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I. Introduction

The aim of this chapter is to survey theoretical results on spatial models for
epidemics, and to discuss how they can help us in understanding, and if possible
controlling, diseases such as rabies. In the first half of this chapter we give a
general survey of work on spatial models for epidemics. In the second half we
discuss some simulations carried out by Kuulasmaa (1983), aimed at exploring
general aspects of endemic fox rabies; these provide evidence of the importance
of incorporating stochastic and spatial features. We conclude with some discus-
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sion of the relations between simple general spatial models as considered here,
and more detailed specialised models such as those described in other chapters by
Bacon, Ball, and Voigt and Tinline.

We first introduce the three main aspects of epidemics with which we shall be
concerned, namely thresholds, velocities and endemicity.

A population is said to be ‘above threshold’ for a particular disease if, once
started, the disease has a chance of spreading widely through the population; and
‘below threshold’ if it will die out with only a small proportion of the population
infected. The practical problems are to identify when a population is above
threshold when threatened by a particular disease such as rabies, and to estimate
whether various control strategies, such as vaccination or culling, could bring the
population below threshold.

The second question, of velocities, relates to how fast the disease will spread if
it does become established (in an above threshold population), and how this
depends on factors such as the territorial range of individuals. Practical questions
include the likelihood of success of a spatially selective control strategy, such as
clearing a control zone of a certain width in front of the epidemic.

The third question, of endemic behaviour, is the most difficult theoretically
because our models must allow for the introduction of new susceptibles, without
which the disease would die out. Here again the most important practical ques-
tions relate to the possible elimination of the disease. However, because of the
greater difficulties of modelling, we need first to improve our understanding of
spatial endemic models. For instance, the pattern of endemic fox rabies in
Europe shows much spatial heterogeneity (‘wandering patches’, see e.g. Sayers,
Chapter 10, this volume), and it is an important question how much this is due, if
at all, to heterogeneities in the population.

li. Theory of Spatial Models

A. BASIC SPATIAL MODELS |

We begin by introducing a simple spatial epidemic model motivated by the
study of fox rabies. Rabies, especially among the fox population of western
Europe, is a disease which spreads through local interactions among territorial
animals. It therefore seems important that our model should be spatial and
stochastic, and should include the carrying capacity or some other kind of limit
on the population density. Models which are non-spatial or deterministic, or
which allow populations of unbounded density, are not fully adequate (Mollison,
1981); although they have been and will continue to be extremely useful as
stepping stones towards better, more complex, models.

We envisage space as a two-dimensional array of sites (see Fig. 1); in the
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Fig. 1. The spatial epidemic model of Equation (1). (a) Part of the two-dimensional array of
sites shown just after the start of an epidemic outbreak: this started with a single introduced infectious
individual (@), who has now infected one neighbour (now incubating, marked O). All other sites are
still occupied by susceptibles (¢). (b) The same sites, a little later: the site originally infected is now
vacant ( ), and there are several incubating (O) and infectious (@) individuals. (c) Still later: note
that two sites which had become vacant have now been recolonised by susceptibles.

context of fox rabies, these may be taken to represent square territories. Each site
may either be empty (E), or occupied by an individual who may be susceptible
(X), incubating (I), or infectious (Y). The development of the epidemic is then
prescribed by stochastic change rates (formally ‘instantaneous transition rates’ or
ITRs: when we say that a possible change has ITR equal to \, we mean that in
any short interval of time d#, the probability of its occurring is Adf), as follows:

Change  Change rate

Infection XY — 1Y p/4

Becoming infective I—7Y (o) )
Death Y—E o

Recolonisation EX — XX ri4

Here B is the overall rate at which an infective makes contacts; the change rates o
and o correspond exactly to those of the simple deterministic non-spatial model
described in Chapter 9 [Equation (1)], this volume, and lead to a generation gap
with probability distribution given by Equation (4) of Chapter 9 (a sum of two
exponential distributions), with mean T = 1/a + 1/0. The ‘recolonisation’ term
represents population regrowth, net of natural mortality (see later).

