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SUMMARY

A wide variety of phenomena of geographical spread can be described in terms of a
mechanism of “growth” (e.g. birth, infection) and a “contact distribution” which
describes how the locations of the individual(s) involved in a migratory move, or infec-
tion at a distance, are spatially related. I shall survey work on such models, beginning
with an examination of the relations between stochastic and deterministic models; it
emerges that both linear and nonlinear deterministic models have close connections
with the less interesting “linear” (exponential growth) stochastic models.

More realistic models must be nonlinear as well as stochastic; some results are
now available for such models. As in the linear case, these deal mainly with asymptotic
behaviour. Simulations reveal that nonlinear stochastic processes have a richer
spectrum of non-asymptotic behaviour than linear models, though in some circum-
stances the simpler models may provide an adequate approximation.

Thus theoretical study of the short-term behaviour of such processes may be
difficult, but should prove rewarding. The other main outstanding problems are those
of inference for such models, especially the estimation of contact distributions.
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0. INTRODUCTION

Ir we seek to understand how a population process of any kind spreads spatially, we must look
at its component “moves”. For the spread of a new species a “move” might be defined in
terms of the position of an individual at birth relative to the position of its parent; for an
epidemic by the position of an individual relative to that of the one who infects it (note that in
one case the individuals move, in the other only the phenomenon). I shall refer to the proba-
bility distribution for the distance of individual moves as the contact distribution (Mollison,
1972a): the name comes from epidemiology, where the new infected individual is a “contact”
of the old (unfortunately, the term “contact process” has since been used for a special case
involving only contacts between nearest-neighbours; Harris, 1974).

It may not always be easy to say what should constitute a move, or whether it is reasonable
to view it as instantaneous (note though that even for wheat rust, an extreme example of a fast-
moving disease, the velocity of the process as a whole is less than 3 per cent that of the wind which
carries it (Stakman and Harrar, 1957)). Perhaps for this reason the approximation of diffusion,
in which a limit of infinitesimal independent moves is taken, has been much used. Such models
can also be viewed as approximations to contact models, with an impossibly well-behaved
contact distribution (all moments other than second equal to zero). However successful
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diffusion models have been in the physical sciences, they seem inadequate to deal with popula-
tion processes in which long-distance contacts are possible; for instance, to explain the
irregular spread which is observed for some real processes, and which may be associated with
long-tailed contact distributions (Mollison, 1972b; see Section 3.3). Nevertheless, because of
their history, and their theoretical standing as simplified versions of contact models, I shall
review them at some length.

Among processes for which contact (or diffusion) models seem appropriate are epidemics,
rumours and innovations, which spread among individuals usually regarded as fixed; and
models for population spread in which the individuals move, such as birth, death and migration
processes, or the Kolmogoroff-Petrovsky-Piscounoff (KPP)/Fisher equation for the spread of
an advantageous gene (see Section 1.1 below). Cases which have received special theoretical
treatment include percolation processes and stepping-stone models.

The best existing review of spatial contact processes, set in the context of social geography,
is by Bartholomew (1973); Dietz (1967) and Bailey (1975) give reviews in the context of
epidemiology. The latter is good on the general purpose of theoretical studies, but does not
include much on the developments of the last 10 years, and hence overemphasizes the relevance
of diffusion models. He does have a chapter on the relatively recent practical studies using
“n-site”” models to predict the spread of 'flu between Russian cities; models of this type, first
studied by Neyman and Scott (1964), do not however come within the scope of the present
paper. Recent papers have surveyed the related field of stationary spatial processes (Besag,
1974) and their applications in geography (CLiff and Ord, 1975); the latter also includes
discussion of development in time, but in terms of fitting linear time series rather than the
present model-oriented approach. Statistics and methods of fitting like those reviewed by
Ripley (1977) for stationary spatial processes would seem more appropriate if the crippling
restriction of assuming linearity is to be avoided. Bartholomew, Bailey and Cliff and Ord
between them describe a fair range of applied problems for which spatial contact models are
appropriate.

The principal aims of the work described here are to understand the qualitative manner of
spread of such processes; and, where this turns out to be advance at a steady velocity, the
dependence of this velocity on the initial conditions and on the parameters of the process. In
the present state of understanding it seems best to concentrate on the simplest models for which
such questions can be posed. The best we can do for complex models such as host-vector
epidemics or models of competing species is to make conjectures based on simpler models
which can be properly analysed, and perhaps use simulations to investigate the reliability of
these extrapolations.

Besides the choice between contact and diffusion mechanisms of spread, models can also be
classified as deterministic or stochastic, as linear (where the expected numbers obey a linear
differential equation, and thus grow or decay exponentially) or nonlinear, and according as the
location space has one or more dimensions. Of these the stochastic nonlinear case in two or
more dimensions is of most practical interest; the other cases have, for the most part, been
studied only because they appear simpler. (A further reason for preferring contact to diffusion
models is the difficulty of formulating nonlinear stochastic diffusion models.)

A range of basic examples will be described in detail in Section 1.1, and so far as possible the
exposition of the paper will be couched in terms of these models. In particular I shall stick
mainly to continuous-time processes. Most of the general results have parallels for discrete-
time stochastic processes, but there are differences of practical importance, in particular in the
dependence of the velocity on the parameters of the process (see Section 3.1, and the example of
Skellam’s oaks (Section 4.1)). I shall also refer briefly to non-Markovian processes (Sections
1.4, 3.2 and 4.2).

In considering these basic examples it emerges that the widely accepted correspondence
between a stochastic model and its “deterministic equivalent” is only really justified in the
linear case. This is hammered home by the recent discovery that the two best known nonlinear
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deterministic models (the KPP/Fisher equation and the “deterministic simple epidemic™) do
have close connections with linear stochastic models (see Section 1.2). On the credit side this
reveals a unity between apparently unrelated strands of work of the last 40 years and brings us
close to a definitive analysis of the basic linear stochastic models, the contact and diffusion
birth processes. On the debit side, it shows that all these investigations have left the more
interesting nonlinear stochastic case unscathed.

1 shall review work on deterministic models separately (Section 2) before giving its interpreta-
tion for linear stochastic processes (Section 3.1). For each of the deterministic models the
typical result is that propagation is possible at all velocities greater than or equal to a certain
minimal velocity; e.g. 42 for the diffusion approximation, a higher value ¢, (depending on the
contact distribution V) for the contact model. This value is in fact inf (J(x)/x: x>0), where
J(x) is the moment generating function of V, ¥i(x) = [exp(xs)dV (s); if $(x) diverges for all
x>0 it can be shown that the velocity is asymptotically infinite. For the linear stochastic
models the condition of an initial finite population resolves the ambiguity of velocity—only the
minimal velocity is relevant. I shall use a consistent notation throughout, so as to clarify
relations between the quantitative results of different authors, and especially the dependence of
velocities on such parameters as the birth rate o, the standard deviation o of the contact
distribution, and the diffusion constant k (setting k& = {0? so as to match contact and diffusion
models; for simplicity I have assumed o« = ¢ = 1 in the above remarks).

Two principal sources have suggested that the diffusion approximation minimal velocity is
also appropriate for stochastic contact models: Fisher (1937), who it will be seen was in fact
looking at a discrete-time model, and Bartlett (1956, 1960), whose central limit approximation
has been taken up by several other authors (e.g. Bailey, 1975, p. 173); Daniels (1977) has
recently shown that, for the contact birth process at least, the asymptotic velocity in fact takes
the value ¢, mentioned above. (The various possible definitions of velocity for stochastic
processes will be discussed in Section 1.3).

In reviewing work on stochastic models (Section 3) I shall again compare the quantitative
values found for the velocities of various processes, and their dependence on the parameters of
the model and on the contact distribution. Perhaps the most interesting discovery is how small
the difference is (a ratio of about one to three) between the velocities of the simple nearest-
neighbour percolation process in one dimension with only one individual allowed at each
point, and of the analogous birth process in which infinitely many individuals can live at each
point; the difference is even less in two dimensions (see Table 1, on p. 306).

Other interesting developments on stochastic models are the simple and partly heuristic
results of Mollison (1972b) (equation (3.21) and Section 3.3) on the manner of propagation of
simple epidemics in one dimension: interesting because so different from anything known for
linear or deterministic models, especially in the possibility of “‘great leaps forward”: and
theoretical progress on percolation and other contact processes in two or more dimensions
based largely on the work on subadditive processes of Hammersley and Welsh (1965): e.g.
Hammersley (1966) and Mollison (1977a) establishing bounds on velocities, and of Richardson
(1973) showing that the set of individuals in certain processes is asymptotically “circular” (in
an appropriate norm) with a certain (radial) velocity.

In Section 1.4 I shall introduce the notion of a Markovian contact process (vce, Mollison,
1977b), whose definition is wide enough to include simple and general epidemic models, birth,
death and migration (including “‘stepping-stone’’) models, Markovian percolation processes
(Morgan and Welsh, 1965, Hammersley, 1966) and models for tumour growth (Williams and
Bjerknes, 1972). (Some mention of non-Markovian and discrete-time models will be made.)
The basic idea is to regard all these processes as modifications of the contact birth process (1.1)
(and of each other) so as to exploit the cBp as an upper bound: since it combines an arbitrary
contact distribution with unchecked exponential growth, it seems intuitively plausible that the
cBp should furnish bounds for the propagation of a wide class of contact processes. This is
particularly useful in higher dimensions, since the one-dimensional projections of a CBp are
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again CBP’s, with contact distribution the projection of the original contact distribution;
whereas no such simple relation exists for nonlinear processes. This approach provides a
simpler and stronger result on bounds for velocities of spread than that of Mollison (1977a).

This idea of looking at the one-dimensional projections is also of use for a quite different
reason: for a fairly general class, namely population-monotone Mcp’s (which includes such
nonlinear examples as the simple epidemic) the distributions at different times of the furthest
individual in any fixed direction are subconvolutive, and hence subject to the results of
Hammersley (1974). By applying such results Richardson-type theorems on the convergence
(plim or a.s.) of the shape of the convex hull of the set of inhabited points can be obtained for
population-monotone MCP’s with quite general contact distributions (3.29). An alternative
application of subadditive theory, following the approach of Kingman (1975), can be made for
linear processes (Stirzaker, 1977, Biggins, 1977).

Although this review shows, I hope, that a considerable amount is now known about
stochastic contact models, there are many unsolved problems, and I shall mention a few of
these in Section 4. I shall link this, as is proper, to a discussion of possible applications. The
diffusion approximation has been invoked in several practical applications (e.g. Skellam, 1951,
Ammerman and Cavalli-Sforza, 1973) in which parameters were estimated assuming spread ina
steady manner at the velocity indicated by the diffusion approximation. Both are cases which
exemplify the need for care in applying models for spatial spread, for both suffer from Fisher’s
blurring of the distinctions between discrete- and continuous-time models (Fisher, 1937; see
Section 4.1).

This apart, the main implication of theoretical work on stochastic contact models for these
and similar applications is that, although for contact distributions with exponentially bounded
tails the approximations related to linear stochastic processes may be reasonably accurate,
quite plausible contact distributions could yield, not merely quantitatively different relations
between parameters and velocities, but radically different, irregular patterns of spread. Thus
the main gain from the work described on nonlinear stochastic processes, and the discovery of
their lack of relationship to deterministic models, is the Socratic one of leaving us knowing
that we know rather less than we thought we did. I hope it will also be clear that the problems
of developing some kind of non-asymptotic theory for these processes, and the inferential
problems of qualitatively determining contact distributions, offer a fascinating challenge to
applied probabilists and statisticians.

1. RELATIONS BETWEEN STOCHASTIC AND DETERMINISTIC MODELS
1.0. Introduction

In this chapter I shall first (Section 1.1) define a basic range of models including representa-
tives of seven of the eight possible combinations of contact/diffusion, stochastic/deterministic
and linear/nonlinear; the exception is the nonlinear stochastic diffusion case, which is omitted
because there is no appropriate simple example. Some further models will be defined in Section
1.4,

Secondly (Section 1.2), I shall describe the results of McKean (1975) and Mollison and
Daniels (1978), which show that the KPP/Fisher equation and “deterministic simple epidemic”
have a close relation to linear rather than nonlinear stochastic models.

With deterministic models it is relatively easy to define a velocity of propagation; more care
is needed for stochastic models: various possible definitions will be discussed in Section 1.3.

Usually in studying spatial population processes a knowledge of the numbers at each
location suffices. In comparing different processes, however, it turns out to be useful to
consider more detailed models, in which we may treat individuals living at the same location as
distinct, and keep track of their “family trees”. This leads to the definitions of a Markovian
contact process, and of the property of population-monotonicity, which provide a framework for
general results on boundedness and convergence of velocities of spread (see Section 3.2).
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1.1. Basic Models

The simplest stochastic contact model is the contact birth process (cp). This consists of a
simple birth process in which each individual i has a fixed spatial location s(f) in some space
Z (usually one- or two-dimensional). Each individual is assigned at birth a location whose
(vector) distance from her parent’s is chosen from a particular probability distribution V, the
contact distribution. Looking at it the other way round, this means that the probability of a
birth at s is proportional to a weighted average over all possible parents, a parent at u having
weight dV (s—u); thus

Pr(Y-+Y+1lint,t+dy=ca¥d, (L.1)

where Y (s, ) denotes the number of individuals at s at time ¢, and ¥ (s,?) the convolution
Y#dV = [ Y (s—u)dV (u), where the integration is over the space .%.

