global and local infections, respectively.

This kind of model is of application to a wide variety of epidemic situations,
especially in infectious diseases of humans, where local mixing in social groups
such as households and schools can play a crucial role in facilitating the spread
of infection. Such models are also of considerable interest in ecology: see, for
instance, the reviews by Kareiva (1990) of “patch dynamics,” especially the
references to “island” and “meta-population” models, and by Hanski and Gilpin
(1991).

Perhaps the simplest such model is that of a population partitioned into
equal sized groups. That is to say, we have m groups, each of n individuals,
giving a total population of size N = mn; two individuals are neighbors if
and only if they belong to the same group. We shall analyze two cases, that of
households where n takes a fixed, typically fairly small, value, and the case
of large groups, where we consider what happens as n → ∞. In either case,
we can generalize the model to allow for unequal group sizes �nix 1 ≤ i ≤ m,
with

∑m
i=1 ni = N�; this level of generality is of course vital in applications

(see Section 5).
Our basic model is a generalization of the standard SIR epidemic: we con-

sider individuals of just one type, who once infected make contacts in Poisson
processes during an infectious period TI, where the TI’s for different individ-
uals are independent and identically distributed (see Section 3.1). There is
no difficulty of principle, however, to extending the same treatment to mod-
els with different within-group contact structures, for instance, the models of
Gertsbakh (1977) (see Section 5.2.2) or de Koeijer, Diekmann and Reijnders
(1995), or with several types of individual with different contact probabilities,
which might for instance represent children and adults (see Section 3.6).

Our basic model assumes that global contacts are equally likely to be with
any other individual. Because of this, it is natural to describe the variability of
group size through its size-biased distribution �πk�, with πk being defined as
the probability that a randomly chosen individual lives in a group of size k (see
Section 2.1). Much of our analysis would apply equally well if global contacts
were chosen on some other basis, for instance, according to the ordinary group
size distribution �hk�, where hk is defined as the probability that a randomly
chosen group is of size k; notable exceptions to this are our results on optimal
vaccination strategies, which do depend on how global contacts are chosen (see
Section 5.2.1).

Returning to simple models, another basic case is where individuals are
arranged in space (e.g., equally spaced around a circle) and the neighbors of
an individual are defined as those within a certain distance, in the simplest
case as just an individual’s nearest neighbors. Note that in this case the sets
of neighbors will overlap, rather than partitioning the population. From the
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theoretical point of view, this model can be regarded as a kind of limit of a
dispersal model with local and long distance interactions, in which the dis-
tribution of the latter degenerates into the uniform distribution [for dispersal
distributions with extreme behavior, such as “great leaps forward,” or with
infinite velocity, see Mollison (1972) and Mollison and Levin 1995)]. Possible
applications include the spread of infection between pigs in a line of stalls
(M. de Jong, personal communication) and the recent North Sea seal epidemic
[Bolker et al. (1995)]. Note that the latter requires a model with three levels—
long distance and local contacts between seal colonies, perhaps following the
great circle model (see Section 2.3), plus within-colony contacts, perhaps fol-
lowing the model of de Koeijer, Diekmann and Reijnders (1995)—but there
is no difficulty in principle in extending our analysis to deal with mixing at
three levels.

1.2. Contents. We shall restrict attention to the SIR model, that is, where
there are just three possible states for an individual, susceptible (S), infected
and infectious (I) and removed (R), and the only possible transitions are S→ I
and I→ R. We shall also assume that the sets of contacts made by different
individuals are independent of each other. In general, infections made by the
same individual will be correlated, if only because of the dependence induced
by the variability of the length of the infectious period.

In Section 2 we describe how a random graph framework can be used to an-
alyze the non-time-dependent aspects of epidemics. This is especially helpful
in the “independent links” (or Reed–Frost) case where infections made by the
same individual are independent, since we can then use an undirected graph.
Further, the technique of first considering only local infections allows us to
partition the population, whether or not it was in separate groups initially, so
that global contacts can be considered using a “clumped Reed–Frost” model:
essentially simple homogeneous mixing, but with individuals replaced by the
clumps formed by local contacts.

We are thus able to derive explicit expressions for thresholds and the final
size of epidemics. Recall that in an epidemic with a single level of mixing, the
condition for a large outbreak to be possible is that the reproductive ratio R0
should be greater than 1, where R0 can be loosely defined as the expected
number of potentially infectious contacts of a single infectious individual [see,
e.g., Diekmann, Heesterbeek and Metz (1990) and Dietz (1993)].

For epidemics with two levels of mixing, we find that the condition for a
large outbreak to be possible is given by R∗>1, where R∗=RGµ, the prod-
uct of the reproductive ratio RG for global contacts and the mean size µ of
outbreaks utilizing only local contacts.

The threshold parameter R∗ thus provides a natural generalization of R0 to
two levels of mixing, but we must emphasize that R∗ is a group-to-group—or
more precisely clump-to-clump—reproductive ratio: it is the expected number
of clumps contacted by all individuals in the clump of a random individual.
While it reduces to R0 when only local contacts matter (and the clump size
is therefore equal to 1), it can differ substantially when group sizes are large
(see example of Section 2.5).
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The case of large subgroups (Section 2.4) is of particular interest, because it
is then meaningful to ask whether individual subgroups are above their local
threshold. If so, then the “amplification factor” µ is O�n�, so that a global
epidemic can occur when pG is only O�1/�Nn��.

An important practical implication of this threshold result is the difference
it makes for a vaccination strategy according to whether it succeeds in reduc-
ing individual groups below their local threshold. This is explored informally
in Section 2.5 in an example showing how dramatic the difference can be; more
generally, optimal vaccination strategies are considered later in Section 5.2.

In Section 3 we consider a more general model for the spread of an epi-
demic among a population consisting of m groups or households. We start
with the case where the households are of equal size n. Infectious individ-
uals make local contacts at rate nλL and global contacts at rate λG during
an infectious period TI that follows any arbitrary but specified distribution.
(The independent links case of Section 2 corresponds to the special case when
TI is constant.) The individual contacted by a local (global) contact is cho-
sen uniformly at random from the n (N = mn) individuals in the infective’s
group (whole population). Thus the individual-to-individual local and global
infection rates are λL and λG/N, respectively.

In order to derive explicit expressions relating to the threshold behavior of
our model, a number of properties of single population SIR stochastic epi-
demics are required. For convenience, these are collected together in Sec-
tion 3.2. In Section 3.3.1 we show that the early stages of our epidemic can
be approximated by a branching process, whose individuals are single group
epidemic processes. Moreover, this approximation can be made precise by con-
sidering a sequence of epidemics in which the number of groups m → ∞.
This enables us to determine a threshold parameter R∗ for our epidemic, such
that, in the limit as m→∞, global epidemics occur with nonzero probability
if and only if R∗ > 1. Here, a global epidemic is one which affects infinitely
many groups as m→∞. We also determine the probability that a global epi-
demic occurs and various properties of nonglobal epidemics. In Section 3.3.2
we discuss the threshold parameter R∗. In particular, we compare it with the
classical basic reproductive ratio RG that applies when only global contacts
are considered, and we show that our model displays a similar amplification
effect to that described in Section 2.3 for the independent links case.

In Section 3.4 we use a heuristic argument to determine the distribution
of the total size within a typical group in the event of a global epidemic oc-
curring. In Section 3.5, we extend our results to the situation in which the
group sizes are not all equal. In Section 3.6 we derive a threshold parameter
for the proliferation of infectious individuals for our model and discuss the
relationship of our methodology and results to recent papers of Becker and
Dietz (1995) and Becker and Hall (1996).

In Section 4 we show that the embedding approach of Scalia-Tomba (1985,
1990) can be extended to epidemics with two levels of mixing and we make
use of this to provide a formal derivation of the asymptotic distribution for
the final size of a global epidemic.
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In Section 5 we consider applications of our results. In Section 5.1 we de-
scribe a method of estimating the threshold parameterR∗ from household final
size data, using data on the spread of an influenza epidemic as an illustration.

Finally, in Section 5.2 we consider vaccination programs, whose aim must
be to reduce R∗ to below unity, and for a variety of models we examine condi-
tions under which the equalizing strategy, which leaves the numbers of sus-
ceptibles in each group as nearly equal as possible, is optimal.

1.3. Related work. Papers on epidemics with two levels of mixing go back
at least as far as Rushton and Mautner (1955) on deterministic simple epi-
demics and Bartlett (1957) and Daley (1967) on the stochastic side, but the
earliest works relevant to the present approach are two independent papers
dating from 1972. Watson (1972) considered a model with a fixed number
of large groups, giving deterministic results and some heuristic stochastic
approximations supported by simulations. [A more detailed analysis of the
threshold behavior of Watson’s deterministic model is given in Daley and Gani
(1994).]

A more abstract paper, but perhaps representing a greater advance, was
that of Bartoszyński (1972), who considered a group epidemic model which
corresponds to the limiting branching process that we use in Section 3.1 and
derived a threshold condition for it which is essentially the same as ourRGµ >
1. However, his model was described in rather general terms and hence his
results are not so explicit as ours. Indeed, he does not in general say how the
probability of choosing a contact in a group of size k is to be specified, leaving
it open that it might be either �πk� or �hk� (in the notation of Section 1.2),
though in one specific example he makes it clear that he means the latter.

May and Anderson (1984), who acknowledged earlier work by Hethcote
(1978) and Post, DeAngelis and Travis (1983), who considered the vaccination
problem for a deterministic epidemic among a finite number of (large) groups,
showing that the equalizing strategy is optimal (see Section 5.2.3).

Work on outbreaks within households in the presence of community
infection—but without considering the dynamics of the latter—has a long
history: see, for example, the discussion in Longini and Koopman (1982) and,
for more recent work, Becker (1989) and Addy, Longini and Haber (1991).

The present work is the elaboration of a “back-of-envelope” answer to a
question raised by Klaus Dietz at the Newton Institute in 1993, as to whether
whole-population models could be found that would justify such applied work
on household models and provide a framework for their development and
extension. We are grateful to Klaus Dietz and Niels Becker for exchanging
preprints as our work has proceeded in parallel: we comment on their papers
[Becker and Dietz (1995) and Becker and Hall (1996)] in Section 3.6.

2. Random graphs and independent contacts.

2.1. Introduction: the random graph framework. We will often not be in-
terested in the time course of the epidemic, but only in which individuals
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become infected (indeed, we may only be interested in their total number, the
final size of the epidemic). In that case we can make good use of the rep-
resentation of the spread of the epidemic by a directed graph, in which the
individuals are represented by the nodes of the graph, and we draw an ar-
row from one individual to another to indicate that the first, if infected, will
make an infectious contact with the second [see, e.g., Barbour and Mollison
(1989)].

As already mentioned (Section 1.2), in general infections made by the same
individual will be correlated, because of the dependence induced by the vari-
ability of the length of the infectious period. We shall later prove results on
thresholds and final outbreak size for such more general models. However, the
special case where they are independent—the generalization to two levels of
mixing of the well-known Reed–Frost model—is well worth considering first,
as then we can use an undirected graph, with links rather than arrows [see
Barbour and Mollison (1989); also von Bahr and Martin-Löf (1980), and Ball
(1983a)], and analysis is much clearer and simpler. The key idea here is that
if an individual’s contacts are independent of each other and if the probability
that i infects j is the same as the probability that j infects i, then we can
represent both the latter events by the same, undirected link in the contact
graph.

An undirected graph can be partitioned into connected components, and the
set of those infected during the epidemic will consist precisely of the connected
component(s) to which those initially infected belong. In the simple case of ho-
mogeneous mixing with contact probability p—the basic Reed–Frost model—
the corresponding graph is the simple random graph on a set ofN nodes (i.e., a
population of sizeN)G�N;p� [Barbour and Mollison (1989)]. For largeN, this
graph has a single “giant” component if and only if R0 > 1, where R0 = Np;
it then contains a proportion z of the population, where z is the largest root
of z = 1 − exp�−R0z� [Bollobas (1985)]. Thus, if there is a large outbreak it
will affect approximately this proportion z of the population. Further, if the
initial number of infected I�0� = 1, the probability of a large outbreak ζ is
simply the probability that the initially infected individual lies in the giant
component and is therefore equal to z. Note that the equality of ζ to z is quite
special to this case. In general (see Section 3.3.1) the probability ζ�I�0�� of a
large outbreak depends sensitively both on I�0� �ζ�I�0�� = 1−�1− ζ�I�0�� and
on the assumption that the contacts of an individual are independent.

In the remainder of this section, we extend the use of undirected random
graphs to find the threshold conditions and final size for epidemics in a large
population with two levels of mixing, with particular emphasis on the case of
large local groups (Section 2.4) and on the implications for vaccination strate-
gies (Section 2.5).

2.2. Local contacts and the clumped Reed–Frost model. We first describe
in detail two models in which each individual has a small number of local
contacts, and show how they can both be considered as special cases of a
clumped Reed–Frost model.
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The first of these is the households model described above, where we fix
the size or size distribution of households. Then, if we consider only local
contacts, these partition each household into a number of connected compo-
nents. Once we have done this, these connected components summarize the
local interactions—whether two separate components originate from the same
household or not is irrelevant when we complete our model by adding the
global contacts, since the probability of such contacts is to be the same, inde-
pendently, for each pair of individuals.