A simpler alternative model, corresponding to Equation (2) of Chapter 9,
omits the incubating state:

Change  Change rate

Infection XY =YY B'/4
Death Y—E o )
Recolonisation EX —> XX ri4

Here the infectious period and the generation gap both have exponential distribu-
tion with mean 7 = l/a'.
In both models, the spatial element is involved in the other two types of
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change. Thus XY indicates a pair of neighbours, one of whom is susceptible and
the other infectious; the first type of change represents infection of the former by
the latter. Since each individual has four neighbours (see Fig. 1), each infectious
individual will be making potentially infectious contacts at an overall rate B [for
Model (1), B’ for Model (2)], these contacts being divided equally among its four
neighbours, and of course succeeding only if the neighbour chosen is suscepti-
ble. The parameter $ thus corresponds to BN, in the simple non-spatial models
described in Chapter 9 (Equations 1-3). Similarly, the parameter r, which repre-
sents the per capita net population growth rate at low densities, corresponds
roughly to the parameter r of those models (but see comments in Section III,C).
An important concept in spatial models is the contact distribution (Mollison,
1972, 1977), which describes the spatial distribution of the potentially infectious
contacts made by an infectious individual. Here we have taken the contact
distribution as concentrated on an individual’s four nearest neighbours. This
simple distribution is probably adequate at least for the initial exploration of
endemic conditions, but if we are interested in the velocity of spread of an
epidemic, as in Section II,C, we will need to allow for longer range contacts as
well. In models for endemic conditions, we need a secondary contact distribution
as well, to describe the process of recolonisation of empty sites: here this has
also been assumed to be a nearest-neighbour distribution, and again in a more
detailed analysis we should consider the effect of allowing for longer range
movements by recolonising animals.

The type of model introduced here is about as simple as seems possible for a
stochastic spatial model suitable for endemic disease. Ideally, one would like to
achieve a broad understanding of such models, and then introduce further real-
istic details, such as seasonal and social variability. However, even such simple
models are not well understood, and initially we shall go in the other direction,
and consider the problems of thresholds and velocities in the context of even
simpler models.

B. SPATIAL MODELS: THRESHOLDS

The ‘threshold’ for a disease has been defined previously as the dividing line
between conditions in which the disease will die out with only a small proportion
of the population infected, and conditions in which there is a chance of the
disease spreading widely through the population. This should perhaps be called
the “pandemic threshold’, to distinguish it from the ‘endemic threshold’, which
may be defined as the initial conditions such that the disease will persist indefi-
nitely. The endemic threshold, to which we shall return in Section II,D, will
depend crucially on the rate of regrowth of the susceptible population, and will in
general be higher than the pandemic threshold.

In considering the basic (pandemic) threshold it seems reasonable in the first
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instance to neglect the regrowth of susceptibles, since this is slow compared
with the initial velocity of the disease. (A detailed analysis of this requires consid-
eration of the rate of advance of the front, its depth, and the typical dispersal
distances of each year’s young foxes.) If we do neglect the regrowth of suscepti-
bles, we can simplify our analysis of threshold conditions in one important
respect. It is then possible at least in the slightly simplified models usually
studied, to make a list of each individual’s potential contacts (in a stochastic
model, this will involve random choices) without having to consider time or
whether that individual will in fact be infected. The set of those eventually
infected by the disease then consists precisely of those for whom we can find a
‘chain of infection’, with each individual in the previous one’s list, which begins
with one of those initially infected. Thus, if we are only interested in who will
and who will not be infected, as we are when considering thresholds, we need
take no direct account of the time structure.

The classic threshold theorem is due to Kermack and MacKendrick (1927). It
refers to a non-spatial deterministic epidemic model with homogeneous mixing,
and says that.a pandemic will occur if and only if the basic reproductive rate C,
which is essentially the average size of each individual’s list, is greater than
unity. The further the population is initially above threshold, the further the
remaining susceptibles at the conclusion of the pandemic will be below threshold
(Kermack and Mackendrick, 1927; Kendall, 1965).