In the corresponding diffusion model, which may be called the diffusion birth process (DBP),
the mechanism for spatial spread is that each individual follows an independent Brownian
motion, starting at the same location as its parent. All that is known tends to confirm that
diffusion population processes behave like contact processes with an impossibly well-behaved
contact distribution, which is not surprising, in view of the local character of diffusion. Sawyer
(1976) gives a general definition of “diffusion branching processes” which embraces diffusion
and contact processes, but goes on to consider only the diffusion processes. A discrete-time
version of the DBP, considered briefly and solecistically by Fisher (1937), also comes close to
marrying the two; the only difference between this and a discrete-time contact model with
normal contact distribution is that parents as well as offspring move once in each generation.
The principal justification for preferring contact to diffusion models lies in the wider range of
behaviour they turn out to possess (see, for example, Fig. 3.3). Although the typical assump-
tion of a single move per individual may appear restrictive, it seems able to capture features of
population processes which the too regular spread of the diffusion processes cannot.

In either simple birth process the population grows exponentially. In more realistic models
some limit on population density is introduced. This is more simply done for a discrete location
space (which of course rules out diffusion models). We may, for instance, modify the cBp by
introducing a probability of failure for a newborn individual proportional to the number
already at her chosen location; i.e. Pr(failure) = ¥ (s, ¢)/p, where p is usually taken to be an
integer, the population density. Thus

Po(Y—Y+1int,¢+di) = a¥ (1 ¥/p). (1.2

This model is the simple epidemic, ¥ being interpreted as the number of infected. For a similar
nonlinear process (contact or diffusion) with continuous location space the probability of failure
at s will have to depend in some way on the individuals close to s: besides difficulties of
formulation, this appears bound to lose the useful property of population-monotonicity of, for
example, the simple epidemic (see (1.24)). I shall, therefore, take the discrete space as the basic
case for stochastic models; results given for linear processes at least will apply equally well to
the continuous case (with minor quantitative changes). The idea of regarding other linear and
nonlinear processes as modifications of the cBp (and of each other) is the basis of the Markovian
contact process approach, which will be described in Section 1.4.

Deterministic models for the cBp and simple epidemic can be obtained by replacing the
stochastic equations (1.1) and (1.2) by differential equations

y = o, (1.3)
y=oj(l-y), (1.4

respectively (in the second case y represents the proportion of infected, = ¥/p).
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The additivity of the birth process implies that (1.3) is in fact the equation governing the
expected numbers W = E(Y) of the stochastic process; no such simple connection exists
between (1.4) and the stochastic simple epidemic because

E(Y)(1-Y/p)) # E(Y) E(1-Y]p) (1.5)

(since Y and Y are not in general uncorrelated). Despite this important difference, to which I
shall return in Section 1.2, nonlinear deterministic equations such as (1.4) have received the
lion’s share of attention. Naturally enough, they have almost always been considered over a
continuous location space.

To avoid the difficulties of the convolution j, one may expand it as a Taylor series; assuming
¥V to be symmetric the first-order term vanishes, so that discarding third-order and subsequent
terms one obtains (in one dimension) § = y+40®y", where o? denotes the variance of ¥. This
is known as the diffusion approximation, first used for the simple and general epidemics by
Kendall (1965).

Its first introduction for population processes, however, was by Kolmogoroff, Petrovsky
and Piscounoff (1937) (KPP) and Fisher (1937), in models for the advance of an advantageous
gene. These models, involving competition between two (mixing) populations, are inherently
more complex than the simple epidemic. This is especially true of KPP, who considered the
fully-dominant case where those with genotypes 44 and Aa have equal advantage over aa;
it is only by making several approximations that they achieve a relatively simple equation

y=0G-»+FQ), (1.6)
where y denotes the proportion of dominant individuals, from which they derive
y=ky"+F®) Ln

using the diffusion approximation. For the fully-dominant case to which they give most
attention F(y) = ay(1 —)?, though their subsequent analysis also covers Fisher’s equation

y=ky"+ay(l—y) (1.8)

appropriate to the simpler case where the probabilities of success of single genes 4 and g are
in the ratio (1+c) : 1 (x small).

A criticism which can be made of both models is that their terms F(y) should involve
convolution with ¥. For instance, in Fisher’s case F(y) should be either {y(1 — y)}+dV if compe-
tition takes place before movement (i.e. at the parental location), or j(1 —J) if vice versa, or
7{1—y) if competition and movement take place simultaneously. In KPP’s case there is a
further approximation involved because the Hardy-Weinberg law on the relative proportions
of A4, Aa and aa only holds exactly for a homogeneously mixing population.

Equation (1.8) has also been derived, by Skellam (1951), as a model for population spread,
though for his problem as stated he should perhaps have used

y=ay+ky")(1-y) (1.9)

(which is identical to the simple epidemic with diffusion approximation), instead of simply
adding the growth {y(1—y)} and diffusion (ky") terms (see also Section 4.1).

1.2. Interrelation of Stochastic and Deterministic Models

The early workers, KPP and Fisher, were well aware that their deterministic models were
only an approximate substitute for the stochastic phenomena in which they were interested
(this awareness seems to have worn off among their many successors), but they must at least
have hoped that they had captured the nonlinearity of those phenomena in some degree: for
otherwise they could have studied the much simpler linear equation

y=ay+ky” (1.10)
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which governs the expected numbers of the diffusion birth process. This hope has been dashed
by the remarkable recent result of McKean (1975), who shows that if S; denotes the distance to
the furthest individual in the DBP (in any fixed direction 8), y(s, f) = Pr(S;>5) exactly satisfies
(1.8). The same connection exists between the contact birth process and the “deterministic
simple epidemic” (1.4) (Mollison and Daniels, 1978). The relations between the contact birth
process and simple epidemic and their “deterministic equivalents™ is illustrated in Fig. 1.1

LINEAR NONLINEAR
(_:gsiahct c Simple
STOCHASTIC process & — — — — - epidemic
Ly - (12
a
b 4
DETERMINISTIC  § =of s-——9———s j=ajl-)
(1.3) (1.4)

Fi1c. 1.1. Interrelations of simple contact models (from Mollison and Daniels, 1978). (a) (1.4) describes
the distribution function of the distance to the furthest individual of (1.1). (b) (1.3) describes the expected
numbers of (1.1). (c) (1.2) “underlies” (1.1) (see (1.22)). (d) possible velocities for (1.4) are the same (c=cy)
as for (1.3) (see Section 2.2).

(an isomorphic diagram could be drawn for the diffusion models of Section 1.1, except for the
lack of a stochastic nonlinear model). Although the “McKean connection” does not extend so
neatly to more general models, relations between the velocities of, for example, the birth and
death and general epidemic models seem to be similarly close (see Sections 2.2 and 3.1).
These discoveries must cast grave doubts on the use of present deterministic models for
nonlinear population processes. There seems to be no alternative to direct study of the
stochastic models; and especially of stochastic contact models, in view of their greater
generality, and the difficulty of formulating a satisfactory nonlinear stochastic diffusion model.

1.3. Velocities

For deterministic models it is relatively simple to say what one means by “velocity”,
especially in cases where one knows or suspects that solutions tend to waveforms (e.g.,
respectively, the KPP/Fisher and “‘simple deterministic epidemic’ equations of the last section);
see Mollison (1972b) and Larson (1977) for more discussion of velocities and convergence
respectively.

For stochastic processes several alternative definitions are available; the principal two I
shall introduce are the front velocity and (mainly for linear processes) the expectation velocity.
First, there are the velocities associated with individual realizations of the process. Let P(¢)
denote the set of individuals at time ¢ (in an epidemic this would mean infected individuals, in a
genetic model “individuals with the advantageous gene”, etc.). For any unit vector 8, consider
the distance to the furthest individual in the 8-direction (at time 1),

S,(®) = max{s(i).0: ie P(1)} (1.11)

(for propagation to the right in one dimension this just reduces to S, = max;s(i)). Because of
the connections established in Section 1.2, results on velocities for the “deterministic simple
epidemic” and KPP/Fisher equation can be interpreted directly in terms of the distribution
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function of S; for the contact and diffusion birth processes respectively (see Section 3.1). Then
the front velocity is

v = Syt. 1.12)

This is a time-averaged velocity; if the expectation Z, = E(S)) exists and is differentiable I shall
call

Z, = (9] 21){(E(Sp} (1.13)

the expected instantaneous velocity. If Z, tends to a limit , then y,— y also; but not necessarily
vice versa.

In more than one dimension, the overall shape of the set of inhabited points
I = {s(i): ieP(£)} (1.14)

is of interest; sometimes it may be simpler to consider H,, the convex hull of I, It will be shown
in Section 3.2 that one can deduce results such as convergence (plim or a.s.) of Hyt from
convergence of y, for each 6.

Let W(s,t) denote the expected number (or for continuous location space, density) of
individuals at s at time . At least for linear processes, in which (conditional on non-extinction)
the population grows exponentially, it is appropriate to look on

s for which W (s, ) = 0(1) (1.15)
as in some sense representing the edge of . The expectation velocity then is
¢(8) = max(s.8)/t: W(s, 1) =r} (1.16)

(for some fixed r; for processes with bounded population density p we must obviously choose
r<p). An alternative to (1.15) is to consider, in one dimension, the point s for which

r W, t)du = r (L17)

or, in more dimensions, a “circle” outside which | Wdu = r. However, for most processes and
initial conditions we have W/ > eW (some &>0), at least (thinking of nonlinear processes) for
small W, and a simple but tedious argument (see Mollison, 1972b, pp. 590-591) then shows
that if ¢, is to be finite, W must tail off exponentially, so that in the one-dimensional case, for
gxample,

f " W, ) du< W (s, 1) f ® exp(—sulc)du = O{W (s, £)} (1.18)

and hence the two definitions coincide. For the same reason their values are normally
independent of r.

The idea of expectation velocity can be extended to higher order densities (Bartlett, 1954,
1960, Daniels, 1977). For instance, let D(s, ) be the variance of Y (s,t). Then the variance
velocity is

dy(®) = max{(s.8)/t: D(s,t) =r} (for some fixed r). (1.19)

The expectation and variance velocities are principally of use for linear processes, where it is
possible to write down differential equations for W ((1.3) and (1.10)) and D (Daniels, 1977).
For all population processes we have D> W because Y, being an integer, cannot take values
between 0 and 1, so that

¢<d, (1.20)
For populations of bounded density p, W< D< pW, so that ¢, and d, are asymptotically equal.
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For linear processes it is possible to have lim ¢, < lim d, (this needs careful interpretation—see
(3.13) below). Provided W tails off exponentially fast (see above) we also have

NSCp (1.21)

For populations of bounded population density Pr(y,>¢)>r/p, so that if y, and ¢, tend to
limits these must be equal.

1.4. Comparisons Beiween Stochastic Models

From inspection of the transition probabilities (Equations 1.1 and 1.2) it appears obvious
that the propagation of a simple epidemic is bounded (in some sense) by that of the csp with
the same « and V. This and other similar comparisons can be put on a rigorous basis as
follows.

In Section 1.1 these models were defined in terms of their transition probabilities. Both are
of course Markov processes, where the state at time ¢ is defined by the set of values { ¥ (s, 7):
se.%}; usually it suffices to restrict attention to states for which X ¥ (s, #) < co (but see Mollison,
1972b, Section 3 or Section 3.3 below). For more complex processes we may need more than
just the values of Y to define the state: e.g. in a “general epidemic” (epidemic with removal)
we need also the number of susceptibles X at each point, or equivalently the number of dead
Z (= p—X-Y). In this description no distinction is made between individuals living at the
same location, and no record of parentage kept, these being unnecessary details if (as is usual)
we are only interested in the numbers at each location. A fuller description in which such
distinctions are made might appear useful only for non-Markovian processes where, for
example, the fecundity (resp. infectivity) of an individual may depend on her age. However,
for some Markov processes, including the simple epidemic, it turns out to be worthwhile to
consider not merely one such description, but two.

Define a spatial population process (sPP) on & to be a probability space for which a random
variable called the population set is defined (a.s. for some range of ¢ and initial populations
P(0)) with each individual i in P(f) having location s(f) in .%; and define two spP’s Qy, O, to be
indistinguishable if they give rise to the same process { ¥ (u, #)}, where ¥ (g, 1) = | P(f) n {s(i) = u}}.
Then we define

0,20, (Q; underlies Qy) (1.22)

if there exist indistinguishable spp’s Qj, Oy respectively, with a common probability space
such that for the corresponding population sets P, (#)2P,4(f) a.s. on Q. (This idea is I think
called ““coupling™ by some people.) Finally, define a Markovian contact process (McP) to be

a spatial population process for which there exists an underlying Cgp. (1.23)

To show, for example, that the simple epidemic EP(c, V) (o, p and ¥ as in Section 1.1) is an
mMc? we need only make rigorous the idea mentioned in introducing this process, namely that
it is equivalent to the cBp with the same « and ¥V (E(c, V) say), modified by the introduction of
a probability of failure. Now a possible probability space for the CBP consists of sequences of
individuals with the ith individual characterized by the independent random variables
{J5: T;, Uy}, where J; denotes the parent of i, uniformly distributed on the integers [0,i—1]; T;
the time between the (i—1)st and ith births, exponentially distributed with mean 1/oi; and U,
the location of i relative to J;, distributed as V. If we add to these a fourth independent
random variable, N; uniformly distributed on [1, p], we have a common probability space for
(2) a process indistinguishable from E(a, V) (in which we ignore the N,’s) and (b) a process in
which an individual (and all her progeny) is turned into a “‘ghost” if at her chosen time # and
place s of birth there already exists a (live) individual with the same value of N;. Since the
probability of this is precisely Y (s, #)/p, this process satisfies (1.2) and is therefore indistinguish-
able from EP(x, V).
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Fig. 1.2 shows similarly established relations between some other simple processes. The
birth and death process G (resp. general epidemic G*) is obtained from E (resp. E¢ by intro-
ducing exponentially distributed lifetimes of mean 1/8. The birth and migration process B

G, B, V) < EP(a, V)
N AN
G(,B,V) < EV)
v/ v/
M@AB,v, VYSB(A,v, V")

F10. 1.2 (from Mollison, 1977b). “Underlying” relations for some examples of Markovian contact processes
(see text),

(resp. birth, death and migration process M) is obtained from E (resp. G) by turning each
parent J; into a ghost unless U; = 0; this is equivalent to having births with s(i) = s(J,) at rate
A = ap(0) {where v (0) denotes Pr(U; = 0)}, and migrations {s(i) # s(Jp)} at rate v = ol —v(0)}
with migration distribution ¥’ equalto " ¥conditional onU s 0”. Similar comparisons can easily
be made when the parameters (including the contact distributions) satisfy suitable inequalities;
and for discrete-time and non-Markovian processes.