Note that this deconstruction relies on our model allowing individuals in the
same group to have both a local probability pL and (independently) a global
probability pG of contacting each other. Our model is essentially identical to
one in which we allow them only a local probability p′L = 1−�1−pL��1−pG�.
(We of course require pG ≤ p′L here, which is no problem as our main interest
is in the case pG � pL, when p′L ≈ pL.)

The probability, πk say, that an individual chosen at random from the whole
population belongs to a component of size k can be calculated—in principle at
least—from the distribution of household size and standard methods for the
Reed–Frost model (see Section 3.2). The component sizes will not be exactly
independent of each other, because of dependence of sizes within households,
but this effect will be negligible provided the number of households is large.

Our second model, the “great circle,” is one where the population is not
partitioned into households. Instead, we have individuals located in one-
dimensional space. For simplicity we shall just consider the case where each
individual has two neighbors—one on each side; to avoid boundary problems
it is convenient to take the space to be the circumference of a circle. We
allow infectious local links, of probability pL, between each pair of neigh-
bors, and global links, as usual, of equal probability pG for each pair in the
population. When we consider first the local contacts, these again partition
the whole population into connected components. In this case the probability
πk of belonging to a component of size k is given by the double geometric
distribution of parameter pL �πk = kpk−1

L �1 − pL�2, k = 1;2; : : :�. Again
the component sizes are not exactly independent, but we can neglect their
dependence in what follows provided that the population is large relative to
the mean component size.

We note that this “neighbors plus global links” model could be generalized
to other isotropic spatial structures, such as a regular toroidal lattice or a tes-
sellation of a Poisson process on a sphere, and that we could allow further than
nearest-neighbor contacts, provided that the local contacts give only relatively
small connected components.

2.3. Threshold and final size for the clumped Reed–Frost model. Both the
models introduced above are special cases of the following, which we shall
call the clumped Reed–Frost model. In this, the population consists of clumps,
the ith clump having weight wi. We then run a Reed–Frost type epidemic
(that is, with independent and symmetric contacts) in this population, with
probability 1− exp�−cwiwj� for a contact between clumps i and j. We relate
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this to our original models by taking a locally connected component containing
k individuals to be a clump of weight k and by taking pG = 1− exp�−c�.

We shall use πk to denote the probability that a randomly chosen individ-
ual belongs to a clump of size k and use µ to denote the mean clump size∑
k kπk. We shall assume that the mean clump size is finite. For both the

household and nearest-neighbor models, in the limit of large total population
the clump weights will be chosen independently from the distribution �πk�.
Note that �πk� is the size-biased distribution for clump size, as distinct from
the formulation in which we define the probability hk that a randomly chosen
clump is of size k. The distributions �πk� and �hk� are simply related, with
πk=khk/

∑
j jhj. Note also that if µh and σ2

h are, respectively, the mean and
variance of the distribution �hk�, then µ = µh + σ2

h/µh.
Assuming that the number of clumps is large, the probability of a large out-

break can be found by considering the branching process which approximates
its early stages (see Section 3.3.1), in which individuals correspond to clumps
in the epidemic process and the offspring of a given clump are the clumps that
it directly tries to infect in the clumped Reed–Frost epidemic. The approxima-
tion (which can be made fully rigorous; see Section 3.3.1) assumes that each
new clump contacted in the epidemic process is still susceptible. For large N,
the number of clumps contacted by an individual in the epidemic process is
Poisson(NpG), with probability generating function (p.g.f.) exp�NpG�s − 1��,
and the clump size distribution is �πk�, with p.g.f. Gπ�s� say. Thus the num-
ber of clumps contacted by a given clump, that is, the offspring distribution
for the approximating branching process, has p.g.f. Gπ�exp�NpG�s − 1���. It
follows that the probability of a large outbreak is the largest solution ζ (≤ 1) of
1− ζ = Gπ�exp�−NpGζ��, that is, of 1− ζ =∑∞k=1 πk exp�−kNpGζ�. Further,
ζ will be greater than 0 if and only if the mean number of offspring from a
clump NpGµ is greater than 1.

Thus the basic reproductive ratio for the epidemic among clumps is R∗ =
µNpG = µRG, where RG =NpG is the basic reproductive ratio for the ordi-
nary Reed–Frost epidemic—that is, where we only have global contacts so that
all clumps are of size 1. [More strictly, we should perhaps useRG = �N−1�pG,
but if we are interested in values of N sufficiently small that this matters, we
should be worrying about the correct definition of thresholds in finite popula-
tions; see Nåsell (1995).]

The probability ζ here is that of a large outbreak started by a random
individual. If we know that the initial infection(s) is (are) in a clump of size k,
consideration of the first generation of contacts shows that the probability of
a large outbreak ζk is related to ζ by ζk = 1−exp�−kNpGζ� (see Section 3.3.1
for more detail).

In either case, just as for the simple Reed–Frost model, we can argue that
the probability of a large outbreak is the same as the probability that an
individual belongs to the giant connected component of the contact graph,
which in turn is the same as the (proportional) final size of the epidemic
conditional on a large outbreak. Thus the final size ≈ζN, and the probability
that an individual in a clump of size k (or equivalently the whole of that clump)
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is infected during the epidemic is ζk. We may check the consistency of these
results: ζ = ∑

k πkζk =
∑
πk −

∑
πk exp�−ζkNpG� = 1 − Gπ�exp�−ζNpG��.

Also, thinking of 1 − ζk as the probability that a clump of size k escapes
infection, we note that the number of links from each individual in the clump
to the giant component is Poisson(ζNpG), so that the probability of having no
such links should indeed be exp�−kNpGζ�.

Note that for the great circle model with independent links there are only
two parameters, pL and pG, and it is easy to show thatGπ�s� = �1−pL�2s/�1−
pLs�2 and R∗ = RGµ =NpG�1+ pL�/�1− pL�.

2.4. Epidemics among giants. We consider here the simple case of a large
number (m) of large households of equal sizes n. For large households the idea
of a threshold for local contacts makes sense. When we consider only these
local contacts, each household has its own local simple Reed–Frost epidemic,
with population size n and basic reproductive ratioRL = npL. It is well known
that the behavior of these single-group models goes through a phase transition
at around the value RL = 1 [e.g., Whittle (1955), von Bahr and Martin-Löf
(1980), Nåsell (1995) and Ball and Nåsell (1994)], and it is interesting to
examine the implications of this for the present two level model.

If RL ≤ 1, the epidemics in individual households are below threshold and
the contact graph within each household consists of components all small com-
pared with n, in fact of size O�1�. Then the analysis of the previous section ap-
plies, withR∗ being greater thanRG =NpG by the factor µ equal to the mean
size of these components; but µ is only O�1�, so we still require pG = O�1/N�
to get a global epidemic—that is, a large outbreak at the interhousehold level.

The situation is more interesting when RL > 1, so that the within-
household epidemics are above threshold. Then each has its own giant
connected component, of size nzh say, and it is easy to see that the epidemic
among the meta-population of giants has R∗ = nNpGz

2
h. Further, it is not

too difficult to see that the members of households out with the giants do not
significantly affect the probability or size of the overall outbreak.

Since zh = O�1� in this case, it only requires pG to be O�1/Nn� for R∗
to be greater than 1, and thus make possible a large outbreak among the
giants; that is, RG need only be O�1/n�. Then the proportion of giants forming
the “meta-giant” component of those involved in this large-scale Reed–Frost
epidemic is given by 1 − zg = exp�−R∗zg�, so that the final proportion of
the whole population affected is zhzg, and, as usual in the independent links
case, this is also the probability of a large outbreak arising from an initial
infected individual: here zh is represents the probability that the individual
belongs to its local giant, and zg is the probability that this giant belongs to
the meta-giant.

In all cases the local contacts have an amplifying effect on the global epi-
demic. But, for large households this amplification undergoes a significant
change (we might call this a phase transition) from O�1� to O�n� as we reach
the local threshold (RL = 1) at which the households go through their indi-
vidual phase transitions [von Bahr and Martin-Löf (1980)].
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Finally here, we note the consistency of these essentially asymptotic results
with those of the previous section. If in the clumped Reed–Frost model we let
the clump distribution tend to that concentrated on nzh, with probability zh,
and 0, with probability 1 − zh, then µ = nz2

h so that both models agree that
R∗ = nNpGz

2
h and Gπ�s� = �1 − zh� + zhsnzh . So that the equation for the

final size becomes 1− z = �1− zh�1+ zh exp�−NpGznzh�, which, if we write
zg = z/zh, boils down to 1− zg = exp�−R∗zg� as obtained above for the giant
epidemic.

2.5. Vaccination strategies in relation to local thresholds. In a homoge-
neously mixing population, the minimum proportion v that we need to vacci-
nate to render the remaining susceptible population sub-threshold is given by
R′G = �1− v�RG = 1; that is, we require v ≤ 1− 1/RG.

With our two levels of mixing, we have found that the basic reproductive
ratio is R∗ = µRG. For a population divided into large groups, R∗ can take
large values, since µ will be a significant proportion of group size if groups
are above their individual thresholds (RL > 1). (Recall, from Section 1.2, that
R∗ is a parameter describing group-to-group infection and is therefore not
directly comparable with individual-to-individual reproductive ratios such as
RG and RL.)

Now vaccination of a proportion v of the population will still simply reduce
RG pro rata to R′G = �1 − v�RG, but the effect on µ will depend on the dis-
tribution of vaccination among the population. We shall consider the question
of optimal vaccination strategies in more detail and generality in Section 5.2;
here we simply indicate the practical importance of this question.

For the groups or households model, one strategy is to vaccinate whole
groups. Let us assume for simplicity that if they are of different sizes, we
choose groups at random, that is, according to the distribution �πk�. Then µ
will be unchanged, so that the overall reproductive ratio will simply become
R′∗ = �1 − v�R∗. However, a strategy in which we vaccinate a proportion of
those in each group—for instance, the strategy in which we simply vaccinate
members of the overall population chosen at random—can also reduce µ and
thus reduce R∗ further. In the case where vaccination changes groups from
being above to below their local threshold, the difference can be dramatic, as
the following simple numerical example illustrates.

Suppose that our population is divided into groups of size n = 1000 (perhaps
schools or local communities) and that the reproductive ratio RG for global
contacts is 1 (the exact value is not important for what follows). Suppose also
that pL = 0:003, so that the reproductive ratio for local contacts is RL =
�n − 1�pL ≈ 3. Then zh ≈ 0:95, whence (in the notation of the last section)
µ ≈ nz2

h ≈ 900, and hence the overall reproductive ratio is R∗ = µRG ≈ 900.
(In contrast, the individual-to-individual reproductive ratio here is R0 ≈ RL+
RG ≈ 4.)

We now consider two alternative strategies for vaccinating 80% of the pop-
ulation. First note that with any such strategy, R′G will be �1− 0:8�RG = 0:2.
If we have a “patchy” vaccination program that vaccinates whole groups, we
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will have R′∗ = µR′G ≈ 900× 0:2 = 180, still far above threshold. However, if
we have a uniform vaccination program, in which approximately 80% of each
group are vaccinated, the local reproductive ratio will be brought down to
R′L ≈ �1− 0:8� × 3 = 0:6. The groups will thus be below their local thresholds
and their new mean clump size is easily calculated (from an approximating
branching process, as in Section 3.3.2) to be µ′ ≈ 1/�1 − 0:6� = 2:5. Thus in
this case we will have R′∗ = µ′R′G ≈ 2:5 × 0:2 = 0:5, so that vaccination will
succeed in bringing the infection below threshold.

We can go further: from the practical point of view it is interesting to con-
sider a program aimed at uniform coverage, but which is inadequate in some
groups, meaning that in them there are still enough susceptibles left for the
group to be above its local threshold. We find that where the initial value of R∗
is large, a quite small proportion of groups with inadequate coverage suffices
to leave the population as a whole above threshold, that is, R′∗ > 1. Extend-
ing our example of groups of size 1000 with RG = 1, RL = 3, if we have a
program which generally vaccinates 80% within each group, the program will
fail (R′∗ > 1) if there is just 1% of the groups in which vaccination coverage is
only 50%.

3. The model with a general infectious period.

3.1. The basic model. We now consider a generalization of the households
model of Section 2, in which the infectious period may follow any arbitrary but
specified distribution. Let the population consist of N individuals, subdivided
into m groups each of size n. (We shall treat the case of unequal group sizes
in Section 3.5.) The infectious periods of different infectives are independently
and identically distributed according to a random variable TI. Throughout its
infectious period a given infective makes contact with each other susceptible
in the population at the points of a homogeneous Poisson process having rate
λG/N and, additionally, with each susceptible in its own group at the points
of a homogeneous Poisson process having rate λL. All the Poisson processes
describing infectious contacts (whether or not either or both of the individuals
involved are the same), as well the random variables describing infectious
periods, are assumed to be mutually independent.

Note that we have chosen here to formulate our model so that an individ-
ual i can make both local and global contacts with a susceptible in its own
group, which may seem slightly unnatural. However, for the groups model of
this section it facilitates our analysis by putting all individuals on an equal
footing with respect to global contacts, and it is essential for cases such as
the great circle model where the population is not partitioned into groups (see
Section 2.3).