A similar stochastic model behaves similarly, except that there is a chance that
the disease will fail to get established even though the population is above
threshold. The probability of failure can be estimated by comparison with a
simpler model which allows an unlimited pool of suceptibles, and is approx-
imately C ~¥o, where Y}, is the number initially infected (Whittle, 1955; Kendall,
1965).

In models incorporating the introduction of fresh susceptibles, the disease may
either settle into endemic equilibrium, or into a cyclic pattern, with each peak of
infection behaving much like one of Kermack and McKendrick’s pandemics
(Bartlett, 1960; see also Chapters 6, 7 and 9 of this volume).

We next turn to models for spatially distributed populations. Most work on the
velocity of epidemics has been restricted to one-dimensional models (see next
section). However, it can be shown for quite a general class’ of models that
pandemics in one dimension are impossible, provided only that infectious cases
are subject to eventual removal (F. Kelly in discussion of Mollison, 1977, ppP-
318-319). While this is a rather theoretical result (there does appear to be a
‘pseudo-threshold’ above which the disease can spread a great distance), it
suggests that for a realistic consideration of thresholds we do need to study two-
dimensional models.

We consider here only models without recolonisation of empty sites. Perhaps
the simplest case is that where the infectious period is of fixed length, rather than
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exponentially distributed as in Models (1) and (2) of the previous section. This is
because in this case the infections made by an individual are statistically indepen-
dent, each having probability p say. The epidemic model is therefore formally
equivalent to the well-known bond percolation model of physics, which has
threshold value p, = 4 (Broadbent and Hammersley, 1957; Kesten, 1980). The
threshold value of the basic reproductive rate is then Cy = 4p, = 2. If, on the
other hand, the infectious period is extremely variable, we tend towards the
following case: with probability p the infectious period is very long and the
individual infects all four neighbours, while with probability 1-p, the infectious
period is very short and it infects none. This corresponds to site percolation, for
which the critical value p, has been estimated to be 0.6; thus in this case C,
which is again 4p,, is equal to 2.4. For intermediate infectious periods, we may
suspect that C, will lie between these two values, i.e. between 2 and 2.4. By
using a comparison technique for epidemic models which differ only in the
distribution of their infectious periods, Kuulasmaa (1982) has shown that this is
true for all such distributions. In particular, it is true for the exponential distribu-
tion, as in Models (1) and (2) (without recolonisation, i.e. with r = 0), and
simulations show that for this case Cy = 2.12.

These results refer to the case where each individual only interacts with its four
nearest neighbours. Asymptotic results (e.g. Ball, 1983) suggest that C, will be
closer to unity when the number of potential contacts is larger.

C. SPATIAL MODELS: VELOCITIES

The velocity of spread of a disease will clearly depend to a large extent on the
contact distribution, which describes the spatial distribution of the potentially
infectious contacts made by an individual. This dependence has only been stud-
ied in any depth for very simple one-dimensional models, namely simple epi-
demics, in which infected individuals remain permanently infective: this corre-
sponds to Model (2) with o’ = 0 (7 is then irrelevant, since sites never become
vacant). This work is reviewed in Mollison (1977). There has also been some
thorough work on two-dimensional models with the contacts restricted to an
individual’s nearest neighbours, mostly on percolation models; this field is re-
viewed by Smythe and Wierman (1978).