The idea of coupling also enters into the following concept, which will be used in Section 3.2

(following 3.26)): a spatial population process is said to be population-monotone if there exists
an indistinguishable spp such that

[EP(ty) = P(t) = P(t) for all t>1¢, (a.s.), (1.24)

where Pi(f) denotes the population arising from Py(f,) = {i}. This amounts to saying that
increasing the population at time #, cannot reduce it at subsequent times. This property should
not be confused with time-monotonicity, defined by

P(t) S P(ty) for t,<t, (1.25)

The cBp is obviously population-monotone, from the independence of the descendants of
separate individuals, as are the other linear processes of Fig. 1.2. However, the simple epidemic
as defined above does not satisfy (1.24); to show that it is population-monotone we need a
suitable indistinguishable alternative. This can be constructed using the perhaps more natural
description of the simple epidemic (Mollison, 1972b) in terms of fixed individuals i, , ..., and
infection times {t;} forming independent Poisson processes at rates (of/ p) v{s(j)—s()}. A
chain of infection from i to j is defined as a sequence

Ly <ooly_pgpe-<lyj (1.26)

of infection times. Then jeP(z) if there exists i € P(t,) with a chain of infection from i to Jsuch
that #y<#y4, ljp;<t. From this definition it is immediate that the process is population-
monotone, and it is quite easy to see that the transition probabilities satisfy (1.2) so that this is
indistinguishable from the simple epidemic.

For the general epidemic the population of infected plus dead individuals is population-
monotone, though the population of infected alone is not.

2. HisTORY OF DETERMINISTIC MODELS
2.0. Introduction

Standard deterministic models for population processes all involve replacing transition
probabilities by deterministic rates. As mentioned in Sections 1.2 and 1.3, results on both linear
and nonlinear deterministic models have interpretations for linear stochastic models, which
will be discussed in Section 3.1. In this section, I shall take them at their face value. I shall
restrict attention to the one-dimensional case, partly because this has been done by most
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previous authors, and partly because it suffices for the stochastic interpretation; results on the
linear models at least will extend easily to higher dimensions.

2.1. Diffusion Equations

As mentioned in Section 1.1, Kolmogoroff et al. (1937) (KPP) and Fisher (1937) simul-
taneously introduced the equation
y=ky'+F() (LD =21

as a model for the advance of an advantageous gene (to facilitate comparison I shall often set
k = 102, where o denotes the standard deviation of an equivalent contact model). In KPP’s
case F(y) must satisfy the following conditions:

FO)=F(1)=0; F()>0for0<y<l; F'(0)=a>0; F(y<aforO<y<l. (2.2)

These include Fisher’s equation, as the special case where F(y) = ay(1—y).

Both authors looked first for “wave” solutions, in which the shape of the population
density curve y(s, ) does not change with time, i.e. (s, t) = y(s—ct,0). They found that waves
are only possible for velocities ¢ above a certain minimal velocity ¢g, = 2(ko) = 0y/(2«); and
that for each ¢> ¢, there exists a unique waveform. KPP use a phase-plane analysis; Fisher’s
old-fashioned methods are less rigorous, but produce interesting expressions which assist
numerical calculations of waveforms. In a final section Fisher tabulates the minimal velocity
waveform y,, together with its points of inflection and of maximum slope, and other similar
details. Unfortunately it differs in absolute terms only very slightly from the asymptotic

“c = 00 wave, the logistic
Yaols, 1) = 1/{1 +exp(— o)} (2.3)

(if they are matched at y = §, sup|y,—ya|<0-016); this despite the fact that the forward and
backward tails have quite different decay rates: y~exp(yt) as ——co, where y(cy) = 2«,
{y(c0) = o}; while 1 —y ~exp(— 8f) as t-+o0, where 8(¢,) = 2(J2— 1) a = 0-828, {8(c0) = o)}
We shall see that this difference, as far as is known, is equally small for the “deterministic
simple epidemic” (1.4). While these subtle differences from the logistic curve are of theoretical
interest, they seem far too small to allow any hope of using them to distinguish between models
in practical applications.

Both authors were clearly surprised by the ambiguity of velocity. Fisher argued for the
importance of the minimal velocity by considering the discrete-time pBp mentioned in Section
1.1; while this investigation shows insight into the underlying biological problem, and is of
considerable interest in its own right, its connection with equation (2.1) is tenuous: it will be
considered in Section 3.1.

KPP first argue informally that superspeed (¢ > c,) waves are an artefact of the growth term,
noting that in the complete absence of spatial diffusion waves of all velocities greater than zero
are possible; in these an appearance of spatial advance is created by what is in fact independent
growth at each point from a suitable initial condition. In the special case of Fisher’s equation
we may note that this leads to the same equation as the simple epidemic (1.4) with no spatial

dependence, i.e.
y=aw(l-y) 24)

whose solution is the logistic curve (2.3) (replacing ¢ by #—s/c gives the actual ersatz wave).
KPP follow this up by proving rigorously that with the initial condition

y=1 fors<0; y=0 fors>0 2.5)

¥(s, ) tends in shape and velocity to the minimal-velocity wave (for a consideration of the
possible types of convergence see Larson, 1977). The proof takes 15 pages (interested readers
should study McKean (1975) and Ellis (1977) in parallel): here I shall just draw attention to
some fairly simple general results which KPP establish on their way. These are that solutions of
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(2.1) are monotone with F and with initial condition ¥(s,0), and that if y(s,0) is monotone-
decreasing with s, so is y(s,¢) for all #>0. From the latter it follows that, with the initial
condition (2.5), y remains monotone-decreasing; the idea of their proof is then to show that )’
considered as a function of y decreases with time, but cannot pass the minimal-velocity wave’s
values. (This idea of looking at y'(y) is studied by Kametaka (1976), who calls it the “KPP
transform”.) Interestingly, solutions are not necessarily monotone with #, as they are for the
simple epidemic (1.4).
Kendall (1948) appears to have been the first to consider the linear equation

y=k'+oy (1.10) = (2.6)

in the population process context. He rightly describes it as appropriate to “the continuous
analogue of the discrete problem discussed by Fisher”, i.e. the diffusion birth process, but
without explicitly mentioning the basis of its appropriateness, namely that it describes the
expected numbers in that process. This equation can be solved explicitly. For instance, for an
initial concentration at the origin, Kendall obtains

(s, 1) = {A/2J(kmt)} exp(oat — s2/4kt). 2.7

Defining the “front™ as the point where the population density 3 takes some fixed value (or
equivalently the point beyond which the total population is equal to some fixed value—see
Section 1.3), the velocity of advance is seen to be ¢,+ O(t~1logf), where ¢, is 2J(ck) = 0y/(20),
the minimal velocity of the nonlinear K PP/Fisher equation.

Kendall’s principal interest was in resolving the ambiguity of velocity (he had not at this
date rediscovered KPP). He showed that an initial distribution

¥(s,0) = Aexp(—x|s|) (2.8)

led to velocities higher than ¢, if x were sufficiently small (if X <Xg, ¢ =kx+a/x). To explain
this, it is perhaps most illuminating to look simply at initial conditions of the form

¥(5,0) = Aexp(—xs) 2.9)

since while Kendall’s explicit solution is peculiar to the equation (2.6), the following analysis
proves useful also for contact models, and for nonlinear contact and diffusion models. In
linear cases such as the present, the initial condition (2.9) propagates as a wave

Y(s,t) = Aexp{—x(s—ct)} (2.10
of velocity ¢, where ¢ is given by

cx = o+ kx? 2.1

¢ attains its minimum, ¢, when x = x, = J(ofk) (see Fig. 2.1a). Considering min{exp(— xs),
exp(—x,5)}, and recalling that solutions of both Kendall’s linear equation and the KPP/Fisher
equation are monotone with initial condition, it is easy to see that the exponentials with
X <x rely on their forward tail, those with %x>Xx, on their backward tail, for their higher
velocity. In particular, for the KPP/Fisher equation, if y(s, 0)< A exp(—xs) for some x> x,,
then y(s,#) is bounded by a pseudo-wave of velocity g, namely A exp{—xy(s—c,1)}, for all
120 (see Mollison, 1977b, Lemma 3.2; this bounding argument is copied from that of Mollison,
1972b, for the simple epidemic, see Section 2.2; note that it applies equally well to processes in
more than one dimension).

This analysis reveals the error in Montroll’s suggestion (Montroll, 1967) that the behaviour
of

Y=k +20/P/(1 -y}t +ap(1-y) 2.12)

should be close to that of Fisher’s equation. The point of the additional term is that the
substitution g = y/(1—y) transforms (2.12) into Kendall’s Iine?r equation (2.6). Montroll
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FiG. 2.1. Minimal velocities for deterministic models. (a) Diffusion models: f represents o+ kx2 (for
KPP/Fisher equation (2.1)) or o(1 + kx*) (for the epidemic diffusion approximations, (1.9), (2.13) and (2.14)).
g=1cyx, & = fB+cox (¢ and c§ as in (2.11) and (2.14)). (b) Contact models: f = af(x), g = cp x,
&’ = B+cp x (cy and ¢, as in (2.22) and (2.25)). The case of symmetric contact distribution is illustrated, to
permit comparison with the diffusion approximations (dashed curves), showing how ¢, > ¢q, ¢j > ch.

considers initial conditions y(s,0) = 1/{l1+exp(xs)}, which are just our friends (2.9) in
disguise, so that his waves are simply the transforms of (2.10). Thus his solutions behave quite
differently from those of Fisher’s equation when x> x;, having velocities ¢ = kx+a/x>¢,
instead of being bounded by a pseudo-wave of velocity ¢,. Note especially that it is not (as
Montroll suggests) the initial slope at s = 0, but the asymptotic rate of approach of y to unity
behind the wave that is propelling it forward at superspeed velocity when x> x,; which is
biologically quite implausible. This error has recently resurfaced in Hoppensteadt (1975), who
shows that conditions on both back and forward tails of y are sufficient for stability, and
wrongly slips into referring to them as both necessary.

I have already mentioned Fisher’s calculations on the shape of the minimal velocity
waveform for his equation. Canosa (1974) has developed an expansion for waveforms of
Fisher’s equation, of ' as a power series in y and ¢™'; and used it to recalculate the minimal
velocity waveform, finding good agreement with Fisher. While it seems to work in practice, he
does not prove convergence for this power series; it is certainly not clear why it yields solutions
with 0<y <1 for ¢ ¢, but not for ¢ < ¢y, as presumably it must (the same problem arises with
the analogous series for waveforms of the simple epidemic (1.4)). Canosa goes on to point out
that since waveforms depend continuously on ¢ (actually this is not proved, but it is a very
reasonable conjecture) they are all unstable, in the sense that an infinitesimal perturbation can
change the velocity. However, he manages to show that local perturbations disappear
exponentially fast. This conclusion is supported by computer solutions of Fisher’s equation by
Gazdag and Canosa (1974), which show such a local perturbation disappearing extremely
quickly. Their other computer solutions, intended to show that superspeed waves are unstable
in some sense, are of little value as they stand, since it is clear (to authors and reader alike)
that they only do so because y is set equal to O at the front of the wave; and it is a simple
consequence of KPP’s result (or of the bounding argument above) that this will make y(s, 1)
travel at at most ¢, (moreover, the theoretical arguments only require an initial bound, which,
thinking of discrete biological populations, is extremely plausible; whereas Gazdag and
Canosa continually remove the forward tail, which is much less plausible). It is nevertheless
interesting to see that again the minimal velocity shape is very quickly attained.

The survey of Fisher’s equation will be completed in Section 3.1, where McKean’s coup de
thédtre properly belongs. Here I should just like to add references to two interesting papers,
the general work of Aronson and Weinberger (1975), and that of Fife and McLeod (1975) on
the approach of solutions of nonlinear diffusion equations to travelling waves; neither,
however, appears immediately applicable to the KPP/Fisher or epidemic diffusion equations.
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To conclude this section, and introduce the work on deterministic contact models in the
next, I must mention the elegant and clearly written paper of Kendall (1965) (which introduced

me to this whole subject). Kendall considered the diffusion approximation to the general
epidemic, i.e. he set j &= y+ky” in

¢ =—ax; J=oaxj—Py; i=Py @2.13)

(x,,z = proportions of susceptibles, infected and removed respectively; x+y+z=1.) As

with the KPP/Fisher equation, waves are possible exactly as for the corresponding linear
equation

y=oly+ky")—By 2.149)

which yields ¢> ¢y = 2ay/{k(1 —n)} = ao\/{2(1 —7)} (see Fig. 2.1a); 5 denotes Bl (if n>1,
no epidemic is possible). Kendall proved that, just as for the KPP/Fisher equation, for each
such c there exists a unique waveform, while waves with ¢ < ¢, are impossible. Again (general-
izing the analysis given above (2.9)-(2.11)) solutions of the linear equation can be used as
bounds, so as to show that superspeed waves require an initial forward tail decaying slower
than that of the minimal velocity wave.