The alternative would be to treat all within-group contacts as local, at rate
λ′L = λL+λG/N. It follows from the superposition and splitting (or “coloring”)
properties of the Poisson process [see, e.g., Kingman (1993)] that for the groups
model (provided λ′L ≥ λG/N) the two formulations are exactly equivalent; and
of course λ′L→ λL as N→∞.
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For ease of exposition we shall assume that there is no latent period. How-
ever, all our results can be generalized to a model that incorporates a latent
period. In particular, the final outcome of the epidemic is invariant to very
general assumptions concerning a latent period. This can be seen by consid-
ering the random graph associated with the epidemic, in which for any two
nodes, i; j say, a directed arc from i to j is present if and only if i will infect
j if i is an infective and j is a susceptible.

The epidemic is initiated by a number of individuals becoming infected at
time t = 0. We shall consider the spread of the epidemic in the asymptotic
situation where the number of groups m tends to infinity while the group size
n is held fixed.

If in this model we let TI take a constant value tI, then the epidemic has
the same final outcome as the Reed–Frost model of Section 2 with pL =
1−exp�−λLtI� and pG = 1−exp�−λGtI/N�. If instead we letTI follow an expo-
nential distribution, then our model reduces to the “equivalent classes” model
of Watson (1972). Watson studied the deterministic version of the equivalent
classes model, and also the branching process approximation as the group size
n tends to infinity with the number of groupsm fixed and finite. This contrasts
sharply with our asymptotic regime outlined above.

3.2. Final outcome of a single population SIR stochastic epidemic. Con-
sider a closed homogeneously mixing population consisting initially of n sus-
ceptibles and a infectives, who have just been infected. Suppose, as above, that
the infectious period is distributed according to a random variable TI and that
throughout its infectious period a given infective infects a given susceptible at
rate λL. The epidemic ceases as soon as there are no infectives present in the
population. Let T be the final size of the epidemic, that is, the total number
of initial susceptibles that are ultimately infected by the epidemic. Let TA be
the severity of the epidemic, that is, the sum of the infectious periods of all
individuals infected during the course of the epidemic, including the a initial
infectives. Note that TA is equal to the area under the trajectory of infectives;
see, for example, Downton (1972). The joint distribution of �T;TA� is stud-
ied in Ball (1986). More recently, a general framework for analyzing the final
size and severity of SIR stochastic epidemics has been developed in a series
of papers by Lefèvre and Picard; see, for example, Picard and Lef èvre (1990).
A key tool in their framework is a nonstandard family of polynomials, first
introduced by Gontcharoff (1937), which we now outline.

LetU = u0; u1; : : : be a given sequence of real numbers. Then the Gontchar-
off polynomials attached to U, G0�x�U�;G1�x�U�; : : : ; are defined recursively
by the triangular system of equations

i∑
j=0

u
i−j
j

�i− j�!Gj�x�U� =
xi

i!
; i = 0;1; : : : :(3.1)

For i = 1;2; : : : ; the polynomial Gi�x�U� admits the integral representation

Gi�x�U� =
∫ x
u0

∫ ξ0

u1

∫ ξ1

u2

· · ·
∫ ξi−2

ui−1

dξ0 dξ1 dξ2 · · ·dξi−1y(3.2)
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see, for example, Lefèvre and Picard [(1990), (2.5)]. Another property of
Gontcharoff polynomials [see (2.7) of Lefèvre and Picard (1990)] that we shall
require is

G
�j�
i �x�U� = Gi−j�x�EjU�; 0 ≤ j ≤ i;(3.3)

where EjU is the sequence uj, uj+1; : : : and G�j�i �x�U� is the jth derivative
of Gi�x�U�. Note that G�j�i �x�U� = 0 if j > i.

For the single population epidemic model, let φ�θ� = E �exp�−θTI��, θ ≥ 0;
be the moment generating function of TI and let

φn;a�s; θ� = E �sn−T exp�−θTA��; θ ≥ 0:(3.4)

Then it follows from Proposition 3.3 of Picard and Lef èvre (1990) [see also
Ball and Clancy (1993)] that

φn;a�s; θ� =
n∑
i=0

n!
�n− i�!φ�θ+ λLi�

n+a−iGi�s�U�;(3.5)

where the sequence U is given by ui = φ�θ+ λLi�, i = 0;1; : : : :
Let µn;a = E �T� be the mean final size of the above epidemic. Then by

differentiating (3.5) with respect to s and setting s = 1 and θ = 0, it follows
using (3.3) that

µn;a = n−
n∑
i=1

n!
�n− i�!q

n+a−i
i αi;(3.6)

where qi = φ�λLi� and αi = Gi−1�1�V�. Here the sequence V is given by
vi = φ�λL�i + 1�� = qi+1 (for i = 0;1; : : :). We may call the qi’s the escape
probabilities, since qi = E �exp�−iλLTI�� is the probability that a set of i
individuals exposed to a single infective in the same group all escape infection
by it. From this interpretation it is immediate that the qi’s, and hence the vi’s,
are monotone nonincreasing:

qi ≥ qi+1 for all i ≥ 0 (note that q0 = 1).(3.7)

Note that it is straightforward to compute α1; α2; : : : numerically using the
recursive definition of the Gontcharoff family of polynomials given in (3.1).

In Sections 3.4 and 3.5 we shall require the fact that αi > 0, i = 1;2; : : : ;
which we now prove. The integral definition of Gi�x�U� given in (3.2) implies
that Gi�x�U� > 0 for i = 0;1; : : : ; provided that x > u0 ≥ u1 ≥ · · · ≥ 0. [This
gives a new and elegant proof of a result proved in Gani and Shanbhag (1974).]
The strict positivity of the αi’s follows immediately from (3.7) (remembering
that vi = qi+1).

We shall need the moment generating function of TA,

ψn;a�θ� = E �exp�−θTA��

say, which can be obtained by setting s = 1 in (3.5).
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Consider now an extension of the single population epidemic model, in
which susceptibles can also be infected from outside the population. Specifi-
cally, suppose that each of the n initial susceptibles has probability π of avoid-
ing infection from outside the population during the course of the epidemic,
independently of other susceptibles in the population. This extended model
has been considered by Addy, Longini and Haber (1991), who derived recur-
sive expressions for the probability generating function of T and the moment
generating function of TA. The final outcome of the extended model with out-
side infection has the same distribution as that of the single population model
with initial numbers of infectives and susceptibles a +Y and n −Y, respec-
tively, where Y is a realization of a binomial random variable with parameters
n and 1 − π. (This follows by considering the random graph associated with
the epidemic.)

Let φ̃n;a�s; θ� = E �sn−T exp�−θTA��, θ ≥ 0; be the joint generating function
of �T;TA� for the model with outside infection. Then conditioning on the value
of Y and using (3.5) yields

φ̃n;a�s; θ� =
n∑
k=0

(
n

k

)
πk�1− π�n−k

k∑
i=0

k!
�k− i�!φ�θ+ λLi�

n+a−iGi�s�U�;(3.8)

which on changing the order of summation gives, after a little algebra,

φ̃n;a�s; θ� =
n∑
i=0

n!
�n− i�!φ�θ+ λLi�

n+a−iπiGi�s�U�:(3.9)

Let µ̃n;a = E �T� be the mean final size for the epidemic with outside infection.
Then arguing as in the derivation of (3.6) yields

µ̃n;a = n−
n∑
i=1

n!
�n− i�!q

n+a−i
i πiαi:(3.10)

We now give expressions for the final size distribution of the single popu-
lation epidemic model with outside infection. Let P̃nk = Pr �T = k�, k = 0,
1; : : : ; n: Then setting θ = 0 in (3.9), differentiating n − k times with respect
to s and using (3.3) yields

P̃nk =
1

�n− k�!
n∑

i=n−k

n!
�n− i�!q

n+a−i
i πiGi−n+k�0�En−kU�; k=0;1; : : : ; n;(3.11)

where the sequence U is given by ui = qi = φ�λLi�, i = 0, 1; : : : :
Addy, Longini and Haber (1991) gave a similar expression to (3.11), but not

using Gontcharoff polynomials. They also showed that the final size probabil-
ities can be determined from the triangular system of linear equations

k∑
i=0

(
n− i
k− i

)
P̃ni
/
�qa+in−kπ

n−k� =
(
n

k

)
; k = 0;1; : : : ; n:(3.12)

Setting π = 1 in (3.12) yields a set of linear equations governing the final size
distribution of the epidemic without outside infection; see Ball (1986).
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The above systems of equations are in principle straightforward to solve
numerically, because of their triangular structure. Numerical problems due to
rounding errors can occur even for moderate values of n, perhaps n = 50 or
100. However, in many applications, n will correspond to group or household
size and will typically be small, say n ≤ 5 or 10, permitting the required
properties to be calculated accurately.

3.3. Initial stages of a multigroup epidemic.
3.3.1. Branching process approximation. Suppose that the number of

groups m, and hence the total population N, is large. Then during the early
stages of the epidemic, every time a between group infection occurs the
contacted individual is likely to be in a previously uninfected group. Thus the
initial stages of the epidemic can be approximated by a branching process,
in which the units are single group epidemic processes and the offspring of
a given unit are those groups that are directly infected by infectives in that
unit.

The approximation can be made precise by considering a sequence of epi-
demics with fixed group size n, indexed by the number of groups m, and using
the coupling argument of Ball (1983b) and Ball and Donnelly (1995). Specifi-
cally, the epidemic processes and the approximating branching process can be
constructed on the same probability space ��;F ;P� such that if A ⊆ � de-
notes the set on which the branching process goes extinct, then (i) forP-almost
all ω ∈ A the process of infectives in the epidemic process and the branching
process agree over the time interval �0;∞� for all sufficiently large m and (ii)
for P-almost all ω ∈ � \ A the epidemic process and the branching process
agree over �0; c logm� for all sufficiently large m, for any c < �2α�−1, where
α is the Malthusian parameter of the branching process. The result in (ii) is
the best possible in the sense that if c > �2α�−1, then, for all sufficiently large
m, the epidemic process and the branching process disagree over part of the
interval �0; c logm�, and the maximum difference tends to infinity as m→∞.
The Malthusian parameter α can be obtained as follows. For t ≥ 0, let Y�t�
denote the number of infectives at time t in the single group epidemic model
of Section 3.2, when initially there are one infective and n − 1 susceptibles.
Then, provided that the branching process is supercritical, α is the unique
solution in �0;∞� of the equation

∫ ∞
0
λGE �Y�t�� exp�−αt�dt = 1(3.13)

[see Ball (1996) for details].
The final size of the approximating branching process can be obtained by

considering its embedded Galton–Watson process, whose offspring distribution
can be derived as follows. A typical unit in the branching process commences
with one of the susceptibles in the group being infected from outside. That
infective will start an epidemic within its own group. Each infective in this
single-group epidemic independently makes infections outside the group at
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rate λG throughout its infectious period. Hence the total number of outside
infections emanating from the group under consideration follows a Poisson
distribution with random mean λGTA, where TA is the severity of the single-
group epidemic. Further, in the branching process approximation, all of these
outside infections are with susceptibles in distinct groups, so the offspring
distribution, R say, of the embedded Galton–Watson process is also Poisson
with random mean λGTA. Let R∗ = E �R�. Then, letting T be the final size of
the single group epidemic and using the Wald identity for epidemics proved
in Ball (1986), we obtain

R∗ = λGE �TA�
= λG�1+ E �T��E �TI�
= λG�1+ µn−1;1�E �TI�:

(3.14)

Note that, as in the clumped Reed–Frost model,R∗ is of the formR∗ = µRG,
where RG = λGE �TI� is the basic reproductive ratio for the model in which
all the groups are of size 1, that is, n = 1, and µ = 1 + µn−1;1 is the mean
clump size.

To obtain a threshold theorem for the multigroup epidemic process, we say
that a global epidemic occurs if in the limit as m → ∞ the epidemic infects
infinitely many groups. By standard branching process theory [see, e.g., Jagers
(1975)], global epidemics can occur if and only if R∗ > 1, so R∗ may be viewed
as the threshold parameter for the multigroup epidemic. Note that for any
given set of parameter values, R∗ can be computed using (3.6). Indeed, for
small values of the group size n, explicit expressions for αi, and hence for R∗,
can easily be obtained.

The probability of a global epidemic depends on the number and config-
uration of initial infectives. Consider first the case in which the epidemic is
initiated by just one of the susceptibles becoming infected. Then, again by stan-
dard branching process theory, the probability of a global epidemic is ζ = 1−τ,
where τ is the smallest root in �0;1� of the equation f�s� = s. Here f�s� is the
probability generating function of R, which, conditioning on the value of TA,
is given by

f�s� = E �sR�
= E �E �sR�TA��
= E �exp�−λGTA�1− s���
= ψn−1;1�λG�1− s��; 0 ≤ s ≤ 1:

(3.15)

For i = 1;2; : : : ; n, let τi be the probability of a nonglobal epidemic when
initially there is one infectious group containing i infectives and n− i suscep-
tibles, so τ1 = τ. Let Z be the size of the first generation in the embedded
Galton–Watson process; that is, Z is the total number of outside infections
emanating from the initial single-group epidemic. Then, again conditioning
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on the value of TA,

τi = E �τZ�
= E �E �τZ�TA��
= E �exp�−λGTA�1− τ���
= ψn−i; i�λG�1− τ��:

(3.16)

Finally, if initially there are ai infectious groups with i infectives and n− i
susceptibles, i = 1;2; : : : ; n, then

Pr�global epidemic� = 1−
n∏
i=1

τ
ai
i :(3.17)

Note that ψn−i; i�θ�, and hence τi, i = 1;2; : : : ; n, are straightforward to com-
pute by setting s = 1 in (3.5) and using the recursive definition (3.1) for the
quantities G0�1�U�, G1�1�U�; : : : ;Gn−1�1�U�.