Most work even in the one-dimensional case has been on deterministic mod-
els, in the form of nonlinear convolution or diffusion equations. These can be
shown (McKean, 1975; Mollison, 1977) to be closely related to ‘linear’
stochastic models, which make the simplifying but unrealistic assumption of an
unlimited pool of susceptibles, and in which the density of infectives conse-
quently can grow exponentially. It is thus perhaps not surprising that these
deterministic models turn out to be a poor guide to the behaviour of more realistic
stochastic models.
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The earliest work on velocities appears in two classic papers which appeared
independently in 1937, one by Fisher and the other by Kolmogoroff, Petrovsky
and Piscounov. Their work concerned the advance of an advantageous gene but
translates fairly straightforwardly to epidemic models. They used a diffusion
approximation rather than a contact distribution, which yields a characteristic
velocity of BoV/2; here B is the rate at which individuals make contacts, and o
the standard deviation of the contact distribution. For the exact model the charac-
teristic velocity is rather higher, varying between about 1.580 and 1.85B0 for
contact distributions with mainly local concentration; but for more widely spread
distributions, the characteristic velocity may be infinite, so that the epidemic
spreads at arbitrarily increasing speed (Mollison, 1972, 1977; the exact condition
for finite velocity is that the contact distribution should have exponentially
bounded tails). In cases where the velocity is finite, the behaviour of the corre-
sponding linear stochastic model is unrealistically well-behaved (see Mollison,
1977, esp. pp- 323-324).

For the stochastic simple epidemic model itself, the velocity can be shown to
be infinite only if the contact distribution has infinite standard deviation. Simula-
tions confirm that the manner of advance is less regular than for the linear model;
indeed, for intermediate contact distributions (with finite standard deviation but
with tails not exponentially bounded), the epidemic appears to advance in a
mixture of steady progress and ‘great leaps forward’ (Mollison, 1972). Where
the linear model (and the deterministic simple epidemic) have finite velocity,
however, the stochastic simple epidemic advances in a relatively steady manner,
at a rather lower velocity than the linear process. The difference in velocity
appears to be greatest when an individual’s potential contacts are concentrated on
a small number of neighbours, the ratio being over 3 to 1 in the extreme case
where an infective can only contact a single individual to either side.

In two dimensions, for the linear stochastic model and its associated determin-
istic models, the velocity in each direction can be found simply from the one-
dimensional analysis, and thus varies between about 1.5f¢' and 1.85Bc" for
contact distributions with exponential tails, where o’ denotes the standard devia-
tion of the contact distribution in the direction considered (that is, of the projec-
tion of the contact distribution in that direction).

A number of results have been obtained for simple stochastic epidemic mod-
els, particularly percolation models, showing that the infected area expands with
a characteristic shape and velocity; if, as in lattice models, the contact distribu-
tion is direction dependent, the velocity will not be exactly the same in each
direction (Richardson, 1973; Mollison, 1978; Schiirger, 1980). Actual velocities
have only been estimated from simulations. As in one dimension, they appear to
be significantly lower than for linear or deterministic models. For instance, for
nearest neighbour contact distributions, simulations suggest that the velocity is
0.83B0" on a square lattice and 0.89B¢”" on a hexagonal lattice; on an irregular



298 Denis Mollison and Kari Kuulasmaa

lattice the velocity is found to be a little higher (P. J. Green, in discussion of
Mollison, 1977, pp.317-318). [Incidentally, for nearest neighbour models with
just one individual at each site, the velocity is proportional to the crinkliness of
the boundary of the infected area (Mollison, 1974; see also Downham and
Green, 1977).] As to contact distributions without exponentially bounded tails,
the conditions for the simple epidemic in two dimensions to have finite velocity
are unknown.

The work discussed so far concerns continuous-time models, in which an
infective makes contacts at rate B from the moment at which it becomes infected.
What little is known of simple epidemics with different time structure, as for
instance with a fixed generation gap between the infection times of an infective
and its victims (i.e. a discrete-time model), suggests that similar results will hold
as regards velocities and the conditions to ensure a finite velocity. However,
velocities will no longer be simply proportional to the infectiousness of indi-
viduals, as measured by 3 or some similar parameter; the velocity is likely to rise
more slowly than proportionately, the exact relation depending on the contact
distribution.

For epidemics with removal [Model (2) without recolonisation, i.e. r = 0], the
velocity of the linear and deterministic models is approximately Vi - of B
times the velocity of the model without removal (D. G. Kendall, in discussion of
Bartlett, 1957, pp. 64-67; Atkinson and Reuter, 1976). For the nonlinear
stochastic model, however, unpublished simulations by one of the authors sug-
gest that the reduction in velocity is rather greater. Some of these simulations,
incidentally, show a pattern in which the front breaks down into a number of
‘arcs of infection’ (as conjectured by D. G. Kendall, in discussion of Bartlett,
1957, pp. 64—67), with no infectives on the stretches in between. However, this
seems to occur principally in simulations where the epidemic is dying out.