For all speeds, the eventual proportion of dead (lim z(s, f) as s—+—00 or ¢—+00) is, as for
the non-spatial case, the non-zero solution { of

z = 1—exp(—z/n). (2.15)

As to the shape of the wave itself, it appears (from Kendall’s figures at least) to be close to the
non-spatial solution, as in the KPP/Fisher case. Certainly Kendall’s comment, that the
thickness of the wave appears to be proportional to the velocity, is backed up by a trivial
relation that seems to have escaped his attention; namely, integrating the third equation of
(2.13) shows that the area under the curve of infected, [y dt, = {/B independent of c, indeed

independent of the form of spatial dependence (diffusion or any contact distribution) provided
z(s,00) = { as above.

2.2. Deterministic Contact Models
Kendall (1957) briefly considered the deterministic general epidemic in two dimensions
(2.13). With some assumptions he showed that for above-threshold conditions (p =Bla<])
the effects of the epidemic eventually extend over the whole plane, with the proportion of dead
at each point equal to { (2.15), as in the non-spatial case.
Under David Kendall’s supervision I began research in 1966 on the question of the velocity
of waves for deterministic contact models, concentrating on the simple epidemic

¥ =oy(l-y) (1.4) = (2.16)

as the simplest nonlinear example. For the particular case of double exponential contact
distribution,

av (s) = (1/o\/2) exp(—|s|4/2/0) ds, .17

I found (Mollison, 1968, 1972a) that waveforms existed exactly as for the diffusion approxima-
tions of KPP (1937), Fisher (1937) and Kendall (1965), i.c. a unique waveform for each
velocity ¢>a minimal velocity, which in this case is

¢y = 00 3,[3/2,/2 = 1-834ac (2.18)

a little higher (as one might expect) than the aoyf2 of the diffusion approximation ((2-14) with
B =0). Both the waveform y and its weighted average j are very close to the logistic
1/{1+exp(—as)} (absolute difference <0-01 even for the minimal velocity wave; the forward
tail~exp(y?), where y(cy)=1-5a, y(c0) =, while the backward tail (1— y)~exp(—ar)
independent of ¢).
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As in the diffusion case it is illuminating to look at the linear equation, here
y=0oj (1.3) = (2.19)

and in particular to look for exponential solutions y(s, ) = A4 exp{—x(s—ct)} ((2.9) and (2.10)):
it can be shown (Mollison, 1972b, p. 582) that the only waveform solutions of (2.19) are sums
of exponentials with x a solution of

ex = aaf(x), (2.20)
where
B(x) = f exp(xu) dV (u) 2.21)
R
the moment generating function of the contact distribution (compare (2.11)). Let
cp = miny(x)/x 2.22)
z>0

(see Fig. 2.1b). When ¢ converges for some x>0 (equivalent to ¥ having an exponentially
bounded forward tail), $/(x)/x has a unique minimum ¢, which it attains (except when ¥ (0) = 1,
when ¢ = 0), at x> say. (The proof of this in Mollison (1972b) is not quite right, because (x)
can be discontinuous if it jumps to <o at some finite x, but this does not affect the conclusion.)
For a symmetric contact distribution of given variance, the minimum possible ¢, = 1-509a0,
is for the distribution concentrated on +1; for the Normal distribution it is ao\/e = 1-649ac
(Daniels, 1975).

Exactly as described above for the KPP/Fisher equation (2.9) et seq.) one (Mollison, 1972b)
can use exponentials y(s,r) = 4 exp{—x(s—ct)} (x<xp) as bounds of velocity ¢, where c(x)
is given by (2.20). In particular this shows that for any initially bounded set of infected the
asymptotic velocity (if it exists) must be <¢p. These bounding results extend easily to the case
of two or more dimensions.

On the other hand, if either ¥ does not have exponentially bounded forward tail (so that
Ji(x) diverges for all x>0), or, when )(x) converges, in the rather silly case where there is no
initial exponential bound like (2.9), it can be shown under weak conditions that the velocity of
propagation is asymptotically infinite (to be precise, for all # with O0<u<1 the ratio s/t for
points s at which y(s,#)<u tends to o) (Mollison, 1972b). Thus the double exponential
contact distribution ((2.17) and (2.18)) is in a sense the borderline case (though contact distribu-
tions with ¢, > 1-834a0, indeed arbitrarily high, can be invented). Note also that these results
show that for the diffusion approximation to correspond at least roughly it is necessary for V
to have exponential tail (not just finite third moment as KPP suggested).

Atkinson and Reuter (1976) have recently shown that for quite general contact distributions
with exponentially bounded tail, waveforms exist for ¢> ¢y, but not for ¢<¢p,. Their analysis
does not, unfortunately, prove the existence of a minimal velocity wave, or uniqueness of the
waveform of a given velocity; the first of these gaps has now been plugged by Brown and Carr
(1977) who have proved the existence of a minimal velocity wave. Integrating the equation for
a simple epidemic wave

—¢y' =y =j(1-y) (2.23)
(here « has been taken equal to 1), solutions can be looked on as fixed points of the map
T,: y—1 — exp(y=V)/c (2.24)

(remember y = y+dV). Atkinson and Reuter, who work in terms of X = log(l —y), show that
for Xo(s) =—exp(—xs) (x the root of (2.20)<xy), X,(s) = T™X(s)) is a monotone non-
decreasing sequence. Their principal ingenuity is to find a non-positive upper bound for this
sequence (M exp{—(x+9)s)}—exp(—xs)), so as to show that its limit is not the trivial fixed
point X (s) = 0; the reason their proof breaks down in the minimal-velocity case is that
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for this upper bound to work they require $(u)fu<c for x<u<x+8, which is only true for
¢>cp(x<xp). This case is filled in by Brown and Carr using a limiting argument on the
waves as ¢ | ¢

Atkinson and Reuter complete their tour de force by showing that a similar argument works
for the general epidemic (2.13); here again they prove the existence of waves for ¢> ¢ (and
again the argument of Brown and Carr extends this to ¢ = ¢y), and their non-existence for
¢ <cp, where ¢, now denotes the minimum c satisfying

cx = aaf(x)—p (2.25)
(see Fig. 2.1b again). Again this velocity is that obtained by looking for exponential solutions
y = Aexp{—x(s—ct)} (2.26)

to the linearized equation, here
V= oy—By (2.27)

and again such solutions provide bounds for the propagation of solutions of both nonlinear
(2.13) and linear (2.27) equations. The linear model, though in this context we would call it the
“general epidemic with infinite pool of susceptibles”, in fact relates to the expected numbers of
several different stochastic models (see (3.7) below).

The work so far described is not of very much use in establishing lower bounds for the rate
of propagation from such interesting initial conditions as KPP’s (2.5), or a concentration at or
near the origin (note that under the McKean connection, (2.5) represents an initial individual at
the origin). The obvious conjecture is that propagation is asymptotically as a minimal-velocity
wave. Daniels (1977) uses transform methods to look at solutions developing from an initial
concentration at the origin, for the linear equation y = oj and the simple and general epidemic
equations. After showing that the asymptotic velocity in the linear case is ¢, he develops an
approximation technique which suggests the same is true of both the nonlinear equations.

3. SurvEy OF STOCHASTIC MODELS
3.0. Introduction

Two broad questions were posed in the Introduction, as to the velocity and manner of
spatial spread of population processes. By the latter I mean the stochastic fluctuations at the
front of advance; as simulations mentioned in Section 3.3 show, these can be interestingly
irregular for processes with convergent front velocity. However I shall concentrate in this
chapter on the simpler and more precise questions of velocity, to which some precise answers
are known. A third question, as to the population level well behind the front, is for nonlinear
processes either trivial (as for the simple epidemic where everyone ends up infected) or very
difficult. For linear processes with expected numbers W growing in total as exp (af), conver-
gence results on I exp(— o) can be proved; I shall mention these only briefly, because they do
not correctly describe the position of the front where population numbers are small, and hence
cannot be expected to have much relevance for nonlinear processes.

Because of the relations established in the Introduction (Fig. 1.1) the section on linear
models (Section 3.1) consists largely of interpreting the results of Section 2 on both linear and
nonlinear deterministic models. Another, recent, approach to linear models (Stirzaker, 1977
Biggins, 1977) follows the Kingman (1968, 1973, 1975) line on subadditive processes.

However, the original subadditive theory of Hammersley and Welsh (1965) has had (to
date) a deeper effect on stochastic contact processes, since it can be used to obtain results on
nonlinear processes (e.g. Hammersley, 1966; Richardson, 1973—see Section 3.2). Further
developments by Hammersley, (1974), on subconvolutive distributions, can be used to
establish asymptotic results for population-monotone Mce’s (Markovian contact processes, as
defined in Section 1.4) with quite general contact distributions (Mollison, 1977b).
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Most theoretical results obtained to date on both linear and nonlinear models are
asymptotic. Such simulations as have been carried out (Section 3.3) suggest that there is a

wealth of interesting short-term behaviour awaiting the attack of suitable non-asymptotic
methods.

3.1. Linear Models

The projection of a linear process into one dimension is just a similar process with contact
distribution the projection of the original contact distribution, and similarly for diffusion
processes (see Mollison, 1977b, for elaboration). Thus we can obtain results on the propa-
gation of such processes in each particular direction simply from a study of one-dimensional
processes. Further, as we shall see in Section 3.2, it is possible to deduce results on the overall
shape from those for the individual projections.

Let us look first at the psp (diffusion birth process, defined in Section 1.1). Its expected
numbers satisfy

W=kW"+aW, (1.10) = (2.6) = (3.1)

so that from Kendall (1948) we can find W explicitly, (2.7), and hence show that the expectation
velocity tends to ¢, = 2)/(ka) = 0y/(20) (taking k = }o® as before).

The higher velocities possible for the deterministic model are irrelevant to the stochastic
model because they require an initial condition in which the tail of W falls off slower than
exp(—x,5) (see (2.8) et seq.). Now the population in the stochastic model is discrete, so any
particular initial set P(0) either has a rightmost individual (¥ (s, 0) = 0 for sufficiently large s),
in which case the velocity is bounded by c¢,; or individuals all the way out to oo, in which case
the process has no velocity. Thus the higher velocities which are possible for W (0, ) like
(2.8), are (for the stochastic model) an artefact which can only be got by taking a probability
distribution over initial conditions each of which on its own leads to velocity bounded by ¢,.
(This is very close to the original explanation by KPP (1937), of the higher velocities as an
artefact of the growth term.) The same argument will apply equally to the contact process case.

From McKean (1975), we know that y(¢t) = 1 —F, (F, denotes the distribution function of
the front position S,) satisfies Fisher’s equation

y=ky'+oy(l—y) (1.8) =(3.2)

(see Section 1.2). Now for the canonical case where the DBP starts with a single individual at
0, y(0) = 1 —-F, is given by (2.5), so that the main result of KPP (1937) can be reinterpreted as
saying that 1—F, tends in shape and velocity to the minimal velocity waveform of Fisher’s
equation, for which numerical calculations exist (Fisher, 1937; Canosa, 1974; Daniels, 1975).
Hence the front velocity (in probability) and the expected instantaneous velocity tend to the
same limit ¢y = 04/(2c) as the expectation velocity. A proof that the front velocity also tends to
¢e a.5. can be got either directly or by adapting (3.28) below. However, the variance velocity
(1.19) is not ¢,: Daniels (1977) has recently shown that it is equal to 1-5¢y/c.

Before developing similar results for linear contact processes, let us return to historical
order by considering the linear stochastic model introduced by Fisher (1937) in an attempt to
resolve the ambiguity of velocity. In this individuals are “scattered” independently according
to a Normal distribution at unit time intervals, and then split into a fixed number a = exp(«)
of independent individuals. This can be thought of as a discrete-time version of either the
diffusion birth process, or the contact birth and migration model B(),», V) (see Section 1.4)
with Normal contact distribution.

The expected population density satisfies

W(s,t+1) = expla) W (s, ©), (3.3)
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where W denotes the convolution of W with the normal distribution ¥ = N (0, 0%); whence it is
easily shown by transform methods that

K(x,t) = f W(s,?).exp(xs) ds = exp(a+ 302 x®) ¢t 3.9

(i.e. a Normal distribution, N (0, 6®#), multiplied by exp(az)), if we start with an individual at
the origin (W (s,0) a delta-function at 0). Hence the expectation velocity c, is given by

s/t such that of —}s%/(e? £)= O(log 1), 3.5

i.e. ¢;~0y20, again the minimal velocity of Fisher’s equation. This is a result that depends
heavily on the contact distribution being Normal. Without this, the relation between diffusion
and contact models breaks down, and so does the dependence of the velocity on \Jo (see below).
Returning to continuous-time models, the expected numbers of the contact birth process

E(a, V) satisfy
W=aW. (1.3) = (3.6)

For the contact birth and death process (or “general epidemic with an infinite pool of
susceptibles) G(a, B, V) defined in Section 1.4

W= olW—-BW, (CN))

and the birth, death and migration process M (A, g, , V) also satisfies (3.7), with ¥ now
denoting the migration distribution, and 8 = a+u— A (see Mollison, 1977b), Section 2: note
especially that two quite different stochastic processes can have the same expected numbers).
From Section 2.2 (equation (2.22) et seq.) it is immediate that the expectation velocity is finite
iff ¥ has exponentially bounded tail. Hence, using (1.21),

the front velocity v, is finite (and <c},) if ¥ has exponentially bounded tail 3.8)

(¢ as in 2.25). Nor is it difficult to establish the converse, conditional on non-extinction, for
most linear processes (Mollison, 1977a, b). As we shall see (3.23) the sufficient condition,
though not its converse, carries over to all MCP’s; for some we can also show that ¥, converges
(3.28).