Other properties of the approximating branching process are straightfor-
ward to determine. Suppose that initially there is one infectious group con-
taining just one infective. Let Ñ and G̃ be, respectively, the total number of
individuals and total number of groups infected by the epidemic, where now
the initial infective and the initial infectious group are included. As before,
let T and TA be, respectively, the final size and severity of the single group
epidemic in the initial infectious group. Let h�s1; s2� = E �sÑ1 sG̃2 � be the joint
probability generating function of �Ñ; G̃� under the branching process approx-
imation. Then, conditioning on �T;TA�,

h�s1; s2� = E
[
E
[
sÑ1 s

G̃
2 �T;TA

]]

= E
[
E
[
s

1+T+∑Z
i=1 Ñi

1 s
1+∑Z

i=1 G̃i

2 �T;TA
]]
;

(3.18)

where, as above, Z is the size of the first generation in the embedded Galton–
Watson process and (Ñ1, G̃1�, �Ñ2, G̃2); : : : ; �ÑZ; G̃Z� are independent and
identically distributed copies of �Ñ; G̃�. Now Z is Poisson with mean λGTA, so

h�s1; s2� = s1s2E
[
sT1 E �h�s1; s2�Z�T;TA�

]

= s1s2E
[
sT1 exp�−λGTA�1− h�s1; s2���

]

= s1s2φ̂n−1;1�s1; λG�1− h�s1; s2���;
(3.19)

where

φ̂n−1;1�s; θ� = E �sT exp�−θTA��
= sn−1φn−1;1�s−1; θ�

(3.20)

is the joint generating function of �T;TA�. Thus h�s1; s2� satisfies the func-
tional equation

h�s1; s2� = sn1s2φn−1;1�s−1
1 ; λG�1− h�s1; s2���:(3.21)
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Appropriate differentiation of (3.21) yields expressions for the moments of
Ñ and G̃, such as E �Ñ�, E �G̃�, var�Ñ�, var�G̃� and cov�Ñ; G̃�. Note that
(3.3) and the recursive definition (3.1) of Gontcharoff polynomials enables
the derivatives of φn−1;1�s; θ� and hence the above moments to be calculated.
WhenR∗ ≥ 1, the above moments are all infinite. However, ifR∗ > 1, then mo-
ments conditional upon the occurrence of a nonglobal epidemic can be derived
from (3.21).

An alternative approach to determining the limiting properties of �Ñ; G̃� as
the number of groups m→∞ is via the two-type branching process described
in Section 3.6.

3.3.2. Discussion of the threshold parameter R∗. We now discuss the re-
lationship of our threshold parameter R∗ to the classical reproductive ratio
R0 [see, e.g., Diekmann, Heesterbeek and Metz (1990)] for the multigroup
epidemic. For definiteness of argument, suppose that the infectious period TI
follows an exponential distribution with mean γ−1, so that our model becomes
a multigroup generalization of the general stochastic epidemic [see, e.g., Bailey
(1975), Chapter 6]. The deterministic version of our model is then expressed
by the differential equations

dxi
dt
= −

(
λLyi +N−1λG

∑
j6=i
yj

)
xi;

dyi
dt
=
(
λLyi +N−1λG

∑
j6=i
yj

)
xi − γyi; i = 1;2; : : : ;m;

(3.22)

where the groups are labelled 1;2; : : : ;m and xi�t� and yi�t� are, respectively,
the numbers of susceptibles and infectives in the ith group at time t.

The reproductive ratio for the above deterministic model, usually defined
informally (in a stochastic sense!) as the expected number of infectious con-
tacts made by a single initial infective in an otherwise susceptible population,
is R0 = ��n − 1�λL + λG�/γ. In the deterministic setting, a major epidemic
occurs if and only if R0 > 1. However, as we shall see soon, R0 > 1 does not
generally provide a good indication as to whether a global epidemic can occur
in our stochastic model. This is because a deterministic model can only be a
good approximation to the more realistic stochastic model if all the population
sizes are large [cf. the convergence theorems of Kurtz (1970, 1981)], but in
the multigroup epidemic the group size n is often small. Thus the determin-
istic model (3.22) will not generally provide an adequate description of the
multigroup epidemic. Indeed, a more appropriate deterministic model is one
described by a system of differential equations for xi; j�t�, 0 ≤ i, j ≤ n, where
xi;j�t� is the number of groups with i susceptibles and j infectives at time t.

It is now convenient to assume that the multigroup epidemic model is pa-
rameterized so that the within-group infection rate is �n−1�−1λL and, for the
purpose of illustration, that the time axis is linearly rescaled so that γ = 1.
Under these assumptions, R0 = λL + λG independently of the group size n.
The threshold parameter R∗ can be calculated using (3.14). Figure 1 shows for
various group sizes n the graph of critical values of �λL; λG� so that R∗ = 1.
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Fig. 1. Critical values of �λL; λG� so that R∗ = 1.

The corresponding graph for R0 = 1 is also shown. When the group size n = 1,
the graph corresponding to R∗ = 1 is constant at λG = 1, since then there can
be no within-group spread of infection and the value of λL is irrelevant. For
n = 1;2; : : : ; the R∗ = 1 graph for n+ 1 lies below that for n and it is shown
below that the R∗ = 1 graph converges to the R0 = 1 graph as n → ∞. As
noted above, R0 = 1 does not provide a good indicator as to whether a global
epidemic can occur when the group size n is small.

We now return to the model with general TI and examine the asymptotic
behavior of R∗ as n → ∞. We still assume without loss of generality that
E �TI� = 1 and that the within-group infection rate is �n− 1�−1λL. Thus from
(3.14), R∗ = λG�1 + µn−1;1�, so we are interested in the asymptotic behavior
of µn−1;1 as n→∞. For large n, the early stages of the single-group epidemic
process can be approximated by a branching process and Ball (1983b) shows
how to make the approximation precise in the limit as n→∞. Specifically, a
sequence of epidemic processes indexed by n and the approximating branching
process can be constructed on the same probability space so that, as n →
∞, if the branching process goes extinct, then the final size of the epidemic
process converges almost surely to the final size of the branching process, and
if the branching process does not go extinct, then the final size of the epidemic
process converges almost surely to ∞. Moreover, in the latter case von Bahr
and Martin-Löf (1980) show that n1/2�T/n − ρ� converges in distribution to
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a normal random variable with zero mean. Here T is the final size of the
single population epidemic and ρ is the largest root in �0;1� of the equation
1 − x = exp�−λLx�. Note that ρ is the proportion of initial susceptibles that
are ultimately infected in the limiting deterministic epidemic as n→∞.

Suppose first that λL < 1, so that the single-group epidemic is below thresh-
old. The mean final size of the approximating branching process is λL/�1−λL�,
so by the dominated convergence theorem limn→∞ µn−1;1 = λL/�1−λL�. Thus
R∗ converges up to λG�1+�1−λL�−1λL� = λG/�1−λL� as n tends to∞. Hence,
if λG < 1 − λL only nonglobal epidemics can occur, however large the group
size n is, while if λG > 1 − λL global epidemics can occur provided that n
is sufficiently large. Note that as n → ∞ the equation R∗ = 1 converges to
λL + λG = 1, that is, R0 = 1.

Now suppose that λL > 1 so that the single-group epidemic is above thresh-
old. Let q be the probability that the approximating branching process (to
the single-group epidemic) goes extinct. Recall from Waugh (1958) and Daly
(1979) that, conditional upon extinction, a supercritical Galton–Watson pro-
cess with offspring probability generating function g�s� behaves as a (sub-
critical) Galton–Watson process with offspring probability generating func-
tion q−1g�qs�. The number of contacts made by the initial infective in the
single population epidemic is Poisson with (random) mean λLTI, so the off-
spring probability generating function of the Galton–Watson process embed-
ded in the approximating branching process is g�s� = φ�λL�1 − s��, where
φ�θ� = E �exp�−θTI��. Thus q is the unique solution in �0;1� of the equation
φ�λL�1−s�� = s and the offspring mean for the embedded Galton–Watson pro-
cess conditioned upon extinction, m̃ say, is given by m̃ = −λLφ�1��λL�1− q��.
Further, conditional upon extinction, the mean final size of the approximating
branching process is m̃/�1− m̃�. Combining all this with the above von Bahr
and Martin-Löf limit theorem and recalling that R∗ = λG�1+ µn−1;1� yields

R∗ ∼ λG
{

1+ qm̃

1− m̃ + �1− q�ρ�n− 1�
}

as n→∞:(3.23)

Thus, in contrast to the situation when λL < 1, for λL > 1 global epidemics
can always occur if n is sufficiently large, whatever the value of λG (provided
it is not zero).

In the critical case λL = 1, the mean final size of the approximating branch-
ing process is infinite, so again global epidemics can always occur provided that
n is sufficiently large.

Another way of viewing the above is to assume that λL is fixed and examine
the behavior, as n→∞, of the critical value, λcrit

G say, of λG for global epidemics
to be possible. It follows from the preceding arguments that if λL < 1, then
λcrit
G = O�1� as n→∞, whilst if λL > 1, then λcrit

G = O�n−1� as n→∞. This
corresponds to the amplification effect discussed for the multigroup Reed–
Frost epidemic in Section 2.5.

We can use our model to study the efficacy of various vaccination strategies.
For example, as in Section 2.5, consider two vaccination policies: a local one in
which a fixed proportion, θ say, of groups is completely vaccinated and a global
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one in which a proportion θ of susceptibles in every group is vaccinated. For
convenience we suppose that θn is an integer. Under both policies the rate at
which a given infective makes outside infections is �1− θ�λG. However, in the
local policy such an infection is with a group having n susceptibles, so R∗ =
�1−θ�λG�1+µn−1;1�, but in the global policy it is with a group having �1−θ�n
susceptibles, so R∗ = �1 − θ�λG�1 + µ�1−θ�n−1;1�. Clearly µn−1;1 > µ�1−θ�n−1;1
so the global policy will be more effective in preventing the spread of a global
epidemic.

3.4. Final outcome of a multigroup epidemic. In this subsection we con-
sider the final outcome of the multigroup epidemic asm, the number of groups,
becomes large. In Section 3.3.1 we examined the final outcome of a nonglobal
epidemic; here we shall be concerned with what happens in the event of a
global epidemic. Our argument will be heuristic, a formal proof being delayed
until Section 4.2.

Let z be the expected proportion of initial susceptibles that are infected
by a global epidemic. Thus z can be interpreted as the probability that a
given initial susceptible, who is not in one of the initially infectious groups, is
ultimately infected by the epidemic.

Fix attention on a single group that initially contained no infectives. We
can decompose the ultimate spread of infection within that group by first
determining which of the initial susceptibles are infected from outside the
group, and then letting these individuals initiate a single population epidemic
among the remaining susceptibles in the group.

This decomposition justifies the approach taken by a number of applied
authors, who treated the probability π of an external (primary) contact as
independent of the internal (secondary) process that they analyzed (see Sec-
tions 1.3, 3.2 and 5.1).