D. SPATIAL MODELS: ENDEMICITY

In discussing thresholds in Section II,B, we restricted attention mainly to the
initial spread of a disease in the case where removed individuals are not replaced.
If the infection is to become endemic, it is of course essential that new suscepti-
bles should be introduced.

One of the simplest spatial models exhibiting endemic behaviour is the ‘con-
tact process’ introduced by Harris (1974) (there are two surveys by Griffeath,
1979, 1981; see also Durrett and Griffeath, 1982). This process may be regarded
as a simplified version of Model (2) in which infectives, instead of being re-
moved and leaving vacant sites, simply recover and become susceptible again.
We thus have the following:

Change  Change rate
Infection XY — YY B'/4

3
Recovery Y—X o' ®
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[Note that this is nearly the same as is obtained by setting r = o in Model (2).]
For this process the parameter A = (3'/4a’ has a threshold value A\, which (for a
two-dimensional model) is known to lie between % and 1 [Holley and Liggett,
1978; Harris, 1974; the lower bound here can be improved marginally, to 0.359
(Griffeath, 1975, p. 191)]. Above this threshold value, the process may tend to a
stochastic equilibrium in which both infectives and susceptibles are present.

An apparently rather similar model, but exhibiting very different behaviour, is
that introduced by Williams and Bjerknes (1972) for two competing cell popula-
tions. In this model ‘susceptibles’ can replace neighbouring infectives, so that
the process is symmetrical between the two types:

Change  Change rate
Infection XY —YY B'/4 @
‘Recovery’ Y —>X o

Even though this model includes the introduction of new susceptibles, it
appears to have only trivial equilibria. If § < «a the infection is certain to become
extinct (Kelly, 1977b) (we are assuming that the initial set of infectives is finite).
If § > « the infection may survive forever, but in that case the infected area
expands as an approximate disk of linearly growing radius (i.e. at fixed ve-
locity), so that all sites eventually become infected (Bramson and Griffeath,
1980, 1981).

Few theoretical results are available for even the simplest models for endemic
disease, such as our Model (2). One technique which is worth mentioning is that
of ‘balance equations,” in which we consider the density of each type of indi-
vidual and of each type of pair of neighbours: for instance, let w(Y) denote the
proportion of infected sites, and m(XY) the density of neighbouring XY pairs. In
endemic equilibrium, if such is possible, the creation and removal of infected
cases must be in balance: thus, taking into account the change rates of Model (2),
we have that

a'm¥) = B'1HwXY) (5)

Such equations, together with the fact that all such proportions must lie between
0 and 1, can be used to find bounds on the parameter values for which endemic
equilibrium is possible [note that w(XY) = density = 2 X (proportion of XY
pairs), so that 0 < m (XY) < 2]. For instance, we can show that A, > § for Model
(2) (Kuulasmaa, 1983; this approach was applied to Harris’s contact process by
Clifford and Sudbury, 1979).

In the next section we report the results of some simulations. One final tech-
nique which is worth mentioning derives from physics, and lies in a sense
intermediate between theory and simulations. In this approach a specific model,
usually a power law, is derived heuristically, and parameter values are then
estimated from simulations. This yields surprisingly precise values for param-
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eters such as Ay for various percolation type processes (Grassberger, 1983).
While this approach is not strictly rigorous, it must at least be regarded as
producing very interesting conjectures.

lll. Simulations of a Spatial Model
for Endemic Fox Rabies

A. METHODOLOGY

Simulations of the endemic models introduced previously [Models (1) and (2)
of Section II,A] have been performed on a finite rectangular area (typically of 60
X 60 sites). To avoid edge effects, we assume that the pattern repeats outside the
rectangle considered. (In precise mathematical terminology, we identify opposite
pairs of edges of the rectangle, so that our area is topologically a torus.)