Bartlett (1956) considered a slightly more complicated process (G(a, 8, V') with movement of
infectives also possible) and using transforms obtained

K(x,1) = f W (s, 1).exp(rs) ds = exploh()— B} 1 (3.9)

where §i(x), as in Section 2, denotes the moment generating function of the contact distribution.
He used a central limit approximation

K(x,1) = exp{e(l +Jo®x?)— B} £ (3.10)

to deduce, exactly as above for Fisher’s model ((3.4) and 3.5)) that the expectation velocity is
asymptotically c; = ao\f{2(1 — B/«)}, which is the minimal velocity for the diffusion approxima-
tion (2.14). Later (Bartlett, 1960, using Bartlett, 1954), he looked at the second-order densities,
where a similar approximation suggests that the variance velocity is also equal to Co-

However, these approximations (although widely accepted (see, for example, Bailey, 1975,
Radgcliffe, 1973, 1976) are not quite correct; the scaled-down expected numbers,

W (s, 1).exp{—(a—PB) 1}

are indeed converging to a normal distribution (similar convergence results for considerably
more complex processes have been found by Davis, 1965, and Radcliffe, 1976), but in the tail
where W (s, ) = O(1) the convergence is not fast enough. Daniels (1975, 1977), taking the more
accurate saddlepoint approximation, shows that the asymptotic expectation velocity is really

¢ = min{(cah(x) — B)/x}, G.11)
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i.e. the minimal velocity for which the “deterministic general epidemic” has waveforms (see
(2.25) and Fig. 2.2). (Daniels actually only considers the case 8 = 0, but the extension is trivial)
Thus if ¥ does not have exponentially bounded tail the expectation velocity is asymptotically
infinite, and for all symmetric V it is greater than the diffusion/central limit approximation
value of cj.

A simf)le case which illustrates this divergence of ¢}, from cg is the birth and migration
process B(A, v, V) with ¥ concentrated on +1. For this we can explicitly find

K(x, ) = exp{A+v(ez— 1)}, (3.12)

(a Poisson distribution of mean v, x exp(Af). The asymptotic expectation velocities ¢+ and
c— (for right-hand and left-hand sides of the population respectively) can then be found
directly (using Stirling’s formula for m!), as well as from (3.11); these are plotted in Fig. 3.1

2N | =2y~
- :

1-v2 >

Fic. 3.1. Asymptotic expectation velocity ¢y of B(A, v, ¥) for ¥ concentrated on +1, with values indicated
by central limit approximation for comparison (dashed curve). (Equations are: for (a): x = y(log y—1)+1
(valid for y> 0 only); for (b): x = $(y—1)2)

with the diffusion approximation values for comparison. Note that, as might be expected, the
diffusion approximation is best when Afv is small. Renshaw (1977) has developed explicit
solutions of more general “stepping-stone” (= one-dimensional “nearest-neighbour”, i.e.
with ¥ concentrated on + 1) models, confirming the velocities given by (3.11) and showing that
near the “expectation front” (1.15) W (s, ) ~exp(—x}s), again as one would expect (x;, being
the value for which the minimum in (3.11) is attained (see Fig. 2.1b).

Daniels (1977) has also looked at the covariance density of ¥(s,#) for the contact birth
process; and, again using a saddlepoint approximation, found that the variance velocity (1.19)
tends to a limit > ¢y, being given by

d = P(2x)[2x = Y(x)/x. (3.13)

In interpreting this, the peculiar definition of the variance velocity must be borne in mind; it is
quite consistent with this result that the front position S, should converge in a strong sense
(see below).

For the cBp we have also the connection established by Mollison and Daniels (1978) (Fig.
1.1), that y = 1 —F, satisfies the “deterministic simple epidemic” equation

y = oj(1-y), 1.4 =319
so that if, as is strongly conjectured, the appropriate solution of this (y(s,0) as in (2.5)) tends to
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the minimal-velocity wave, we should have, as for the diffusion birth process, that the front
velocity (a.s.) and expected instantaneous velocity Z; (which can be shown to exist—Mollison,
1977b, Lemma (4.5)) both tend to ¢y, like the expectation velocity. (In fact, from the connec-
tion between the cBp and (3.14) we have the equation

Z'g=—f13}ds=afﬂ(l—ﬁ;)ds (3.15)

for the expected instantaneous velocity.) In any case, a separate “backward equation argu-

ment (Mollison, 1977b, (6.1)) shows that the variation of S, has a close connection with Z,
such that

if Z, is bounded, so is E| S;—Z,| (3.16)
(independent of ?).

Also, the results given below for population-monotone MCP’s (3.28) apply to the csp,
showing that the front velocity converges a.s. when ¥ has exponentially bounded tail (finite
velocity case), and in probability even when it does not. This result also applies to the birth
and migration process B; it does not apply directly to the more general linear processes G
and M (see Section 1.4), but does if attention is restricted to a suitable “hardcore” sub-
population, namely the fecund individuals (those who have descendants at all future times)
who have not yet had offspring (Mollison, 1977b, (4.1)).

Lastly, note that Daniels’ saddlepoint approximation can also be applied to discrete-time
models such as that of Fisher (1937) described above (3.3). We find

K(x 1) = f W (s, ) exp(xs) ds = exp(e). (J(x))f = explfo+logh(x)pf]  (3.17)
(compare (3.9)), so that the expectation velocity tends to the infimum ¢y of ¢ such that
cx = a+log(x). (3.18)

(Unlike the continuous-time case, this infimum may not be attained; note that time here is in
units of a generation.) This result has been independently obtained by Biggins (1976, 1977),
using techniques similar to Kingman (1975). Setting P(x) = exp(30®x®) (V= N(0,0%) we
recover Fisher’s ¢, = 0y/(2c). For varying contact distribution, however, in this discrete-time
case we can get both lower and higher velocities than the central limit approximation suggests:
the dependence on « can vary from none (for ¥ concentrated on + 1, cp = o provided exp(x)
>2) to approximately linear (¥ with exponential forward tail); a sufficiently wide range to be
of importance for applications (see comments on Skellam, 1951, in Section 4.1).

What about the front velocity? Biggins (1977) shows that for a general contact branching
process (CBrp) its limiting value is given by the same generalization of (3.18) as the expectation

velocity, and thus that the two are equal. By looking at different slices of the cBre in space-time
he is able to deduce that

limy, =lim¢, (3.19)
for the cBP as well (see also (3.30) below).

3.2. Nonlinear Models

Perhaps the simplest nonlinear models are percolation processes (Hammersley and Welsh,
1965), in which each point of a regular lattice, typically in two dimensions, is inhabited by a
single individual, and a disease or some other phenomenon spreads between neighbours; in the
Markovian case, where the time taken to infect a particular neighbour has distribution function
1 —exp(—at/m), where m is the number of neighbours, this is identical to the simple epidemic
EY(e, ¥) with population density p = 1 and “nearest-neighbour” contact distribution. (Percola-
tion models in discrete time have also been considered ; and models in which the probability p
that an individual eventually infects a particular neighbour is <1 and it is asked whether the
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number eventually infected will be finite or infinite: note that this is similar to the question of
whether there will be a pandemic for the general epidemic G(e, B, ¥) with B/(a+5) = p.)

Morgan and Welsh (1965) considered the Markovian percolation process E1(2a, V) on a
square lattice, with ¥ concentrated on the north and east neighbours, so that it spreads only
through the positive quadrant. Using the norm ||(x,»)|| = |x|+|y] they showed that the
expected distance to the overall furthest (infected) individual at time £, Z* = E(S}), is super-
additive (Z%, > Zf +Z7), and conjectured that Z¥/t converges to a limit ¢, that Z}* = ax the
“boundary length” (number of adjacent (infected, susceptible) pairs), and that = var(S;¥)
also tends to a finite limit. They presented simulations to support these conjectures.

Hammersley (1966) considered the more general non-Markovian percolation process in
which L is any lattice with finite connective constant k ; for each neighbouring pair the infection-
time distribution function is not the Markovian 1 —exp(— at/m), but a quite general F(¢). He
showed that

limsupZF/t< €< (3.20)

under the sole condition F(0) <e~®. The first of Morgan and Welsh’s conjectures follows as a
corollary (this requires the superadditivity of Z). Hammersley also proved their second
conjecture.

When I first looked at stochastic contact processes in 1968, after two years of working on
the deterministic simple epidemic, it was natural to look at the one-dimensional simple
epidemic. My original idea was merely to simulate simple epidemics with various contact
distributions to examine the applicability of deterministic theory, but I found that crude
techniques of comparison with simpler models furnishing upper and lower bounds, similar to
the techniques I was using for the deterministic case, yielded a theoretical result to the effect
that

the front velocity is <o iff ﬁ s2u(s)< o0 (3.21)
8=

(Mollison, 1972b—some of the simulations will be described in Section 3.3). It was clear that
the method was peculiar to the one-dimensional case, and it was only four years later under the
stimulus of Williams and Bjerknes (1972) that I first looked seriously at the case of two or more
dimensions.

Williams and Bjerknes considered a tumour growth model, in which black (tumour) and
white (normal) cells divide at respective rates o and 8, each new cell displacing a random
neighbour of its parent. In the case 8 = 0 this reduces to the percolation process (E*(«, V) with
nearest-neighbour contact distribution); in fact it is easily shown that the tumour model
underlies (1.22) the general epidemic, while it is in turn underlain by the cBp. The case
B # 0 (B<a) is in some ways similar to the general epidemic G'(«, B, V). One way in which the
tumour model is simpler is that the successive numbers of black cells follow a simple random
walk with p = «/(a+f), so that the probability of extinction is easily shown to be (B/x);
whereas for the general epidemic case the probability of extinction is conjectural. On the basis
of simulations, Williams and Bjerknes made the interesting conjecture that the dimension of
the boundary of a tumour (area of black cells, starting from a single black cell) was greater than
one;i.e.,if we define the boundary length b as equal to the number of adjacent (black, white) pairs,
and r equal to the radius of a circle of the same area, that the ‘““crinkliness” b/2ar~r¢, £>0.
However, there is a close connection between the crinkliness and the velocity (recall Morgan
and Welsh’s second conjecture), and it was not difficult to disprove the conjecture by showing
that it contradicts Hammersley’s bound on the velocity (3.20) (Mollison, 1972c, 1974).
Downham and Morgan (1973) and Downham and Green (1977) have since looked more
closely at the actual rate of growth (see Section 3.3); Clifford and Sudbury (1973), Sudbury
(1976) and Kelly (1977) at the special case where B = a.
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My work on Williams and Bjerknes’ model led me to look closely at Hammersley’s proof of
(3.20). This relies on a bound e*” for the number of “n-step self-avoiding walks” to obtain

Pr(SE,>n)<Ae", &<l (3.22)

(choosing a suitably large velocity ¢). For the CBP it turns out that an estimate of the number
of “m-step chains of infection with links of total length <n—m" has a similar bound provided
the contact distribution has exponentially bounded tails, so that Hammersley’s result can be
extended to any MCP with such a contact distribution (Mollison, 1977a) (and it is trivial that it
extends to non-Markovian contact processes with an underlying cBp; this covers cases such as
Hammersley’s generalized infection-time distribution F(r), provided only that F(f)< Kt for
some K <o0).

Sadly, this proof, which has the virtue of involving the stochastic structure of the cBp, is
now superseded by the stronger (for the cBp itself optimal (3.19)) result which can be got
from the equation y = oy (1.3) for the expected numbers of the csp (3.8) (Mollison, 1977b).
Thus, immediately from the definition of an Mcp (1.23), it is bounded by a cBp E(e, V), so that
its front velocity in any particular direction, y,(6) (1.12), satisfies

lim sup y, < o0 if ¥V}, satisfies (3.8), (3.23)

i.e. if the projected contact distribution ¥, has exponentially bounded tail. (The converse is of
course false, as the example of the one-dimensional simple epidemic (3.21) shows.) Note how
the trick of looking at a linear process has got round the difficulties involved in considering
projections of nonlinear processes. It might be thought that the upper bound provided by the
cBp would be a wild overestimate; not necessarily so: even for the nearest-neighbour model in
one dimension the additional elbow-room obtained in going from p = 1 to p = oo (the cBP) only
raises the velocity by a factor of 3; and in two dimensions this reduces to a factor of less than 2
(see Table 1).

This result (3.23) only shows that the propagation of an McP in a particular direction is
bounded. It is not difficult to show that an overall bound for the convex hull H, of the set I, of
inhabited points (see (1.14)) can be obtained from the bounds for individual directions; i.e.

limsupHJjt < C={s.8<cy}, (3.24)

where c; is the asymptotic expectation velocity (given by (2.22)) of the underlying cBP in the
direction & (Mollison, 1977b, (3.10b)).

What about the actual shape and velocity of expansion of I, or H;? Richardson (1973)
used techniques from the subadditive theory of Hammersley and Welsh (1965) to show, for a
class of processes obeying some rather restrictive conditions (but including the percolation
process EYa, V), and some discrete-time percolation processes), that the set of inhabited points
tends to a “circle” (n-ball B?) in an appropriate norm, i.e.

plim I/t = Br. (3.25)

Richardson’s work is set in a first-passage time (subadditivity and generalized renewal
theory) framework (as is Smythe’s (1976) paper, which improves some results of Hammerlsey
and Welsh (1965) for first-passage times of non-Markovian percolation processes); for
processes in which contacts at a distance are possible, the dual approach, of considering the
distance reached by time ¢, is more appropriate. To obtain results on H, for MCP’s, let us start
by looking (again) at progress in a single fixed direction 8. For the moment, restrict attention
to the case of an initial population consisting of a single individual (but see remarks following
(3.29)). Let S, again denote the distance (s(i).8) to the furthest individual 7 in this direction at
time 1, Sy, the relative distance to the furthest offspring to time ¢4 u of this individual. Then
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and the condition required to ensure that S, > S,,, where S, is independent of S, and has the
same distribution as S, is precisely that the McP be population-monotone (1.24) (we must set
S; = —o0 for a realization which has become extinct). The S’s are not superadditive (which
would require (3.26) for 0<s<?<u rather than 0 = s<f<u), because they fall down “Joshi’s
hole” (see Hammersley, 1974, pp. 678-679 and 653); but with S,,>S,,, (3.26) does imply that
the distribution functions F, of the S;’s are subconvolutive, i.e.