Let T̃ be the total person time units of infection present in the population at
large over the whole course of the epidemic. Then for large m, T̃ ∼NzE �TI�.
At any time a given susceptible in the group under consideration is being
infected from outside the group with intensity N−1λG per outside infective.
Thus, as m → ∞, each given susceptible in the group independently avoids
infection from outside with probability π = exp�−λGzE �TI��. It follows that
the ultimate spread of infection within the group has the same distribution
as that of the extended model of Addy, Longini and Haber (1991) described
in Section 3.2. Hence, the mean final size of the epidemic within the group is
given by setting a = 0 in (3.10). However, the mean final size also equals zn,
since z is the expected proportion of susceptibles that are ultimately infected.
Thus we can deduce the equation

nz = n−
n∑
i=1

n!
�n− i�!q

n−i
i πiαi;(3.24)

which, since π = exp�−λGzE �TI��, is an implicit equation for z. Clearly z = 0
is always a solution of (3.24). We now show that there is a (unique) second
solution in �0;1� if and only if R∗ > 1.
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It is convenient to rearrange (3.24) into

n�1− z� =
n∑
i=1

n!
�n− i�!q

n−i
i exp�−λGzE �TI�i�αi:(3.25)

We proved in Section 3.2 that αi > 0, i = 1, 2; : : : ; so the right-hand side of
(3.25) is a convex function of z. Thus (3.25) has at most two solutions since its
left-hand side is linear in z. Further, by examining the values at z = 0 of the
derivatives with respect to z of the two sides of (3.25), we see that there is a
second solution if and only if

λGE �TI�
n∑
i=1

�n− 1�!
�n− i�! q

n−i
i iαi > 1:(3.26)

Now
n∑
i=1

�n− 1�!
�n− i�! q

n−i
i iαi =

n∑
i=1

�n− 1�!
�n− i�! q

n−i
i αi�n− �n− i��

=
n∑
i=1

n!
�n− i�!q

n−i
i αi −

n−1∑
i=1

�n− 1�!
�n− i− 1�!q

n−i
i αi:

(3.27)

From (3.6), the second sum on the right-hand side of (3.27) is n− 1− µn−1;1.
The first sum can be evaluated by recalling that αi = Gi−1�1�V�, where the
sequence V is given by vi = qi+1 = φ�λL�i+ 1��, i = 0, 1; : : : : We obtain

n∑
i=1

n!
�n− i�!q

n−i
i αi =

n∑
i=1

n!
�n− i�!v

n−i
i−1Gi−1�1�V�

= n
n−1∑
i=0

�n− 1�!
�n− 1− i�!v

n−1−i
i Gi�1�V�

= n;

(3.28)

where in the last step we have used the recursive definition (3.1) of the Gont-
charoff polynomials Gi�x�V�, i = 0;1; : : : : Putting all this together, we obtain
from (3.27) that

n∑
i=1

�n− 1�!
�n− i�! q

n−i
i iαi = 1+ µn−1;1:(3.29)

Hence from (3.26) and the expression for R∗ given in (3.14), (3.24) has a so-
lution in �0;1� if and only if R∗ > 1. When R∗ > 1 the solution of (3.24) in
�0;1� gives the expected proportion of initial susceptibles ultimately infected
by a global epidemic.

As noted earlier, in the event of a global epidemic the final size in a group
that did not have initial infectives is distributed as the final size of the ex-
tended model of Addy, Longini and Haber (1991) with π = exp�−λGzE �TI��.
This distribution may be calculated by using (3.11) or (3.12). Figure 2 illus-
trates, for various values of λL and λG, the final size distribution in a group
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Fig. 2. The final size distribution in a group when the infectious period TI follows an exponential
distribution with mean 1 and the group size n = 5. Note that the critical values of λG are � for
each row; starting at the top� λcrit

G = 0:6336; 0:5321; 0:3296; 0:2429.

when the infectious period TI follows an exponential distribution with mean 1
and the group size n = 5. Figure 2 also gives, for each choice of λL, the critical
value λcrit

G of λG for global epidemics to be possible. Notice the difference in
the shape of the distribution according to whether the local reproductive ratio
RL = �n − 1�λL is less than or greater than 1, that is, according to whether
the within-group epidemic is below or above its threshold. When RL < 1 the
distribution is unimodal for all values of λG > λ

crit
G , with the mode increasing

from 0 for values of λG just greater than λcrit
G to n �= 5� for sufficiently large

values of λG. When RL > 1 the distribution is initially bimodal as λG is in-
creased from λcrit

G , but becomes unimodal with the mode either at or close to
n for sufficiently large values of λG. (In our examples the mode is always at
n = 5 but this is unlikely to be the case in general.) The shape of the group
final size distribution can be explained in terms of the threshold behavior of
the single-group epidemic. When RL < 1, only minor epidemics will occur
within a group, but as λG increases so does the number of group members
infected from the population at large, and hence also the size of the epidemic
within the group. When RL > 1, the within-group epidemic is above thresh-
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old, so major epidemics can occur as soon as λG > λ
crit
G . Thus the distribution

is bimodal, being a mixture of two components, one corresponding to a minor
epidemic and the other to a major epidemic. Again, as λG increases, so does the
number of outside infections, and eventually the minor epidemic component
will disappear.

3.5. Unequal group sizes. We now consider the situation in which the
group sizes are not all equal. For n = 1;2; : : : ; let mn be the number of groups
of size n. Let m =∑∞n=1mn be the total number of groups and N =∑∞n=1 nmn

be the total number of individuals. As before, the infectious periods of dif-
ferent infectives are independently and identically distributed according to
a random variable TI, and throughout its infectious period a given infective
makes contact with each other susceptible at rate λG/N, and additionally
with each susceptible in its own group at rate λL. We examine the asymptotic
situation in which the number of groups m tends to infinity in such a way
that mn/m → hn, n = 1;2; : : : ; and

∑∞
n=1 hn = 1. Thus, for n = 1;2; : : : ; hn

is the asymptotic proportion of groups of size n. Let µh =
∑∞
n=1 nhn be the

asymptotic mean group size and assume that µh <∞.
The initial stages of the multigroup epidemic can be approximated by a

multitype branching process, in which the units are single-group epidemic
processes, the offspring of a given unit are those groups that are directly
infected by infectives in that unit and type corresponds to group size. Again
the approximation can be made precise in the limit as m → ∞ by using the
coupling argument of Ball (1983b) and Ball and Donnelly (1995). Label the
types 1;2; : : : ; according to group size and let 3 = �λij� be the offspring mean
matrix of the embedded multitype Galton–Watson process. Thus λij is the
expected number of type j groups infected by infectives from a type i group
single population epidemic.

Let T�i� and T�i�A be, respectively, the final size and severity of a single pop-
ulation epidemic in which initially there are 1 infective and i−1 susceptibles.
As in Section 3.3.1, the total number of outside infections emanating from
a type i group follows a Poisson distribution with random mean λGT

�i�
A . The

probability that a given outside infection is with an individual in a group of
size j is jmj/N = jhj/µh. Hence

λij = λGE �T�i�A �jhj/µh
= λG�1+ E �T�i���E �TI�jhj/µh
= λG�1+ µi−1;1�E �TI�jhj/µh;

(3.30)

using the Wald identity for epidemics.
The multiplicative structure of the matrix 3 given by (3.30) implies that its

maximal eigenvalue is

R∗ = λGE �TI�µ−1
h

∞∑
n=1

�1+ µn−1;1�nhn:(3.31)
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By standard branching process theory a global epidemic (corresponding to
nonextinction of the approximating multitype branching process) has nonzero
probability of occurring if and only if R∗ > 1. Formulae implicitly giving the
probability of a global epidemic and properties of a nonglobal epidemic can be
derived as in Section 3.3.1.

Note that again R∗ is of the form R∗ = µRG, where RG = λGE �TI� is the
basic reproductive ratio for the model in which all the groups are of size 1, and
µ = µ−1

h

∑∞
n=1�1+µn−1;1�nhn is the size-biased mean clump size. The formula

for µ uses the fact that if πi (as in Sections 1 and 2) is the probability that an
individual chosen at random from the population is in a group of size i, then

πi = µ−1
h ihi; i = 1;2; : : :(3.32)

[thus µ = ∑∞
n=1�1 + µn−1;1�πn]. Indeed, using the size-biased sampling, the

initial stages of the epidemic can be approximated by a single-type branch-
ing process (in which the units are single-group epidemic processes) whose
offspring distribution is Poisson with random mean, which is a mixture of
T
�1�
A ;T

�2�
A ; : : : with respective mixing probabilities π1; π2; : : : : Note that this

second, single-type approximation avoids any difficulties caused by the possi-
bility of there being infinitely many types in the multitype approximation.

We now turn to the final outcome of a global epidemic. Let z be the proba-
bility that a randomly chosen initial susceptible is ultimately infected by the
epidemic and, for n = 1;2; : : : ; let zn be the same probability for a randomly
chosen initial susceptible in a group of size n. The size-biased sampling implies
that

z = µ−1
h

∞∑
n=1

nznhn:(3.33)

Fix attention on a group of size n that did not contain any initial infectives.
Arguing as in Section 3.4, the probability that a given susceptible in that
group avoids infection from outside is π = exp�−λGzE �TI��, and the expected
final size of the epidemic within that group is µ̃n;0. Thus, using (3.10),

nzn = n−
n∑
i=1

n!
�n− i�!q

n−i
i πiαi; n = 1;2; : : : :(3.34)

Summing (3.34) over n and using (3.33) yields

z = 1−
∞∑
n=1

µ−1
h hn

n∑
i=1

n!
�n− i�!q

n−i
i πiαi;(3.35)

which, since π = exp�−λGzE �TI��, is an implicit equation for z. Clearly, z = 0
is always a solution of (3.35) and similar arguments to those used in Section 3.4
show that there is a (unique) second solution in �0;1� if and only if R∗ > 1.
When R∗ > 1, the root of (3.35) in �0;1� gives the expected proportion of
initial susceptibles that are ultimately infected by a global epidemic. As in
Section 3.5, the total spread of infection within a group not having initial
infectives has the same distribution as in the extended model of Addy, Longini
and Haber (1991), with π = exp�−λGzE �TI��.
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3.6. Threshold parameter for the proliferation of infectious individuals. As
noted in Section 1.3, Becker and Dietz (1995) consider a model for highly in-
fectious diseases in which it is assumed that once one individual in a group
(household) is infected then so is everyone else in that group. This assumption
corresponds to setting λL = ∞ in our model. Becker and Dietz (1995) derive
two threshold parameters for their model: one, which they call R0, for the
proliferation of infectious individuals and another, which they call RH0, for
the proliferation of infected households. Clearly, RH0 is the same as our R∗
and it is easily checked that setting λL = ∞ in (3.31) yields Becker and Dietz’s
formula for RH0. We now determine a threshold parameter for the prolifera-
tion of infectious individuals for our model, which, to avoid confusion with our
earlier notation, we denote by RI.

Consider the branching process approximation of Section 3.3.1 and call an
initial infective in a group a primary case and all subsequent infectives in that
group secondary cases. Thus both primary and secondary cases can give rise to
further primary cases, but only primary cases can give rise to secondary cases.
We now consider a two-type branching process, in which types 1 and 2 denote
primary and secondary cases, respectively. Then, using the size-biased sam-
pling, it is easily seen that the mean matrix for the above two-type branching
process is given, in the notation of Section 3.5, by

M =
[
RG µ− 1

RG 0

]
:(3.36)

The threshold parameter RI is given by the maximal eigenvalue of M and
a simple calculation shows that

RI =
RG

2

(
1+

√
1+ 4�µ− 1�/RG

)
:(3.37)

Again, it is easily checked that setting λ = ∞ in (3.37) yields the corresponding
expression for R0 given in Becker and Dietz (1995). Note that we only had to
find the maximal eigenvalue of a 2 × 2 matrix, whereas Becker and Dietz’s
approach required the maximal eigenvalue of an N × N matrix (where N
denoted their largest group size), though, of course, there is a lot of structure
in their N×N matrix, which is owing to our size-biased sampling. The same
comment also applies to our derivation of R∗. Note also that RI = 1 if and
only if R∗ = 1, so the critical values of R∗ = 1 shown in Figure 1 also apply
to RI = 1.

For homogeneously mixing epidemic models it is well known that the crit-
ical fraction, v∗ say, of susceptibles that have to be vaccinated to make a
supercritical epidemic critical is

v∗ = 1− 1/R0:(3.38)

Becker and Dietz (1995) show that (3.38) still holds for their model if indi-
viduals are vaccinated independently with probability v∗ and, in our notation,
R0 is replaced by RI. However, this is not the case for our model. Equation
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(3.38) holds for Becker and Dietz’s model since vaccinating individuals inde-
pendently with probability v reduces both RG and µ−1 pro rata to �1−v�RG

and �1− v��µ− 1�, respectively. The second of these reductions does not hold
for our model since the mean size of a single population epidemic is not linear
in the initial number of susceptibles.

In a later paper, Becker and Hall (1996) consider the household thresh-
old parameter RH0 and associated vaccination strategies for the spread of an
epidemic among a population of households made up of individuals of p differ-
ent types, labelled 1; : : : ; p. The methodology of Section 3.5 can be extended
to encompass this situation, using appropriate size-biased sampling. To deter-
mine the household threshold parameter RH0, we consider a p-type branching
process, where p is the number of types of individuals present in the popula-
tion, whilst to determine the individual threshold parameter RI we consider
a 2p-type branching process, where again we distinguish between primary
and secondary cases. In order to derive explicit expressions for the thresh-
old parameters we need results for multitype epidemics analogous to those
given for single population epidemics in Section 3.2. These can be found, for
example, in Ball (1986), Picard and Lef èvre (1990) or Ball and Clancy (1993).
The details are rather involved and will be published separately. Becker and
Hall (1996) sidestep these complications by labelling households according to
the type of epidemic that occurs in them (so that the type space, T say, for
households soon gets rather large) and then defining their model in terms of
the mean number of type τ households generated by a type i individual, for
τ ∈ T and i = 1; : : : ; p. They then get more explicit results by again mak-
ing the very special assumption that once one individual in a household is
infected, then the whole household becomes infected. Thus the extension of
our methodology to the multitype setting is concerned with models that are
described at a more basic level (i.e., in terms of individual infectious periods
and individual-to-individual infection rates) than those considered by Becker
and Hall (1996).

4. Embedding representations of the final size of the epidemic.

4.1. Embedding and the asymptotic distribution of final size. Showing that
the epidemic process and its final size in a population can be constructed by
sampling an appropriate embedding process at suitably defined stopping times
may be of interest in itself since it yields an alternative way of constructing
some aspects of the epidemic process, but it also turns out to be an efficient
tool for studying the distribution of the final size and related quantities, in
particular in asymptotic situations. In the present case, the construction and
methods of Scalia-Tomba (1985, 1990) can be used, with minor modifications,
to show that the final size of the epidemic, in a large population, is either
small, with probabilities related to the approximating branching process, or
large, with an approximately normal distribution around the mean expected
from the deterministic approximation.