It is convenient to look on the process of infection from the susceptible’s point
of view. At any moment, each susceptible is independently subject to an infection
at rate 3/4 times the number of neighbouring infectives. In this way unsuccessful
infections are omitted, and hence a considerable amount of computing time is
saved. The filling of vacant sites by reproduction of neighbouring susceptibles
works in a similar way. In Model (1), incubating sites are liable to becoming
infected, with change rate o, and infectives to becoming vacant at rate o; in Model
(2) we only have infective sites, which are liable to become vacant at rate o'.

Since, given the present state of the process, the types of the sites change in
independent Poisson processes, the time to the next change in the process has
exponential distribution with mean 1/(sum of the change rates of the sites).
Furthermore, the probability that the next change occurs at a given site is the
ratio of the change rate for that site to the total change rate, independently of the
waiting time. Hence we can first decide what is the next change and then, if we
are interested in it, find out the time of this change. In practice, since the number
of changes will be large in any period of interest, we usually get very accurate
timing by taking the time between successive changes to equal the mean value,
1/(total change rate).

The simulation algorithm used is the following:

1. Give the necessary initial values. The main arrays needed are TYPE and
RATE, where TYPE(I,J) indicates the current type of site (I,J), and RATE(,J)
indicates its change rate (ITR). Also, a variable TOTALRATE for the total
change rate is needed. We store the time in variable TIME.

2. Let TOTALRATE = 2 ; RATE(J).

3. Choose the site, (I,J) say, where the next change occurs; the probability of
choosing this particular site is RATE(I,J)/TOTALRATE.

4. Replace TYPE(],J) by its new value and update RATE for (I,J) and its
neighbours.
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5. Increase TIME, for exact timing by a random value from the exponential
distribution of mean 1/TOTALRATE, or for approximate timing, simply by
1/TOTALRATE.

6. Output as required: for instance, proportions of different types of sites, or a
plot of the state of the process to printer, VDU or film.

7. To continue the simulation, go to step 2; otherwise

8. The simulation is concluded.

B. SIMULATION RESULTS

Simulations of both models were carried out for a wide range of parameter
values. These are presented here with an assumed timescale such that the genera-
tion gap of the disease matches rabies data, as were the non-spatial models of
Chapter 9. Thus for Model (1) we take o = 13, a = 73 (year—!); while for
Model (2) we take o' = 11. We shall plot the infectivity in terms of u = B/a [for
Model (1), = B'/a’ for Model (2)], since this ratio to a good approximation
determines the basic reproductive rate of the infection, C = w/(1 + p/4) (the
approximation involved here is that we neglect the possibility of infecting two or
more susceptibles in succession on the same neighbouring site).

Both models show broadly similar patterns. If the infection is started from an
initial focus, it spreads at first with a fairly regular front, behind which occurs a
‘silent’ phase (compare Macdonald, 1980, Fig. 3.5, showing the advance of
rabies in France). This regularity disappears in the subsequent endemic phase,
and one can no longer observe any direction for the infection, except very
locally.

The simulations indicate that there is a unique endemic equilibrium for certain
parameter values. Figure 2 shows the estimated proportions of susceptibles and
infected cases in this equilibrium. [Note that for Model (1) the proportion of
incubating cases in equilibrium is always ¥ =~ 5.6 times the proportion of
infective cases.] The size of the simulation area has no observed effect on the
mean proportions, but it does affect their fluctuation (see below).

Except possibly for very low values of 7, there is a clear critical value C,, of the
basic reproductive rate, such that for C < C, extinction is certain. For larger
values of r, the critical value Cj, is close to its theoretical lower bound of 4 (see
Section II,D); for values of r appropriate to fox rabies (r < 1), C, is considerably
higher.

When r is large, and C near C,, the proportion of empty sites is negligible.
This supports the conjecture that for such values the process can be approximated
by Harris’s contact process. In particular, we would then have that inf,Cy(r) is
the same as the critical C, of Harris’s process, for which the best known lower
bound is 4 X 0.359 = 1.44.