Frn) < F*dF) (s) 3.27)

and hence that the convergence results of Hammersley (1974) can be applied, to show that, fora
process with zero probability of extinction (but see remarks following (3.31)),

(8) = Sy/t->a limit v, (3.28)

for each fixed 8, where convergence in probability can be deduced under minimal assumptions,
convergence a.s. under rather stronger conditions (¥, has exponential tail suffices).

In either case, the limits for individual directions can again be “stuck together” (at least
when they are all finite) into a convex body I' (={s.0<y,}) such that the convex hull of
inhabited points converges in shape and velocity, i.e.

Hyjt->T (3.29)

{where convergence is in the same sense as that of S)/t). These results generalize immediately
to the case where the initial population is any set which can be reached with non-zero proba-
bility from a single individual (since if we assume otherwise a contradiction is easily obtained).
These results also generalize immediately to discrete-time population-monotone MCP’s; indeed,
they are easier to obtain in that case, since the basic results of Hammersley (1974) deal with
subconvolutive sequences (F,) of distributions.

Though the above approach has the great advantage of applying to some nonlinear
processes, it does not yield explicit limits y, and I', though we know from (3.24) that ' = C
provided ¥ has exponential tails. The alternative approach of Biggins (1977) has the advantage
of explicitly finding the limits y, (see (3.19) above), and thus showing that for the cBp

I'=C (3.30)

(and similarly for the contact branching process). He also shows that lim [/t = I'.

Besides these convergence results, conditioning on the population P*(t) of the underlying
cBp can be used to obtain results on the existence of moments of .S, and in cases like the simple
epidemic where

Sy||P¥(®)| = m is independent of ¢ (3.31)

the existence of derivatives of these moments, e.g. the expected instantaneous velocity Z
{Mollison, 1977b, (4.5) and (4.7)).

In the present state of the art the convergence results ((3.28) and (3.29)) only apply to
population-monotone MCP’s with zero probability of extinction, e.g. the simple epidemic (and
to linear models such as the cBp and the birth and migration model of Section 1.4). They can be
extended to other population-monotone McCp’s, such as the birth and death process, by restric-
ting attention to the “fecund individuals who have not yet had offspring”: but these are rather
a shady set—in a sense only such individuals are important (they must exist if the process is not
to die out), but they are not identifiable at any finite time.

This last example highlights in acute form the most unsatisfactory facet of all the work
described: the results are all about (time-) asymptotic behaviour. (Note though the different
approach of Harris, 1974, who obtains results on probabilities of extinction and expected
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population size at time ¢ for a special class of MCP’s similar to the tumour model.) As we shall
see in the next section, short-term behaviour has its interesting aspects.

3.3. Simulations of Stochastic Contact Processes

Besides the simulations of Morgan and Welsh (1965) and Williams and Bjerknes (1972)
already mentioned, stochastic contact processes with bounded contact distributions have been
simulated by Hégerstrand (1953), Schwobel et al. (1966), Bailey (1967) and Downham and
Green (1976); the latters’ simulations of the Williams and Bjerknes tumour growth model on a
square lattice support the conjecture that the crinkliness, and hence the expected instantaneous
velocity (1.13), tend to a limit even when B# 0. Their measurements of crinkliness (for
growths which reach 10,000 cells) range from 2-36 (+0-010) for 8 =0 to 6-26 (& -41) for
a = 1-18. Note that even in the former case we have a velocity 2-36 times the prediction
yielded by a deterministic model assuming growth as a circle. Downham and Green also
examined the use of the crinkliness as an estimator for «/B, for which it appears poor, especially
when /B > 3 (considered as an estimator of B/« though, errors are typically +0-1 for large and
small B).

Richardson (1973) simulated discrete-time percolation processes, which appeared to
support Eden’s (Eden, 1961) conjecture that as the parameter p—0, when the process tends to
the continuous-time percolation process, the asymptotic shape I tends to a circle. However, it
should be noted that for the corresponding ¢Bp I is not quite a circle, the velocities in different
directions varying by just under 5 per cent (Table 1); while not disproving Eden’s conjecture,
this shows that we should be cautious in interpreting the evidence of simulations on such
a point.

TABLE 1

Table of velocities (y/aa, ciy[ac) for simple epidemics in one and two dimensions. Values marked *
are calculated, others are from simulations. The two velocities for the square lattice are for the
45° directions (cy = 1:509/y/2), and axial directions respectively

p=1 3 10 30 )
One dimension
Diffusion approximation — — _— — 1-414*
V.
Nearest-neighbour 0-500% . 0-87 . 1-509%
Continuous uniform . . . . 1-568*
MNormal . . . . 1-649%
Geometric, o = 0-625 . . 095 . .
o=2 0-5 085 121 1-4 1-851%
=6 . . 145 . .
Exponential (2.17) . . . . 1-834*
“Type (2)”: ~|s| 05 12 19 . o ®
{Upper bound is: (0-6) (1-8) (6-0) . {o0)}
“Type (3)’: ~|s| -8 o® oo¥ okl o# oo ®
Two dimensions
Diffusion approximation — —_ - — 1-000*
V:
Nearest-neighbour
On: square lattice 0-59 . . ; 1-067%/
1-114*
hexagonal lattice 0-635 .
Exponential (2-17) . 1-297*

Sources: Mollison (1972b), Williams and Bjerknes (1972), Daniels (1975),
Atkinson and Reuter (1976) and Downham and Green (1976).
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There is clearly scope in various directions for further simulations: processes on irregular
lattices, processes for which the probability of extinction is unknown; and especially for
simulations tied more closely to problems of inference for particular data sets (see Section 4.1).
In this section I shall concentrate on simulations of my own (Mollison, 1972b), whose aim was
to relate some of the asymptotic theoretical results of Section 3.2 to non-asymptotic behaviour
of a nonlinear stochastic process; and, in particular, to look at cases where ¥ does not have
exponential tails.

I considered principally just the one-dimensional simple epidemic, with initial condition
severyone to the left of zero infected” (and with a rather confusing nomenclature: o, ac
and w, instead of p, « and ¢%). The contact distributions considered included (1) geometric
(v(s) = kp'®!, p<1), and distributions with tails (2)~|s|* (finite variance) and (3) ~ |s|®
(infinite variance) (recall (3.21)). The geometric and other exponentially bounded contact
distributions (nearest-neighbour, uniform on [—-3, +3], and distributions (2) and (3) modified
by cutoffs at s = + 10) all showed very similar behaviour, with progress in a steady wavelike
manner: that is to say (a) the position of the front S, was close to linear with time, and (b)
averaging over a mere 20 states at equal time intervals gave a “mean wavefront” close to the
logistic curve, y.(s) = 1/{(1 +exp(s/y)} (the smooth curve shown in Fig. 3.2); recall from

Fic. 3.2 (from Mollison, 1972b). Simple epidemic E¥(1, V) (@ = 1, p = 10) with geometric contact
distribution (v(s) = (3) '5'/3); showing early stages of two simulations with different initial conditions.
« ’s indicate average state between times 105 and 200; smoothed curve is logistic y, of same velocity.

Section 2.2 that waveforms of the deterministic simple epidemic are close to logistic. Fig. 3.2
shows a pair of simulations, both with ¥ geometric; the second illustrates an attempt to
provoke a higher velocity by starting with y an appropriate logistic {y,,(s)}. Of course, the
simple epidemic being population-monotone, this outbreak is bounded gy one starting with,
for example, everyone left of S infected, so this attempt is doomed to failure. More logical
considerations on variations in velocity and possible ergodic properties of the one-dimensional
simple epidemic will be put forward in Section 4.2.

For these simulations, average front velocities y depend more on the population density p
and standard deviation o than on the individual contact distribution, and are in reasonable
agreement with the comjecture that y/ac tends upwards to the minimal velocity ¢, of the
corresponding CBP as p—0. y/ao also increases with increasing o; this is not surprising, as pc
is a measure of the number of contacts over whom an individual’s influence is spread, so we
might expect y/ac ¢ also as o—o0 for a sequence of similar discrete distributions ¥,, with
V,(ou)->a limit ¥ (u) (c.g. V,, geometric with increasing o, ¥ negative exponential).

What does propagation at an unbounded rate look like? Simulations of epidemics for
which the variance of ¥ is infinite (type (3)) show progress in a series of “great leaps forward”
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which get increasingly out of hand. The intermediate case (type (2)), where ¥ has finite variance,
but not exponentially bounded tail, is perhaps the most interesting. Simulations here show
alternating “great leaps forward” and periods of steady progress (Fig. 3.3). (Yet the front
velocity converges for this process, at least in probability ((3.21) and (3.28)).)

The provisional conclusion from a few simulations of the general epidemic in one di-
mension was that the slowing effect of a non-zero removal rate 8 appears greater than predicted
by the deterministic model (2.25). This work has been followed up by Davidson (1976), but
much remains to be explored.

Table 1 brings together average front velocities from simulations and various theoretically
calculated velocities. Note especially how small the range is between the velocities of the

nearest-neighbour models in one and two dimensions, and of the cBp’s with the same contact
distributions.
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F1G. 3.3 (from Mollison, 1972b). Simple epidemic EX°(1, V) with d¥ (s)~| s |~* (= (72/5) (TI(| s |+ w),
product for # = 1, ..., 4), and initial condition “everyone left of zero infected”. The upper line shows the
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summing from zero to infinity.
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4. APPLICATIONS, PROBLEMS, CONJECTURES

4.0. Introduction

In Section 4.1 I shall consider the implications for practical applications of the work
reviewed in the earlier sections, with mention of the more practically relevant outstanding
problems. The more theoretical problems and conjectures will be considered separately in
Section 4.2. While much attention is still being paid to theoretical studies whose relevance is
dubious, there remain outstanding problems: including those related to non-asymptotic
behaviour of nonlinear stochastic contact processes for the probabilists, and problems of
inference (for which excellent sets of data, for example on Dutch elm disease, Howell, 1975,

exist) for the statisticians.

4.1. Applications

The work which has been described here is appropriate to population processes which
spread through fairly homogeneous spatial conditions: for some processes, especially those
relating to urban humans, different models (e.g. the n-site models referred to in the Introduction)
may be more appropriate. For such spatially homogeneous processes a general picture of
spread at a steady velocity is to be expected, provided that the contact distribution ¥ has
exponentially bounded tails. (For some remarks on observed velocities, and on more general
epidemic models, see the introduction to Mollison, 1971.) For a process well above threshold
and which can be approximated by a contact birth process near its front of advance, the
velocity should be rather less than the cBe’s velocity ¢ (2.22); cp depends linearly on « (the
“contact rate”) and o (the standard deviation of V) and ¢y /ac varies only slightly with ¥ (see
Table 1). The velocity can fall by a factor of about two (in two dimensions, about three in one
dimension) if the number of contacts available to an individual is very small.

For processes in which death or removal is an important factor, so that the birth and death
process G(, B, V) is a better approximation, ¢j should be used in place of ¢, (2.25); ¢, may be
more of an overestimate, especially if B/« is near unity (this is a question that needs further
investigation, perhaps by simulation studies of the general epidemic G#(a, B, V)). In the above
circumstances (continuous-time process, ¥ exponentially bounded), because of the insensitivity
of ¢, to the exact shape of V, it should be possible to estimate o or o, given the velocity of
spread of the process. Some typical velocities are shown in Table 1. In this type of “order-of-
magnitude” analysis, it will not matter too much if the diffusion approximation velocity
(o/{2(1 — B/e)} is used, instead of ¢, or c;;. This will not be true if we have the wrong sort of
model, which can happen in two principal ways. Firstly, a discrete-time model will be more
appropriate whenever the gap between successive generations (“incubation period” for an
epidemic) has a proportionately large minimum value. In this case the velocity, even when Vis
exponentially bounded, is no longer simply proportional to « (though it is still proportional to o
(3.18)). This can make a considerable difference when « is large: a good example is Skellam’s
(1951) consideration of the problem of how fast oaks could have recolonized Britain after the
last ice age. Following Fisher’s (1937) blurring of the distinctions hetween continuous and
discrete time (and between contact and diffusion) models, he appliec Fisher’s velocity oy/(20)
appropriate to Normal ¥. However, as mentioned at the end of Section 3.1, the dependence of
¢ on « for a discrete-time process can vary from none (for “nearest-neighbour” ¥) to approxi-
mately linear (for exponential V), and for oaks the number of offspring a is estimated at
9,000,000, so that o = log(a) = 16; thus his estimates could be out by a factor of four in either
direction, even if ¥ is exponentially bounded. Ammerman and Cavalli-Sforza (1973) also used
Fisher’s velocity of ¢y/(2¢) in a similar problem, regarding the spread of early farming across
Europe; here, however, the number of offspring is that of a human family, so that any error
will be much smaller. ‘

Besides the need to decide whether a continuous-time or discrete-time model is appropriate,
there is the more difficult question of deciding what types of contact distribution are possible or
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likely. With a non-exponentially bounded ¥, the manner of spread will be irregular (as in Fig.
3.3 or worse), and even in the continuous-time case the velocity (if any) is no longer so simply
related to ao (see Table 1).

Qualitatively, such models may explain cases of long-distance dispersal, without need to
assume diverse methods of dispersal, separate origins or (in cases involving long-term dispersal
of species) different geophysical or climatic conditions (see Jardine and McKenzie, 1972;
Wickens, 1976). In using a classification based on the asymptotic behaviour of V it is necessary
to be aware of the problem of scale: thus, contact distributions for some processes with light
propagules, such as coffee rust, may have exponentially bounded tails, but with the parameter
of the bounding distribution so large that they behave like contact distributions of infinite
variance (“type (3)” of Section 3.3) even on a global scale (Mollison, 1977¢).