The general idea of the construction is to create a process describing the
number of individuals in the population who would become infected, with



EPIDEMICS WITH TWO LEVELS OF MIXING 73

infection being considered as coming from outside the population, and then
creating the epidemic within the population by letting the infectious individ-
uals in the population define the amount of infection to which the remaining
susceptibles will be exposed. The final size of the epidemic will then typically
be characterized by a balance equation stating that the epidemic stops when
the total “infection pressure” generated by those infected in the population
(including initial infectives) becomes equal to the infection pressure needed to
infect the same individuals. One then proceeds to show that the embedding
process is asymptotically Gaussian and that the balance equation translates
into a first-crossing problem for the embedding process. Finally, some further
calculations are needed to clarify the “either small or large” character of the
epidemic process.

4.2. The case of distributed infectious period and households. We will first
carry out the construction for the situation considered in Section 3.1, in which
the population is composed of a priori defined groups or households with given
sizes.

4.2.1. The basic household process �R�t�;A�t��. Let �R�t�;A�t�� describe
what has happened to a household of size n, with no initial infectives, after
having been subjected to global infection pressure t ≥ 0, that is, when it has
been exposed to t time units of global infection. Here R is the number of
household members having had the disease [in the terminology of Section 3.2,
R is the final size when there are 0 initial infectives and π = exp�−λGt/N�]
and A is the cumulative sum of the infectious periods of these individuals.
We assume that, as far as the process �R�t�;A�t�� is concerned, local (within-
household) infections are instantaneous. Thus R and A are constant except
for a finite number of (simultaneous) jumps, corresponding to infection from
outside of a susceptible individual; they are nondecreasing with 0 ≤ R ≤ n
and 0 ≤ A ≤ 6, where 6 is the sum of n independent copies of TI. The R and
A components are strongly correlated (as T and TA in Section 3.2) and may
even be equal if TI takes a constant value tI (Reed–Frost case).

It may be useful to have a more concrete construction of �R;A�. Label the
individuals in the household 1;2; : : : ; n. For k = 1;2; : : : ; n, let individual k be
endowed with random variables �Q�k�G ;Q

�k�
L ;T

�k�
I �, where QG and QL are the

thresholds for global and local infections, respectively. Thus QG is the total
time units of global infection that has to be present before a given individual is
globally infected, so QG follows a negative exponential distribution with rate
λG/N. Similarly, QL is the total time units of local infection that has to be
present before a given individual is locally infected, so QL follows a negative
exponential distribution with rate λL. All these random variables, whether for
the same or different individuals, are assumed to be independent.

To construct the associated realization of �R;A�, first, the n QG-values are
marked on the t-axis. The first jump of �R;A� occurs at the smallest of these,
that is, at the least amount of global infection necessary to infect an individual
in our previously completely susceptible household. This infected individual
will initiate an epidemic among the remaining n−1 susceptibles that is deter-
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mined by the values of �Q�k�T ;T
�k�
I � [see, e.g., the construction of Sellke (1983)

as described in Ball (1986)]. Let T and TA be, respectively, the total size and
severity of this epidemic, where T includes the initial infective. Then the size
of the first jump of �R;A� is �T;TA�. Next, the T − 1 marks corresponding
to the individuals who are no longer susceptible should be deleted from the
t-axis. The next jump of the process will then occur at the smallest remain-
ing mark, at which point one of the individuals not infected by the epidemic
corresponding to the first mark will be globally infected. This individual will
initiate an epidemic among the other remaining susceptibles. The total size
and severity of this second epidemic is the size of the second jump of �R;A�
and so on. This view of �R;A� yields, for instance, easy estimates of the incre-
ments of the process, since these depend on finding at least one of the original
marks in the time interval considered.

The results in Section 3.2 [in particular (3.9) and (3.10)] are directly inter-
pretable in terms of �R;A�. We have E�R�t�� = µ̃n;0, with π = exp�−λGt/N�
[we will use the notation µ̃n;0�π� in the sequel, to make the dependence on
π explicit], and E�A�t�� = E �TI�E �R�t��, since Wald’s identity for epidemics
applies for any fixed number of initial infectives. Let us further, for t; s ≥ 0, de-
note cov�R�t�;R�s�� by cRn �t; s�, cov�A�t�;A�s�� by cAn �t; s� and cov�R�t�;A�s��
by cBn �t; s�. For t = s, the covariances can be derived from (3.9). For t ≤ s, say,
one may, at least in theory, use the properties of the exponential distributions
to derive the covariances: given �t;R�t�;A�t��, R�s� −R�t� and A�s� −A�t�
will have the same distribution as �R�s− t�;A�s− t�� in a household starting
with n−R�t� susceptibles. However, it will be seen in the sequel that explicit
determination of the covariance functions is not essential for the derivation of
the main results; they will only be needed explicitly for the case t = s, for a
particular choice of t.

4.2.2. Embedding the epidemic process. Assume that each household in
the population has a process �Ri�t�;Ai�t��, i = 1; : : : ;m, of the type described
above. Let R•�t� =

∑
Ri�t� and A•�t� =

∑
Ai�t�. Assume also that an initial

amount T0 of infectious time is applied to the initially totally susceptible pop-
ulation. We can now define a sequence of stochastic times in which to consider
�R•�t�;A•�t�� (these correspond roughly to a description of the epidemic by
cumulated generations, with anticipated local or within household infections):

T0 → R•�T0�;A•�T0�;
T1 = T0 +A•�T0� → R•�T1�;A•�T1�;
:::

Tk+1 = T0 +A•�Tk� → R•�Tk+1�;A•�Tk+1�;
:::

Thus T1 is the total amount of infection that has been generated in the pop-
ulation after the local household epidemics initiated by the initial T0 units of
infectious time have occurred. These T1 units of infection may create further
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global infections which may in turn give rise to further local infections, after
which there will have been a total of T2 units of infectious time generated
in the population. The process continues until the additional infectious time
created by a set of local infections is not enough to give rise to further global
infections. Consequently, the above sequence stops at T∞ x= min�t ≥ 0x t =
T0 +A•�t�� (see Figure 3). Then R•�T∞� represents the final size of the epi-
demic in the population and T∞ = A•�T∞� +T0 represents its severity.

4.2.3. Asymptotic distribution of the embedding process and of the final size
of the epidemic. For n = 1;2; : : : ; let mn be the number of households of
size n, m the total number of households, N = ∑

nmn the total number of
individuals in the population, θn =mn/m the proportions of households of size
n and m̃1 =

∑
nθn < ∞. Then E�R•�t�� =

∑
mnµ̃n;0�exp�−λGt/N��. In order

to handle the bivariate character of �R•;A•�, let us use the Cramér–Wold
device and define, for �α;β� ∈ R2,

Z
�α;β�
m �t� = 1√

m

(
α
(
R•�Nt� − E�R•�Nt��

)
+ β

(
A•�Nt� − E�A•�Nt��

))
:(4.1)

Proceeding as in Scalia-Tomba (1990), under the further condition that∑
n2θn < ∞, it can be shown that, as m → ∞, Z�α;β�m converges in distri-

bution, on D�0;∞� with the Skohorod topology, to a Gaussian process with
mean 0 and covariance function

γ�α;β��t; s� =
∑
θn
(
α2cRn �t; s� + αβ

(
cBn �t; s� + cBn �s; t�

)
+ β2cAn �t; s�

)
;(4.2)

where π, at times t and s, now equals exp�−λGt� and exp�−λGs�, respectively.

Fig. 3. Determination of the severity of the epidemic from the embedded process A•�t�.
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Now let r�t� = ∑ θnµ̃n;0�exp�−λGt��, a�t� = E �TI� r�t�, r̃�t� = r�t�/m̃1 and
ã�t� = a�t�/m̃1. Then, letting �α;β� = �0;1�, we have that, as m→∞,

Ãm�t� =
1√
m

(
A•�Nt� −ma�t�

)
(4.3)

converges weakly to a Gaussian process with mean 0 and covariance function
γ�0;1�. Assume now that T0/N→ µ0 > 0 as m→∞. Then

T∞
N
= min

{
tx t = T0

N
+ ã�t� +

√
m

N
Ãm�t�

}
;(4.4)

and, since �√m/N�Ãm�t� converges uniformly to 0 on any compact subset of
�0;∞�, we have that T∞/N → τ�µ0� x= min�tx t = µ0 + ã�t��. We may then
conclude that Z�α;β�m �T∞/N� converges in distribution to Z�α;β�m �τ�µ0�� for all
�α;β�, which means that the vector

N√
m

(
R•�T∞�
N

− r̃
(
T∞
N

)
;
A•�T∞�
N

− ã
(
T∞
N

))
(4.5)

converges to a bivariate normal distribution with mean 0 and covariance ma-
trix M�µ0� with elements M11 =

∑
θnc

R
n �τ�µ0�; τ�µ0�yπ = exp�−λGτ�µ0���,

and M12 = M21 and M22 of similar form, with cBn and cAn replacing cRn . By
using the identities satisfied by T∞ and by τ�µ0� [see Scalia-Tomba (1990)],
this result can be recast into the convergence in distribution of the vector

√
m

(
R•�T∞�
N

− r̃�τ�µ0��;
A•�T∞�
N

− ã�τ�µ0��
)

(4.6)

to a bivariate normal distribution with mean 0 and covariance matrix m̃−2
1 �1−

ã′�τ�µ0���−2 AM�µ0�AT, where A11 = 1− ã′�τ�µ0��, A12 = r̃′�τ�µ0��, A21 = 0
and A22 = 1.

This is the basic result on asymptotic normality of the final size of the
epidemic, around the value predicted by “deterministic” considerations, when
the epidemic is started by a large amount of initial infection [some algebra will
show that the definitions of τ�µ0� and, consequently, of r̃�τ�µ0�� and ã�τ�µ0��
agree with (3.35), when µ0 = 0].

The most interesting case to study is, however, when T0 remains fixed as
m → ∞, corresponding to few initial infectives. One must then combine the
branching process approximations of Sections 3.3.1 and 3.5 with the asymp-
totic normality results shown above. Once again, the strategy in Scalia-Tomba
(1985, 1990), of studying the final size distribution in different ranges of val-
ues, may be followed. Let us, for simplicity, denote the final size of the epidemic
in a population with m households by Tm and assume that the epidemic is
above threshold (otherwise, the results in Sections 3.3.1 and 3.5 account for
the whole asymptotic distribution). The branching process approximations of
Sections 3.3.1 and 3.5 then show that Pr �Tm = k� → p�k�, for k = 0;1; : : : ;
where p�·� is the distribution of the total size in the approximating branching
process. This distribution has total mass τ < 1, say, corresponding to the event



EPIDEMICS WITH TWO LEVELS OF MIXING 77

of extinction of the approximating branching process. It therefore remains to
show that the remaining probability mass 1−τ is concentrated around the de-
terministic solution for a large epidemic [see (3.35); the solution corresponds
to ρ = r̃�τ�0��, with the convention that the non-zero solution should be taken
when µ0 = 0]. One then starts by studying Pr �k < Tm < am�, where �am�
satisfies am→∞ but am/m→ 0 as m→∞, with the aim of showing that

lim
k→∞

lim
m→∞

Pr �k < Tm < am� = 0:(4.7)

The coupling construction of an approximating branching process by Ball and
Donnelly (1995) (see Section 3.3.1), combined with the introduction of a lower
bounding branching process [cf. Whittle (1955), Ball and Clancy (1992) and
Andersson (1993)], can be used for this purpose. The approximating branch-
ing process BU�t�, say, is always larger than the infectives process Im�t�, since
every contact is considered as a new individual in BU, but some contacts do
not yield new infectives in Im, since contacts may occur with already infected
or removed individuals. This mechanism amounts to a thinning of the branch-
ing process, with thinning probabilities depending on the total progeny up to
the time point considered for the contact. To make things simpler, one can
therefore apply thinning to each contact in the branching process, with fixed
probability ε > 0, which will overestimate the “true” thinning probabilities
as long as the total number of individuals ever having been infected is less
than εN, thus constructing a second branching process BL�t�, for which we
will have BL�t� ≤ Im�t� ≤ BU�t�, at least as long as the total epidemic is less
than εN. If we denote the distribution functions of final size (total progeny)
by FL, Fm, and FU, respectively, we will then have FU�i� ≤ Fm�i� ≤ FL�i�,
for all i ≤ εN. Thus, 0 ≤ Fm�am�−Fm�k� ≤ FL�am�−FU�k� ≤ τ�ε�−FU�k�,
where τ�ε� is the extinction probability in the ε-thinned process. However,
since τ�ε� → τ as ε → 0 and FU�k� → τ as k → ∞, one obtains the desired
result.