Figures 3 and 4 show states of the two models in apparent equilibrium, in each
case for two different choices of parameters. These patterns are again reminis-
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Fig. 2. Estimated proportions of susceptibles (——) and infected cases (-—-) in endemic
equillibrium, for Models (1) and (2). In the shaded regions fluctuations of the proportions are
significant on a 60 X 60 lattice. (a) Model (1), with @ = 73, o = 13. The horizontal scale is given in
terms both of p = B/a and of the (approximate) basic reproductive rate C = p/(1 + w/4).
Simulations with the parameter values marked A and B are shown in Figs 3 and 4. (b) Model (2),
with o' = 11. Similarly, with p = B'/a’.

cent of those observed in real endemic conditions (compare for instance, Mac-
donald, 1980, Figs 3.5a and 5.18).

The relative proportions, in equilibrium, of each type of site deserve further
comment; we shall denote them here simply by (e.g.) X rather than w(X). The
basic balance equations for equilibrium are then, for Model (1),

BXYqy, = ol = of = rEXq.y (6)
and for Model (2),
B'XYqyy = o'Y = rEXqgy @)

Here gy, denotes the density of neighbouring XY pairs relative to the expected
value assuming homogeneous mixing (= 4XY), and similarly for g, setting the
q’s both = 1 we thus recover the balance equations for the non-spatial models of
Chapter 9. The level of prevalence, (I + Y)/X, is then not Ert as found for the
non-spatial model, but gz times as much. Typically, we find a lower level of
prevalence; for example, for the parameter values of Fig. 3a, g, = 0.4, and the
level of prevalence averages 3%, compared with an expected value from the non-
spatial analysis of nearly 8%.

From Eq. (6) we can also deduce that X = 1/(j.gy,). The tendency of Xs and
Ys to avoid each other appears even more marked than that of Xs and Es. Again
in Fig. 3a, we find that gy, = 0.3, so that the proportion of susceptibles is
approximately 80%, rather than 25% as expected assuming homogeneous mix-
ing. The low values of gy, can be attributed to a combination of factors. A new
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infective is likely to begin with fewer than average susceptible neighbours (for a
start, the site which infected it is unlikely to be susceptible again yet); and if it
infects one it is similarily unlikely to get a replacement, so that an individual who
has been infectious for some time is even less likely to have susceptible neigh-
bours (this latter factor has already been referred to in explaining why C < ). It
is easy to guess from this that gy, < $C/p., and hence X = 4C—!, = 67% in the
present case.

When the parameters approach the shaded regions of Fig. 2, the proportions
begin to fluctuate until finally extinction occurs. If r is decreased the infection
eventually becomes extinct, while if C is increased the population becomes
extinct. However, in this parameter region the proportion of infectives is small,
and the few that there are tend to group together. Thus, the fluctuations, and
pethaps the ensuing extinction, may be due only to the finite size of the simula-
tion area. Interestingly, the more realistic model [Model (1)] appears stable down
to lower values of r.

C. DISCUSSION OF SIMULATIONS

The models we have simulated were chosen to include only the most basic
features essential for a study of spatial patterns of an endemic disease of ter-
ritorial animals. We have omitted many features, and made considerable approx-
imations in the features we have included. Hence, before we interpret the results
of our simulations, we must discuss some of the shortcomings of our models.

We have apparently neglected natural mortality. However, this is largely taken
into account if we assume that most vacancies occurring through natural mor-
tality are soon filled by the offspring of nearby sites, thus keeping the population
at the carrying capacity, at least in rabies free areas.