How should we go about estimating contact distributions? Tinline (1971) tried to estimate
a contact distribution for Hégerstrand’s (1953) data on the spread of agricultural innovations,
but restricted ¥ to the nearest 5x 5 quadrats. The estimates, as might be expected for a model
with 25 parameters, show great variation; but there is a noticeable tendency to concentrate on
the centre and edge of the 5x 5 matrix, suggesting that infection outside the assumed areas
occurs to a significant degree.

It should be possible to develop an alternative approach, so as to look qualitatively at the
tails of V. In the first instance, this might follow the general lines suggested by Cliff and Ord
(1975), of generating a number of simulated realizations of models with varying ¥, but using a
radically different statistic as a measure of goodness-of-fit; something more in the spirit of
Ripley’s (1977) statistics K and p for spatially stationary processes, would seem appropriate.
For instance, even from data on a process at a single time it should be possible to make
inferences about the contact distribution by computing an empirical distribution function for
the distances of individuals at the edge of the population from their nearest neighbours (the
edge individuals being recognized, perhaps, by the length of their Dirichlet cells/Voronoi
polygons).

If the parameters of a model (e.g. o, o) can be estimated independently of the overall
velocity y of the process, we may be able to test for exponentially bounded contact distribution
¥, by comparing y/ao with the relatively narrow range of values possible for exponentially
bounded ¥ (1-5<y/ao < 1-85 for the contact birth process).

4.2. Outstanding Theoretical Problems

As may occur to the reader of Section 4.1, the discrete-time nonlinear case has been
relatively neglected, although it may be appropriate in many applications. Such asymptotic
results as are known suggest that the dependence on the type of contact distribution is similar to
that for continucus-time processes; and it seems unlikely that any phenomena as bizarre as are
possible for closed populations (May, 1976) will turn up in models for spatially advancing
populations. Thinking of possible extensions to non-Markovian processes, we may note the
approach of Biggins (1977) to processes with a general lifetime via discrete-time processes; in
general, when results hold both for discrete-time (constant lifetimes) and continuous-time
(exponential lifetimes) M..ikov processes, it may reasonably be conjectured that wey hold for
non-Markovian processes with a range of lifetime distributions. However, the example of
Skellam’s oaks described above shows that it is not safe to apply continuous-time models
indiscriminately to discrete-time phenomena.

Much of the work described, especially on nonlinear models, is most conveniently done
assuming the population to be on a regular lattice. It seems probable that results will apply
broadly to less regularly spaced populations, but investigation, if only by simulation, would be
desirable. With recent advances on stationary spatial processes (Preston, 1976; Ripley, 1977),
and on computing tessellations (Green and Sibson, 1977) the time for this may be ripe.

On the more traditional side, the initial value problem for the “deterministic simple
epidemic” remains to be cleared up (though now interpreted as the behaviour of the distribution



1977] MOLLISON — Models for Ecological and Epidemic Spread 311

function of the front S, of the cBp). The conjecture is that equation (1.4) with initial condition
(2.5) tends to the minimal velocity waveform (it is clear that it cannot tend to any other
waveform). It would, alternatively, be of interest if it could be shown that the expected instan-
taneous velocity Z, is bounded, as it would follow that E| S,—Z,| has a bound independent of ¢
(see 3.15, 3.16). Such a result would rather confirm the irrelevance of the deterministic simple
epidemic and the contact birth process, since such extremes of good behaviour are quite
implausible for nonlinear models (even for the nearest-neighbour simple epidemic in one
dimension, E|S;—Z;|~ 1)

More relevant asymptotic problems are those of : (1) the conditions on the contact distribu-
tion ¥ required for the simple epidemic to have bounded velocity in two or more dimensions;
(2) whether the front velocity y;, = Sy/t, tends to a limit for the general epidemic, the tumour
growth model of Williams and Bjerknes (1972), or other non-population-monotone processes;
and (3) the probability of eventual extinction for processes such as the general epidemic—
strongly conjectured to be 1 in one dimension, an open question in two; the manner of spread
of such a process in more than one dimension is also very much an open question (see Kendall’s
(1957) conjectural comments on “arcs of spread”).

What would be most welcome would be a theoretical attack on problems of short-term
behaviour. One special case which might provide a starting point is the simple epidemic in one
dimension, starting with “all individuals to the left of zero infected” (a case already mentioned
in Sections 3.2 and 3.3). As usual, this can be considered as a Markov process, with states
specifying the numbers of (infected) individuals at each point. This Markov process is not
much use as it stands because all states form individual transient classes. However, in this
special case we can identify states which differ only by translation, and thus obtain an
irreducible Markov process. We can then ask under what conditions on V is this positive-
recurrent, so that there is a stationary distribution p;? Further, can we relate the expected
instantaneous velocity Z; to its conditional values for each state i by Z,— ¥, p; Z;, and thus show
that for Z, to be bounded the Markov process must be positive-recurrent? It might also be
possible to resurrect the deterministic simple epidemic by expressing states as perturbations of a
deterministic wave form.

Such an exact analysis could not be carried over to more complex processes, such as the
general epidemic in one dimension (a particular case which cries out for short-term analysis,
since simulations show it is capable of progress in a steady wavelike manner for long periods,
despite its eventual certainty of extinction); but it might at least yield ideas for methods, approxi-
mate or otherwise, to attack this yawning hole in the theory of spatial contact models, relating
to their short-term behaviour. After the progress from linear and deterministic models to
nonlinear stochastic models which has been made over the past decade, this seems the obvious
next step. Simulations (as in Fig. 3.3) can be used to stimulate interest, as a check on con-
jectures; and, in the absence of theory, to generate distributions of statistics for use in estima-
tion (e.g. of ¥). The estimation question (discussed in Section 4.1) is perhaps the immediate
outstanding problem, but a backbone of theory on short-term behaviour is what is needed for
long-term progress.
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DiscussioN oF Dr MoLLISON’S PAPER

Professor H. E. DanieLs (University of Birmingham): The study of spatial statistics and
spatio-temporal models has grown rapidly in the present decade. The Society has recently heard
and discussed excellent papers in this field from Mr Besag and Drs Cliff and Ord, and Professor
Bartlett’s monograph on Statistical Analysis of Spatial Patterns is now available (Bartlett, 1975).
The wave of advance continues tonight with a paper from Dr Mollison on a topic which, starting
with his original onslaught on diffusion models, he has made very much his own. We are greatly
indebted to him for this comprehensive survey of the existing knowledge on spatial contact
models. I am sure many will be tempted to try their hand at some of his unsolved problems—
indeed, my own relatively recent entry into the field was in part stimulated by his infectious
enthusiasm.

I should like to make two comments on the paper, one rather specific and the other more
general. The first is this. Dr Mollison is concerned with the spread of spatial contact processes;
in particular, in the case of stochastic models, with velocities of advance defined in various ways
and their limiting behaviour as time increases. I have a sneaking feeling that he regards what he
calls the front velocity y, = S/t as the only one that really matters, though he does politely discuss
the properties of others like the expectation velocity. Now the front velocity is certainly the natural
one to consider for percolation processes—once a site is wet it cannot get any wetter—or for epidemics
such as rabies where the appearance of one infective leads to immediate action. Yet there are
milder epidemics where we might want to know when the number of infectives has reached some
predetermined unacceptable level. Then the more usual front excluding a given number of
individuals would be more appropriate.

In the one-dimensional deterministic model suppose s;, is the point excluding r individuals on
the right, corresponding to an expectation velocity ¢, = s,,/t according to (1.17). In a particular
realization of the stochastic model the point excluding r on the right is S, (Sy,; is Mollison’s ;).
It will vary from one realization to another, but one hopes that it will not differ too much from the
deterministic s, It is by no means obvious that this is so in a linear birth process.

The number R to the right of the deterministic s,,; in actual realizations is a random variable
which, because of linearity, has expectation r. However, some recent work of mine (Daniels, 1977)
reveals that the variance of R increases exponentially with time. Also the correlation between the
densities over a range of O(1) tends to unity. One can use a Chebyshev argument based on E(R)
to show that P(S;,:=> 5., +a)<e~? (0 is Mollison’s x,), so that S, will not exceed s,,, by more than
O(1). Unfortunately, the increasing var R cannot be used in the same way to bound S, by O(1)
on both sides of s.,. In fact one might intuitively expect that S,,; could be quite far below s,,. because
of the large var R and high correlations. To prove this would probably need a more detailed
knowledge of the distribution of R, but it would have to be a rather unlikely one for S, to be
also bounded below in this way.

On the other hand, the McKean-type connection between the distribution of S,, in the linear
case and the deterministic simple epidemic suggests that .S,,; remains within O(1) of s,,,. It may be
that y, = S,,,/¢t is quite untypically well behaved.

To make comparable statements about the nonlinear simple epidemic would require a knowledge
of its covariance density structure, but, alas, the usual difficulty of determining the moments which
confronts one in the non-spatial simple epidemic reappears. Nevertheless, in many applications
there is a large population of susceptibles and the linear approximation to the process in its early
stages may well be all that is relevant.

My other point concerns deterministic nonlinear models. It is possible to develop an approxi-
mate technique of the Green-Liouville type which provides computable approximate solutions to
nonlinear equations such as those for the simple and general epidemic (Daniels, 1975). As is usual
in applied mathematics, the method is first introduced in an intuitive way and is found to give
reasonable answers: work then goes on to put it on a rigorous basis. The heuristic results are so
encouraging that I believe a most urgent priority is for the pure mathematicians among us to get the
technique soundly established. The comparable WKB approximation long used by physicists is
now thoroughly respectable and much the same sort of thing can surely be done in this case.

I found tonight’s paper a fascinating one, if at times rather difficult reading. It must become a
basic text for anyone who wants to work in the field, and I propose a very hearty vote of thanks
to the author.
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Mr PETER J. DicGLE (University of Newcastle upon Tyne): 1 have thoroughly enjoyed tonight’s
paper, not least because the author’s literary style fails to conceal his particular brand of energetic
enthusiasm. We have been given a most interesting account of recent theoretical advances, amongst
which I am particularly struck by the “McKean connection™ and its ramifications.

On the applications side, I would support Dr Mollison’s statement that the principal aim should
be to further our gualitative understanding of the underlying biological processes. In this respect,
the comments on Skellam’s oaks are illuminating, as are the simulations of the short-term behaviour
of epidemics with non-exponentially bounded tails. On the other hand, attempts at detailed
inferences for naturally occurring populations would seem to be fraught with difficulties. For
example, in the suggested application to the spread of Dutch elm disease I wonder how crucial is
the necessary, and presumably highly dubious, assumption of spatial homogeneity? Simulations
of contact models operating under spatially inhomogeneous conditions might provide useful insight.

One area of application which Dr Mollison has not mentioned is to the study of intraspecific
competition in plant monocultures, for which data are often available from laboratory experiments
or relatively small-scale field trials. Here, the experimental conditions are such as to make the
assumption of spatial homogeneity more plausible. Two phenomena of interest in such experiments
are the spread of selective mortality as the competition process develops, and the size distributions
amongst surviving plants. In the context of tonight’s paper the former is a rather odd process in
that the phenomenon of interest (death) is propagated by the uninfected individuals (live plants).

My own approach to this problem has been to define a discrete-time stochastic process for
plant size, in which probabilities of survival and growth increments at each stage are functionally
dependent on the sizes and relative spatial locations of near-neighbouring plants. I have obtained
explicit results on survivor size distributions for special cases of this model (Diggle, 1976) which
show encouraging qualitative similarities with data described by Ford (1975). However, a subsequent
formal assessment of fit has revealed significant discrepancies between model and data. I would
welcome Dr Mollison’s thoughts on the extent to which this type of process might be accommodated
within his general development of contact models.

I am delighted to second the vote of thanks to Dr Mollison.

The vote of thanks was passed by acclamation.

Mr J. E. Besag (University of Durham): First and foremost, I wish to add my congratulations
to Denis Mollison on his authoritative and splendidly presented paper.

Second, I should like to comment briefly on a very simple form of statistical analysis for the
spread of disease over a regular lattice of plants, when observations are taken at equally spaced
time-points ¢ = 0, 1, ..., n. If there are no removals then, as a first approximation, it may some-
times be fruitful to set up a discrete-time Markovian model in which there is a parametric probability
pa that a healthy plant with d diseased “neighbours” at time 7, itself becomes diseased by time ¢+ 1.
Consistent parameter estimates may generally be obtained for separate (inhomogeneous) or pooled
(homogeneous) time intervals by maximizing the functions or function

L =TI (1-payép™,

where [,/m, denotes the relative number of healthy plants with d diseased neighbours at one
stage and which are healthy/diseased at the next. Note that, in the usual case, where the disease is
transmitted continuously in time, the function L does not represent a true likelihood, for this would
demand that, given the entire realization at time ¢, the states of plants at 741 be mutually inde-
pendent. Nevertheless, this will be very close to truth when p;< 1 and, in such circumstances, it is
reasonable to carry out an associated y® analysis for each interval.

In particular, I have used the above approach to analyse four stages of spread of footrot over a
large (179 x 14) commercial plot of endives; I am grateful to Dr G. Weststeyn for the data. I chose
the simplest possible case, namely p; = o+ fd, where d is the number of diseased adjacencies
(d=0,1,2,3,4). The time-homogeneous parameter estimates were & = 0-0205 and 3 = 00248
with approximate standard errors 0-0023 and 0-0045, respectively. Since p, is always small, a y*
analysis was performed and gave satisfactory results for each of the three time intervals separately.
It is surprising that such a simple time-homogeneous model seems to fit so well and perhaps one
has merely struck lucky with the data. Nevertheless, it would be straightforward to extend the
analysis to include more neighbours and parameters and also to non-lattice situations. Note that in
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Professor Bartlett’s (1975, p. 78) discussion of the spread, over a single time period, of nettlehead
virus in hop plants, the values of p4 are larger and one may question the validity of the associated
x*® analysis.