The remaining range, as long as �am� is taken so that am/
√
m→∞, can be

studied using the Gaussian process approximation [see Scalia-Tomba (1985)]
to show that the crossing condition, equivalent to achieving the final size, can
only be fulfilled in aO�√m� neighborhood of the “deterministic” value. Having
thus accounted for the whole asymptotic probability mass, one now proceeds
by showing that Pr ��Tm − ρN�/

√
N ∈ K� = Pr ��Tm − ρN�/

√
N ∈ K �Tm >

am�Pr �Tm > am� ≈ Pr ��Tm − ρN�/
√
N ∈ K �Tm > am��1 − τ�, for large N

and K ⊂ R bounded. The final step consists in showing that the epidemic
process, conditioned on Tm > am, that is, on having a large epidemic, again
follows the Gaussian approximation derived above, now with µ0 = 0. How-
ever, the conditioning event involves members from at most am households
and times, used as arguments in the Z�α;β�m process, of order O�am/m�. The
effect on the (conditional) limit law of Z�α;β�m will be vanishingly small and
the limit law will be unchanged, at least as long as the removal of any set of
am households from the total set of m households does not affect asymptotic
proportions or means. This last requirement is equivalent to the uniform in-
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tegrability of the sequence of household size proportion distributions, indexed
by m.

4.3. The case of fixed infection probabilities. In the case studied in Sections
2.1 and 2.2, in which the infection probabilities are fixed and independent, it
is possible to construct an embedding process directly based on the clumps
formed by the local infection process. Let �Ck� denote the total number of lo-
cal components of size k = 1; : : : ;N that have been formed by local infection,
in a population of size N. Closely following Scalia-Tomba (1985, 1990), we now
construct an epidemic between components, with susceptibility and infectiv-
ity proportional to size. To each component of size k, we attach a threshold
variable with geometric distribution with “success probability”=1−�1−pG�k,
representing the number of individual infection attempts necessary to infect
the component. We denote these variables by �Qkj�, 1 ≤ j ≤ Ck, k = 1; : : : ;N.
We now define processes Xkj�t� = 1�Qkj≤t� and Xk�t� =

∑
jXkj�t�, which rep-

resent the numbers of k-components that have been infected after t infection
attempts on the population. Finally, we define X�t� = ∑

k kXk�t�, the total
number of individuals infected after t infection attempts. We now construct
the generations of the epidemic process by consideringX�t� at suitably defined
random times. Assuming that the epidemic is started by m0 initial infectives
global to the population, we set T1 = m0, T2 = m0 +X�T1� and, in general,
Tk+1 =m0 +X�Tk�. These times form an increasing sequence which stops at
T∞ = min�tx t =m0 +X�t��. The final size of the epidemic in the population
is then X�T∞�.

We would now want to consider the asymptotic situation N → ∞, pG ≈
λG/N, local infection probabilities fixed and m0 either fixed or increasing with
N. Except for the randomness of �Ck�, the problem is similar to the situations
studied in Scalia-Tomba (1985, 1990). It can therefore be expected that similar
results will be valid, modified only by the additional randomness generated
by �Ck�. However, in models like the great circle (Section 2.1) or the epidemic
among giants (Section 2.3), there will potentially be an infinite number of
types (sizes) of local components. Work is in progress on how best to resolve
the technical problems arising in these situations; the results will be published
separately.

5. Applications.

5.1. Estimating R∗ from household total size data. A number of authors
[e.g., Longini and Koopman (1982), Becker (1989) and Addy, Longini and
Haber (1991)] have previously considered household infection data, using a
secondary attack rate that corresponds to our λL. They do not explicitly model
the spread of the infection through the wider population, simply assuming that
each individual is exposed to the same probability of external infection (via a
primary attack rate).

The present paper provides a framework for modelling the spread through
the whole population that is consistent with these previous household models
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(see Section 3.4). We can thus estimate parameters of the internal process
similarly to those authors and additionally relate the probability of external
infection to our global infection rate parameter λG, and thus estimate the
overall group-to-group reproductive ratio R∗.

In this subsection we describe a method for estimating the threshold param-
eter R∗ when the available data are the total number of individuals in each
group that are ultimately infected by the epidemic. We shall assume that the
number of groups m is large, that a global epidemic has occurred and that the
distribution of the infectious period is known. Our method is based on Addy,
Longini and Haber (1991); see Becker (1989) for alternative approaches.

Consider first the extended model of Addy, Longini and Haber (1991) and
suppose that the total size of such epidemics in a number of independent
groups is known. Let λL denote the individual-to-individual local infection
rate and let λG denote the individual-to-population global infection rate as
defined in Section 3.1. Addy, Longini and Haber (1991) give an algorithm for
obtaining maximum likelihood estimates of the local infection rate λL and
the probability π that a random individual escapes infection. [The likelihood
is straightforward to compute numerically using (3.12).] In our situation the
epidemic total sizes in different groups are not mutually independent, but if
the number of groups is large, the total sizes will be approximately indepen-
dent in the event of a global epidemic. Thus estimates for λL and π can be
derived using the method of Addy, Longini and Haber (1991). An estimate
for z can then be obtained using (3.35), allowing λG to be estimated from the
equation π = exp�−λGzE �TI��. An estimate for R∗ can then be obtained from
(3.31).

As a simple example, we consider data on the spread of an influenza epi-
demic in Tecumseh, Michigan, analyzed in Addy, Longini and Haber (1991).
The data do not exactly fit our situation since (a) they are combined data over
two separate epidemics, (b) only 10% of households are included, (c) house-
holds of more than five individuals are omitted and (d) it is likely that some
susceptibles were in fact immune or at least highly resistant to the strain in-
volved in the outbreak (Klaus Dietz and Jim Koopman, personal communica-
tion), which will lead to underestimation of R∗ [see Dietz (1993)]. The present
analysis should therefore be viewed as simply illustrative of our methodology.
The data are shown in Table 1.

Addy, Longini and Haber (1991) considered two possible distributions for
the infectious period, namely, TI ≡ 4:1 days and TI follows a gamma dis-
tribution with probability density function f�t� = c2t exp�−ct�, t > 0, where
c = 2/4:1 ≈ 0:49. For the model with a constant infectious period, Addy,
Longini and Haber (1991) obtained the estimates λ̂L = 0:0423 and π̂ = 0:8677,
from which p̂L = 0:1592, λ̂G = 0:1950 and ẑ = 0:1775. From these we can cal-
culate R̂G = 0:7995, µ̂ = 1:4145 and hence R̂∗ = µRG = 1:1309. For the model
with a gamma distributed infectious period, Addy, Longini and Haber (1991)
obtained the estimates λ̂L = 0:0446 and π̂ = 0:8674, from which p̂L = 0:1605,
λ̂G = 0:1955 and ẑ = 0:1775; from which R̂G = 0:8006, µ̂ = 1:4102 and
R̂∗ = 1:1303. Note that the two models give very similar estimates of R∗
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Table 1

Observed distribution of influenza A(H3N2) infections in 1977–
1978 and 1980–1981 combined epidemics in Tecumseh; Michigan

No. of susceptibles∗ per household

No.
infected 1 2 3 4 5

0 110 149 72 60 13
1 23 27 23 20 9
2 13 6 16 5
3 7 8 2
4 2 1
5 1

Total 133 189 108 106 31

∗The criterion for classifying individuals as susceptible is a pre-
season hemagglutination inhibition test detecting no antibody in
a dilution of 1 in 128 or less. Households with more than five
susceptibles are deleted from all analyses. [From Addy, Longini
and Haber (1991).]

and other parameters. Also, the observed proportion of initial susceptibles
ultimately infected by the disease is 250/1414 = 0:1768, which is in close
agreement with the estimate ẑ = 0:1775 fitted from both models.

The moral appears to be that the data are inadequate to discriminate be-
tween rival models for within-group contacts, but the parameters that deter-
mine the overall spread of the epidemic—µ and RG, and hence R∗ = µRG—
are not sensitive to this inadequacy. Similar conclusions can be drawn from
the comparison by Islam, O’Shaughnessy and Smith (1995) of their fit of the
somewhat extreme inverse Gertsbakh model (see Section 5.2.2) with the re-
sults of Haber, Longini and Cotsonis (1988) for some similar sets of household
epidemic data.

The method of Addy, Longini and Haber (1991) also yields approximate
confidence sets for �λL; π�. Thus an approximate confidence interval for R∗
could be obtained, since R∗ is a function of λL and π. The above method will
always yield an estimate of R∗ that is larger than 1. This is because (3.35)
is essentially deterministic, and in a deterministic model an initial trace of
infection can only lead to a nonzero proportion of the population ultimately
being infected if the model is above threshold. Thus the above method of es-
timating R∗ should only be used if there is a good reason to believe that a
global epidemic has occurred.

5.2. Vaccination: the equalizing strategy. The fundamental aim of a vac-
cination program must be to reduce the basic reproductive ratio R∗ to below
unity. In Section 2.5 we examined the implications of this for a simple example
of large groups of equal sizes. Now, having seen (Section 3) that the relation
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R∗ = µRG holds for a wider set of models, we return to examine the ques-
tion of optimal vaccination strategies in more generality. We shall compare
different strategies that vaccinate a fixed proportion v of the population.

As noted in Section 2.5, any vaccination strategy will reduce RG simply
pro rata, so the difference between strategies will lie in how they affect the
(size-biased) mean component size µ. In practice, of course, we do not know
the component sizes at the time of vaccination, and even for small group sizes
the evaluation of the distribution and mean of the component size in general
requires quite complicated iterative calculation (see Section 3.2).

When we consider more general within-group distributions, one straight-
forward strategy that suggests itself is to leave the numbers of susceptibles
in each group as nearly equal as possible. We call this the equalizing strategy,
and conjecture that it is optimal for the groups model for any infectious period
distribution.

5.2.1. The equalizing strategy for groups or households. It is easy to see
that the equalizing strategy will be optimal if and only if, for all n, two groups
of n susceptibles contribute less to µ than a pair of groups of sizes n− 1 and
n + 1. Because the probability of a global infection hitting a group with n
susceptibles is proportional to n, this condition is equivalent to the sequence
(nµn) being convex; here µn = µ1; n−1 is the mean size of an outbreak in a group
of n susceptibles which is started by just one of them becoming infected. The
condition that (nµn) be convex is in turn equivalent to the requirement that
the second difference Dn ≡ nµn − 2�n− 1�µn−1 + �n− 2�µn−2 be greater than
or equal to 0 for all n.

It is easily shown that the equalizing strategy is optimal for the simple “all-
or-none case” where within-group outbreaks are either of size 1, with proba-
bility q1, or of size n (this can be thought of as arising when the infectious
period is either of length 0 or ∞, with respective probabilities q1 and 1− q1).
For this case, µn = q1 + n�1− q1�, whence Dn = 2− 2q1 ≥ 0.

Note that the model of Becker and Dietz (1995) is the even more special
“all” case (q1 = 0, and therefore Dn = 2), where within-group infectivity is
so high that no one escapes. [The details of their calculations are a little
complicated because they work in terms of the non-size-biased distribution
�hk� rather than �πk� (see Section 2.3), but it is not difficult to check that
their conclusions are consistent with the optimal strategy being to minimize
µ, and that this is achieved by using the equalizing strategy.]

The all-or-none case is one in which the within-group infections by an indi-
vidual are maximally correlated. The other extreme, for models with a general
infectious period, is the independent links or Reed–Frost case considered in
Section 2. For this, we have calculated Dn for n = 2; : : : ;15 using Maple (see
Figure 4), and the conjecture appears to hold for all these values, with a pat-
tern suggesting that it is likely to hold for all n.

Indeed, on the basis of this, and a similar plot for the epidemic with expo-
nentially distributed infectious period (for n = 2; : : : ;8), we conjecture that in
fact Dn ≥ 2 − 2q1 for all n, so that the simple all-or-none case is the lower
bound.
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Fig. 4. The second difference Dn; conjectured to be greater than or equal to 2 − 2q1; plotted
against q1 for n = 2; : : : ;15 for the independent links �Reed–Frost� case.

Our calculations for the independent links and exponential infectious period
models used the techniques of Section 3.2, particularly (3.6). For small values
of n, we can work out explicit expressions forDn for a general infectious period
in terms of the sequence (qk), where qk is as before [see following (3.6)] the
probability that an infective will infect none of a set of k susceptibles in the
same group. Let dk ≡ qk−qk+1 be greater than or equal to 0 because (qk) is a
monotone nonincreasing sequence. We find D2 = 2d0, D3 = 2d0 + 6d0d1 and
D4 = 2d0 + 12d0�q1d1 + d0d2 + 2d1d2�, in each case greater than or equal to
our conjectured minimum of 2d0.

In the remainder of this subsection, we prove that the equalizing strategy
is optimal for a variant of the groups model in which individual contacts are
negatively correlated (Section 5.2.2), for the case of large groups (Section 5.2.3),
and, in Section 5.2.4, for the great circle model introduced in Section 2.3.

Note that for the different class of models where global infections choose
groups with equal probabilities, instead of individuals with equal probabilities,
it is easy to show that the equalizing strategy is not optimal. For this case,
the appropriate second difference is Dn = µn + µn−1 − 2µn−2, and it is quite
easy to show that D2 = 1 − 2q1, which is less than 0 for q1 > 1/2, and that,
in general, Dn = −1/n < 0 at q1 = 1.