We have only been able to simulate with values of » down to about 2 year—1,
even for Model (1). As mentioned in the previous section, we find that the level
of prevalence fluctuates for small values of r, but we conjecture that this may
only be due to the finite size of the simulation area and the consequent small total
population of infectives in these cases; to investigate the stability of the equi-
librium for smaller values of r would require simulations on a considerably larger
lattice. On the face of it, this is a considerable shortcoming of our present
simulations, since values of r appropriate to foxes are about 0.5 year—!. Howev-
er, against this we must note that our present assumption that territories can only
be recolonised by their immediate neighbours ‘disenfranchises’ a large propor-
tion of susceptibles, whose offspring might in reality be prepared to travel
considerable distances in search of empty sites. Even at low population densities,
the susceptibles tend to group together, and thus in our model the offspring of the
individuals at the edges of such a group really represent the offspring of the entire
group. Thus the lower values of r in our simulations (» = 2-5, say) may in fact
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Fig. 3. (a) Typical state of Model (1), in apparent equilibrium, for parameter values r = 4.4,
C = 2 (marked A in Fig. 2a). Symbols: susceptible (+), incubating (O), infectious (@), vacant ( ).
(b) The same, but with r = 14.6, C = 3.2 (B in Fig. 2a).

reasonably represent fox population regrowth. However, this aspect of model-
ling clearly requires further consideration, particularly in respect of how far
foxes travel to find new territories and how efficient they are at identifying
vacant territories.

We have generally only allowed for one individual at each site, whereas fox
territories in reality are occupied by family groups. Some simulations were also
done of a model with two individuals per site, and for a relatively high internal
contact rate the results were qualitatively similar to those for the basic model.
This suggests that our model will approximately apply to sites occupied by
family groups; though in interpreting results, we must allow for likely dif-
ferences: for instance, the generation gap for family to family infections may be a
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Fig. 3. (Continued.)

compound of several individual generation gaps, and will therefore have a some-
what higher mean (see Chapter 8, this volume). In favour of our basic model, we
may note that its assumption that the directions of contacts made from a site are
independent is rather more reasonable if these represent the contacts made by a
family rather than by a single individual.

We have not allowed for heterogeneity between individuals, and in particular
for the difference between settled and itinerant foxes. In so far as the latter are
important, we clearly need to consider contact distributions allowing longer
range contacts. It would in any case be interesting to examine how threshold
levels (C,) and endemic patterns depend on the contact distribution. For a start,
we might guess that the scale of endemic patterns, and the velocities with which
they spread, will be roughly proportional to the standard deviation of the contact
distribution.
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Fig. 4. (a) Typical state of Model (2), in apparent equilibrium, for parameter values r = 11,
C = 2 (marked A in Fig. 2b). (b) The same, but with r = 176, C = 3.2 (B in Fig. 2b). Symbols:
susceptible (*), infectious (&), vacant ().

Even allowing for all these defects, and other neglected factors such as season-
al variation, we can draw some general conclusions from these simulations. They
show how an epidemic which begins by advancing in a regular manner with a
fairly well defined velocity can break up into an endemic pattern of quite large
wandering ‘patches of infection’, without any need to invoke geographic or
social heterogeneity; that is, we can have heterogeneous behaviour in a homoge-
neous environment.

The proportions of the various types of individual in endemic equilibrium
differ significantly from those expected from non-spatial models; in particular
the proportion of vacant sites is much smaller.

The most interesting question raised is whether oscillations in the level of
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prevalence can be genuinely cyclical as in the non-spatial case (see Chapters 6

and 9, this volume), or are merely the consequence of considering a large

scale random pattern over too small an area; some support for the latter

view comes from Macdonald’s observation that fluctuations appear more marked
- in data from small countries (Macdonald, 1980, Table 3.1).

IV. Discussion

The formidable task of developing models for endemic disease may be com-
pared to building a house in a hurry. Practical workers insist on building a
complete house, and are not too worried that it may need replacing later. The-
oreticians insist on building reliable foundations, and are not too worried if
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the house is never finished. Both points of view of course have their merits, and
ideally we need to combine these.

This chapter lies towards the theoretical end of the spectrum, though it has
been framed where possible in terms of parameters with straightforward ecologi-
cal interpretations, such as the basic reproductive rate and contact distribution. If
we are to use complex models to explain rather than just imitate reality, we need
to understand which assumptions are crucial for particular results: we need to be
able to take a model apart and see what makes it tick. If this chapter assists such
understanding, it will have served its purpose as part of the foundations.
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