5.2.2. The equalizing strategy for the Gertsbakh model and its inverse.
Gertsbakh (1977) introduced a model in which each individual makes exactly
one (potentially infectious) contact. This does not seem realistic in the context
of epidemics, but is of some theoretical interest in that it provides an example



EPIDEMICS WITH TWO LEVELS OF MIXING 83

with negative correlation between the contacts made by an individual, which
is not possible for our basic general infectious period model as defined in
Section 3.1. Gertsbakh (1977) also considered the inverse of this model, in
which there is exactly one contact to each individual, and this inverse model
has recently been fitted to data by Islam, O’Shaughnessy and Smith (1995).
Both models can be generalized, replacing “exactly one contact” by “one
contact with probability �n−1�p, otherwise none” [we choose this parameter-
ization so that p is the probability of contacting any one specific individual;
p ≤ 1/�n− 1�].

For the inverse model, with one initial infective in a group of size n, the
probability that the total size of the group epidemic will be k is

p′k =
(
n− 1
k− 1

)
p�kp�k−2�1− kp�n−k �1 ≤ k ≤ n�(5.1)

[Islam, O’Shaughnessy and Smith (1995)]. It is not easy to calculate the mean
outbreak size µn from (5.1). However, it follows from a simple and general
result (see Appendix) that µn is the same as for the forward model, for which
calculations turn out to be easier. We can write down the corresponding proba-
bility that the total size of the group epidemic will be k for the forward model,

pk =
�n− 1�!
�n− k�!�p

k−1 − �n− k�pk� �1 ≤ k ≤ n�:(5.2)

From (5.2) it is straightforward to show that (for both the Gertsbakh model
and its inverse)

µn =
n−1∑
k=0

�n− 1�!
�n− k− 1�!p

k:(5.3)

From this, matching powers of p in Dn ≡ nµn + �n − 2�µn−2 − 2�n − 1�µn−1,
we have that

Dn =
n−1∑
k=1

�n− 2�!
�n− k− 1�!k�k+ 1�pk:(5.4)

This is a sum of nonnegative terms and is therefore greater than or equal to
its first term, 2p = 2 − 2q1, so our conjecture holds for both the Gertsbakh
model and its inverse.

5.2.3. The equalizing strategy for large groups. We next consider the vac-
cination problem in the limiting case where groups are large (see Sections 2.4
and 2.5). Let ri = �ni − 1�pL ≈ nipL denote the local reproductive ratio in
group i, whose size is ni, and let R∗ = RGµ be the overall reproductive ratio
as before. Then we can distinguish three cases:

1. Safe: R∗ < 1 and ri < 1 for all groups; only minor local outbreaks can occur.
2. Restricted: R∗ < 1, but ri > 1 for some groups; the overall (between-group)

epidemic is below threshold, but an outbreak can affect significant propor-
tions �O�ni�� within a small number of groups.
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3. Generalized: R∗ > 1: a global outbreak affecting a significant proportion of
the whole population �O�N�� can occur.

This classification follows that of Watson (1972) except that we have changed
the name for case (1): Watson called this localized, which given our use of
“local” in this paper would more appropriately be applied to case (2). We could
further subdivide (3) according to whether ri > 1 or ri < 1 for most groups:
this determines whether the outbreaks in each group are driven by local or
global contacts.

In case (2), it is arguable whether we need to vaccinate. If we wish to,
then the requirement is to reduce each group below its local threshold, which
requires that we vaccinate a proportion vi ≥ 1− 1/ri in group i. Note that in
case (2), R∗ = RGµ < 1 although some groups are above their local threshold
and therefore µ� 1; thus we must have RG = o�1� in this case.

We can also have RG = o�1� in case (3), provided that ri > 1 for some
groups. This is the interesting case already referred to in Sections 2.4
and 3.3.2, where the large amplification from local infections in such groups
puts the population as a whole above threshold although the global infection
probability pG is extremely small. In this case, it is easy to see that the
equalizing strategy will, as we increase the proportion vaccinated v, take us
to case (2) before we reach the fully satisfactory situation of case (1).

To keep matters simple, we shall make the stronger requirement that our
vaccination strategy must take us to case (1), where not even a restricted
outbreak can occur. We can then prove that the equalizing strategy is optimal,
as follows.

We assume that we have m groups of sizes ni, i = 1; : : : ;m, giving a total
population N = ∑

i ni. We consider the asymptotic regime where the sizes
tend to infinity with the relative sizes fixed, that is, ni = fiN, where �fi� is
a fixed distribution, and we scale pG and pL so that the global reproductive
ratio RG = NpG and mean within-group reproductive ratio R̄L = NpL/m
(note that for once this is not a size-biased mean) remain fixed. We could also
let the number of groups m→∞, provided we keep the distribution of group
sizes fixed.

As usual, we consider a strategy that vaccinates a proportion v of the pop-
ulation, asking what distribution of the vaccine among groups will achieve
R∗ < 1 for minimal v. We shall use primes to denote modified values of pa-
rameters after vaccination, including s′i to denote the number of susceptibles
in group i after vaccination.

Since we require r′i < 1 for all i, we can use the branching process approxi-
mation for within-group contacts to give us µ′i = 1/�1−r′i�. Hence µ′, the size-
biased mean of the µ′i’s, is

∑
i µ
′
i�s′i/

∑
j s
′
j�. Now r′i = s′ipL andR′G = pG

∑
j s
′
j,

whence R′∗ = R′Gµ
′ = c

∑
i µ
′
ir
′
i = c

∑
i r
′
i/�1 − r′i�, where c = pG/pL. Also,∑

i r
′
i = pL

∑
i s
′
i = �1− v�NpL, that is,

∑
r′i ∝ 1− v.

Thus our vaccination problem is equivalent to maximizing
∑
r′i subject to

keeping
∑
r′i/�1− r′i� fixed and subject to the constraints r′i ≤ ri (i.e., s′i ≤ ni;

violating this constraint would require a negative number of vaccinations in
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group i). Since f�x� = x/�1 − x� is convex over the range of interest (0,1),
the solution to this is to take all the r′i’s equal, as far as possible, and since
s′i ∝ r′i, this is the equalizing strategy. By “as far as possible” we mean that if
the constraints s′i ≤ ni prevent us from making the s′i’s equal, we leave s′i = ni
in all groups up to a certain size nv and take s′i = nv wherever ni > nv.

To find the value of v required for the straightforward case where we can
make the s′i’s equal, we note that their value will then be �1 − v�N/m and
hence the r′i’s will all equal �1 − v�R̄L. Also R′G = �1 − v�RG and so R′∗ =
R′oµ

′ = �1− v�RG/�1− �1− v�R̄L), whence the condition R′∗ < 1 yields

v > 1− 1/R0;(5.5)

where R0 ≡ RG + R̄L, the mean reproductive ratio for an individual from a
randomly chosen household.

In conclusion, we note that our analysis only required consideration of the
branching process regime at the start of a potential outbreak. One consequence
of this [see, e.g., Mollison (1995), Section 2.3] is that our results will hold for
the deterministic version of our large group model; this gives an indirect way
of recovering the deterministic result of May and Anderson (1984) [see also
Hethcote and Van Ark (1986)].

5.2.4. The equalizing strategy for the great circle model. We conclude by
proving that the equalizing strategy is optimal for the great circle model: that
is, the optimal policy is to spread the vaccinations around the circle as evenly
as possible.

We consider then a population of N individuals spaced equally around a cir-
cle. If we vaccinate a fixed numberm of individuals, so that v =m/N, then the
(non-size-biased) mean length of the intervals of susceptibles between these
will be τ ≡ �N −m�/m = �1/v� − 1. Now consider choosing a susceptible at
random and then looking at the numbers of susceptibles T+ and T−, respec-
tively, to its right and left between it and the next vaccinated individual. Let
T = 1+T+ +T−. Then E�T� is the size-biased mean for a group (interval) of
susceptibles.

Consider first the case where local contacts always infect, so that E�T� will
also be the mean clump size for the epidemic. That E�T� is minimal when T
is as near constant as possible, that is, it is = τ when τ is an integer, and
has a distribution concentrated on the two integers either side of τ otherwise,
is a well-known result for renewal processes: it can be thought of as saying
that waiting times for buses will be minimal if they are scheduled at equal
intervals.

What we prove is a generalization of this result that takes account of our
actual local infection process. It turns out that we can allow a more general
local infection process than the basic great circle model in which infections by
different individuals are independent.

Thus, secondly, consider a model in which the local outbreak caused by an
individual i, in the absence of vaccination, has an arbitrary distribution on
intervals containing that individual. Suppose that it consists of C+ individuals
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to the right of i and C− individuals to the left, so that its total size is C =
1+C+ +C−. Let pr = P�C+ ≥ r�.

We are now ready to put the vaccination process and the infection process
together; we need of course to assume that these are independent. When we
include the information on vaccinated intervals, the local outbreak caused by
i becomes D = 1+R+L, where R = min�T+;C+� and L = min�T−;C−�. Our
target is to find the distribution of T that minimizes µ = E�D�.

Now

E�R� =
∞∑
r=1

P�R ≥ r� =
∞∑
r=1

P�C+ ≥ r�P�T+ ≥ r� =
∞∑
r=1

prP�T+ ≥ r�:

Next comes the crucial step: P�T+ < r� =
∑r
j=1 P�T+ = j−1�. But, T+ = j−1

only if the individual at j (i.e., j steps to the right of individual i) is vaccinated,
and this has probability 1/τ = m/�N − m�. Hence P�T+ = j − 1� ≤ 1/τ
and therefore P�T+ ≥ r� ≥ 1 −∑r

j=1 1/τ = 1 − r/τ. Of course we also have
P�T+ ≥ r� ≥ 0, so that E�R� = ∑∞

r=1prP�T+ ≥ r� will be minimized by
taking P�T+ ≥ r� = max�1− r/τ;0�. A mirror argument for E�L� leads to the
corresponding condition P�T− ≥ r� = max�1− r/τ;0�.

To see that these minima are uniquely attained when the distribution of T
is concentrated on �τ� (the integer part of τ) and �τ� + 1, note that equality
in the argument of the last paragraph [turning “only if” into “if and only if”
and hence giving P�T+ = j − 1� = 1/τ] requires that it is impossible to have
two vaccinated individuals within the range j = 0 to �τ� − 1; hence T ≥ �τ�.
And T ≤ �τ� + 1 because otherwise it would be possible for T+ (and T−) to be
= �τ� + 1, which would contradict P�T+ ≥ r� = max�1− r/τ;0�.

We have thus shown that the equalizing vaccination strategy is optimal
for the generalized great circle model, in which the local outbreak caused by
an individual takes an arbitrary distribution on the intervals containing the
individual.

APPENDIX

Mean size of inverse epidemics. We prove here a general lemma, used
in Section 5.2.1, which tells us that the mean size of an epidemic started by a
randomly chosen individual is the same as for the model where we invert the
contact structure.

Lemma 1. Consider any directed graph 0 on a finite number of nodesN. Let
µ�0� be the mean size of the set of points that can be reached from a randomly
chosen initial node of 0 by following links of the graph. Let 0′ denote the inverse
of 0, in which the direction of every link is reversed. Then µ�0′� = µ�0�.

Remark. 0 can either be a specific given graph or, as in our epidemic mod-
els here, a random graph, with any desired distribution as long as it is (a.s.)
finite.
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Proof of Lemma 1. Suppose first that 0 is a specific given graph. For any
pair of nodes i; j of 0, let Iij = 1 if j can be reached from i, =0 otherwise.
Then the size of the set of points that can be reached from i is

∑
j Iij and hence

the mean size if i is chosen randomly, that is, from the uniform distribution
over the set of nodes, is µ�0� = �1/N�∑i

∑
j Iij.

Similarly, for the inverse graph, µ�0′� = �1/N�∑j

∑
i I
′
ji, but i can be

reached from j in 0′ if and only if j can be reached from i in 0. Therefore
I′ji = Iij for all i and j, whence µ�0′� = µ�0�.

Finally, if 0 is a random graph, we simply take expectations of µ�0� and
µ�0′� with respect to its distribution. 2
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Göteborg, Sweden.

Bailey, N. T. J. (1975). The Mathematical Theory of Infectious Diseases and Its Applications.
Griffin, London.

Ball, F. G. (1983a). A threshold theorem for the Reed–Frost chain-binomial epidemic. J. Appl.
Probab. 20 153–157.

Ball, F. G. (1983b). The threshold behavior of epidemic models. J. Appl. Probab. 20 227–241.
Ball, F. G. (1986). A unified approach to the distribution of total size and total area under the

trajectory of infectives in epidemic models. Adv. in Appl. Probab. 18 289–310.
Ball, F. G. (1996). Threshold behaviour in stochastic epidemics among households. Applied Prob-

ability 1. Lecture Notes in Statist. 114 253–266. Springer, Berlin.
Ball, F. G. and Clancy, D. (1992). The final outcome of a generalised stochastic multitype epi-

demic model. Technical Report 92-4, Nottingham Statistics Group.
Ball, F. G. and Clancy, D. (1993). The final size and severity of a generalised stochastic multi-

type epidemic model. Adv. in Appl. Probab. 25 721–736.
Ball, F. G. and Donnelly, P. J. (1995). Strong approximations for epidemic models. Stochastic

Process Appl. 55 1–21.
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