Finally, note also that the model described above is not a nearest-neighbour contact model
unless o = 0; « is something of a binomial fudge factor and, without specific modelling thereof,
provides recognition that long-range propagation of the disease is possible. In general, one surmises
that short- and long-range effects, especially on a geographical scale, are often associated with quite
different spatial mechanisms and that Dr Mollison’s long tails may arise as the mixture of two
separate distributions, one of which it is not possible to model properly. I should welcome Dr
Mollison’s thoughts.

Professor D. J. BartHOLOMEW (London School of Economics): I think that Dr Mollison is
right in concentrating on the qualitative features of epidemic models. It is rare (though not
unknown) for data on epidemics to be sufficiently detailed or timely to justify fitting models to use
them for such things as prediction. However, it is frequently possible to observe the qualitative
behaviour of an epidemic and useful to know what types of model could have given rise to it. The
author has concentrated on the form and rate of advance of the wave front but I would like to
draw attention to some other areas which seem to merit further research. Threshold effects are
one of the most important qualitative features which epidemic theory has uncovered. In the simple
epidemic models in space the results available concern the critical density of the population needed
for the epidemic to get underway. I wonder if there are similar results about what will stop an
epidemic. For example, what combination of width and density would constitute a barrier which
the epidemic would not cross (or cross with small probability) ?

Perhaps the most common qualitative feature, on which data are very often available, is the
shape of the growth curve giving the total number contacted as a function of time. One would
like to know, for example, for what classes of spatial model one obtains the commonly observed
s-shaped curve with a finite population. This kind of question can be tackled deterministically by
assuming that the population is located in clusters at particular locations. If there are N; individuals
at location i of which n(¢) are infected at time ¢ then Rushton and Mautner (1955) showed that

dn(t)/dt = BN, —nft)} nt) +{N;—nt )}igi'}’a n(t) (i=12,..,k),

where B is the within cluster contact rate for the ith cluster and y,; is the rate between clusters i and J.
This formulation is quite unsuitable for the kind of analysis the author has carried out but is very

useful for studying the growth curve. The equations can be solved numerically or, in special cases,
exactly, as in Bartholomew (1973).

It is also worth noting that a population in which information or rumours are spreading may
be highly structured both in regard to its spatial distribution and its social interconnections. In
such cases, models which constrain communication in terms of direction or the individuals who
may be contacted may be a more appropriate avenue of approach.

Finally, may I enter a mild protest about the restricted sense in which the word diffusion is used
in the paper? Rather than adhere to the physicists’ usage let us apply it to all models of spread in
its dictionary sense of ““to spread widely, shed abroad, disperse, disseminate . . .”.

Professor VioLeT R. CanE (University of Manchester): I should like to thank Dr Mollison for
a most interesting paper which will undoubtedly be of great use to others working in this field.
He mentions in Section 4.1 the need to consider what types of contact distribution are possible or
likely; Miss Rosanne McNamee and I have been thinking about this in relation to the spread of
influenza which involves a meeting between people. Work done in the U.S.S.R. has related the
rate of spread to the amount of travel between towns, treating the travellers as migrants. In Britain,
however, most travel is essentially commuting and it seems better to describe the movements of
individuals among a finite number of towns of the same size by a visiting matrix V, of elements vy,
where v;; gives the probability that a person from town { will visit town j for a short time, say a day.
The contact matrix C has elements c¢;;, where c¢;;, which gives the probability that a person from i
meets a person from j, is 3 v Ujz, i.€.

C = VVT,
W is stochastic but C is not unless ¥ is doubly stochastic.
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For an infinite number of towns on a line and uniform conditions as regards visiting we can
replace v;; by 1, (=0, 1, +2,...), where 3 v; = 1, summing over all i, for which the m.g.f. is
$(x), say; the corresponding contact distribution is then {(x) = ¢(x) #(—x). For a given P(x) we
cannot uniquely identify $(x), but if we assume that v,, the probability of staying at home, is
greater than any other v; we can find a simple solution; for example, the contact distributions
discussed in relation to Fig. 3.2 suggest a visiting distribution for which

¢(x) = 1 —p) {1 —pexp ()},

i.e. all visiting is forward. This seems unrealistic; it would probably be better, for this kind of
epidemic, to take a symmetric visiting distribution.

After some consideration, I am rather worried about the simulation of processes which, in their
early stages, are almost pure birth processes. A single realization of a birth process of rate o
starting with k individuals is equivalent to a Poisson process of variable rate Aaexp (o), where A
is sampled from a Gamma distribution of index k and parameter 1, and the average number of new
individuals added in time 7 is A{exp (at)—1} (see Cane, 1972; Kallenberg, 1973). For two such
realizations, with values A; and A, for A, the ratio of the expected numbers of new additions is
A /A, which has an F(2k, 2k) distribution; even for k = 10 this ratio could reasonably be two.
For the examples given in Section 3.3 the infectives just to the left of the origin would have most
effect on the early pattern of spread and its extent. It would be most interesting to know the
variability of repeated simulations; perhaps Dr Mollison has some data on this.

Dr P. J. GreeN (University of Bath): Firstly, I too must thank Dr Mollison for a most interesting
and stimulating paper. I will confine my remarks to some points raised in Sections 3.2, 3.3 and 4.2
of the paper, and concentrate on models for local growth through a two-dimensional cell pattern,
approximated as usual by a tessellation of contiguous convex polygons, infection spreading only
across common boundaries.

Such models may be alternatively viewed as describing the spread of infection between points in
the plane along the edges of the graph dual to the tessellation. The two viewpoints are largely
interchangeable, but lead to slightly different definitions.

We start at time 7 = O with one infected cell i(0) at the origin, and suppose given positive but
not necessarily finite random variables T}, representing the time taken for infection to be transmitted
from { to j for each pair (7, /) of contiguous cells. The feature of interest is the infected set

I) = {i: 1, <t}
where

72
f; = mim {kzlﬂm—mtmi nz0,i(n) = i}-

What theorems might be proved for such models? Ergodic theorems are likely to hold rather
widely: for example for all homogeneous isotropic random tessellations; for any reasonable degree
of local dependence among the Ty, and between the Ty and the cell geometry; and for certain types
of tail behaviour of the Ti;. Xnown theorems from percolation theory, and the work of Richardson
(1973), will only apply directly in rather special cases. And all such theorems neglect the short-term
behaviour of the process.

Current work has been limited to simulations of special cases of such processes. For simplicity
1 represent the cell pattern by the Dirichlet tessellation of a planar Poisson process and, to obtain a
(set-valued) Markov process, I(z), suppose the T;; to be independently exponentially distributed
with rates proportional to the length of common boundary between i and j. The performance of
the process may then be directly compared with that of the Williams—Bjerknes model, with 8 = 0,
mentioned in the paper, where the Poisson process is replaced by a regular lattice of points.

Simulations support the conjectures that the area of I(¢¥) grows as 2 and that the crinkliness
(boundary length +minimum possible boundary length) converges, albeit rather slowly. There
appears to be no systematic change in the crinkliness once about 800 cells have become infected,
and the “limit” is approximately 2-8-2-9. Inspection of the maximum and minimum radii to the
boundary of infection supports the conjecture that I(¢) approaches circular shape, as suggested
by Richardson’s work.

Of course, the storage requirements for simulating the process on an irregular tessellation greatly
exceed those for a regular lattice. It is consequently extremely difficult to go much beyond about
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10,000 cells and obtain very precise estimates of the various limits. Nevertheless, it seems clear
that as stochastic growth is more crinkly than deterministic growth, so also is growth on a random
tessellation more crinkly than on a regular one.

Dr E. Rensaaw (University of Edinburgh): I would like to congratulate Dr Mollison for his
stimulating presentation of an extremely interesting subject. My comments principally concern
Section 3.3 in which the author describes the results of simulating epidemic processes which have
various contact distributions. Whilst simulation techniques are indeed a powerful tool in this
context, the importance of deriving specific theoretical results should not be overlooked.

For example, in a birth-death-migration process, which corresponds to an epidemic developing
over the integer axis with an infinite number of susceptibles at each point, expressions have been
derived for the mean number of individuals at each point in the following cases:

(i) nearest-neighbour: #; = 0 (i#1 or —1);
(ii) geometric: hy=aYl-a)(i=1,2,..);
(iii) extreme: hy = 1/iG+1) (=1,2,..).

Here vh; 8¢+ 0(8t) denotes the probability that an individual at J migrates to j-+i in the small
time interval (z, ¢+ 3¢).

Whilst a saddlepoint approximation readily yields the asymptotic “expectation velocities” which
correspond to (i) and (ii), possibly the most interesting case is that of (iii). For as the distribution
{1/i(i+ 1)} is not exponentially bounded propagation occurs at an unbounded rate. A cursory
glance suggests that the velocity might increase linearly with #, and further work is in progress to

determine this rate of increase for various types of contact distribution which are not exponentially
bounded.

Dr F. P. KeLLy (University of Cambridge): I, like many others, owe my interest in this subject
to Dr Mollison’s infectious enthusiasm, and I am sure the paper he has presented today will spread
the phenomenon even more widely.

Dr Mollison’s conjecture on the general epidemic is true. If the initial number of infectives is
finite and the contact distribution has finite mean then the general epidemic in one dimension will
become extinct. To give an idea of how this can be established, consider the case where there is a
single individual at each integer point of the line. An individual can be susceptible, infected or dead.
If an individual is infected he emits germs at rate o, a germ landing a distance s to the right with
probability v(s). If a germ lands on a susceptible, it infects him. An infective dies at rate B>0.
Consider now the rightmost infective, and to simplify the notation suppose that he is positioned
at the origin. What is the probability that no germ ever lands to the right of the origin? It is not
completely obvious, but it is true that this probability is not less than it would be if all the individuals
to the left of the origin were infected. Now the probability that an infective positioned at — x dies
before he emits a germ which lands to the right of the origin is BB+ a2, v(s)}. Thus the
probability that no germ ever lands to the right of the origin is not less than

p=1L[p/lo+e 5 o))

G4
The product p is positive since the sum

w o0

0
2 2 w8 = 2 su(s)
el @4l gl

is finite, which in turn follows from the assumption that the contact distribution has finite mean.
This assumption can further be used to show that the expected number of germs which cross from
left to right over the origin is finite. Thus even if germs do cross from left to right over the origin,
only a finite number do, and so we can choose the rightmost individual on whom one lands. Again
it can be shown that the probability that no germ ever lands to the right of this individual is not less
;han D, and so with probability one there will be a position on the line beyond which germs never
and.

The above argument readily extends to the case where there are p individuals at each location:
simply replace p by p°. This case in turn can be used to establish the result when individuals are
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positioned at the lattice points in the plane which lie within an infinitely long strip of arbitrary, but
finite, width. What happens on the unrestricted plane, however, remains an open question.

The basic model assumes that an infected individual has an exponentially distributed lifetime
during which germ emission proceeds as a Poisson process. This assumption can be relaxed; it is
enough that the mean number of germs emitted by an infective be finite.

The line of argument outlined above can be used to obtain a few other interesting results for the
general epidemic in one dimension. For example, it shows that the total number of individuals

dead when the epidemic becomes extinct has finite expectation if the contact distribution has
finite variance.

Dr M. J. Fappy (University of Birmingham): Dr Mollison in his paper has distinguished
between stochastic and deterministic models, and between linear and non-linear models. Some work
of mine which will be appearing shortly (Faddy, 1977) discusses linear approximations to non-linear
stochastic models constructed by replacing dependence on certain stochastic variables by dependence
on corresponding deterministic variables. As an example consider the simple stochastic epidemic,
admittedly not in a spatial setting, where Y(¢) infectives infect X(¢) susceptibles according to
Pr(X—>X-1 and Y—>Y+1 in 1 t+dtf) = «X@)Y()dt, with X(©0) = M, Y(0)=N and
X+ Y(t) = M+ N (Bailey, 1975, Chapter 5). If this process is linearized by replacing the
stochastic variable Y(¢) in the above probability by the deterministic variable y(¢), the solution
of dy/dt = ay(M+ N—y) with y(0) = N, then it is a simple matter to show that (Y(¢)— N) follows
a binomial distribution with index parameter M and probability (/(¢)—N)/M. And this is not a
bad approximation—quite good, in fact, if the initial number of infectives is large. Now, although
this example does not have any spatial dependence, it seems to me that linearized stochastic approxi-
mations using the deterministic solution (partial stochastic/deterministic models) may be of some
value in the more general spatial setting, and may (at least partially) overcome some of Dr Mollison’s
objections to completely deterministic models.

Professor J. F. C. KinoMAN (Mathematical Institute, University of Oxford): McKean showed
that the nonlinear differential equation which is the deterministic analogue of a non-linear
stochastic model is satisfied by a certain characteristic of a linear stochastic model. This fact does
not seem to provide evidence either way about the extent to which the deterministic equation
provides a reliable guide to the behaviour of the nonlinear stochastic model.

Dr J. M. HammersLey (Institute of Economics and Statistics): I should like to congratulate
Dr Mollison on his comprehensive and fascinating survey. I have one question to ask, rather in
the spirit of a somewhat loose conjecture. Dr Mollison speaks of the wor’ “of Richardson (1973}
showing that the set of individuals in certain processes is asymptotically ‘circular’ (in an appropriate
norm)”, Yes, and it is as well to place the word “circular” in inverted commas; because it is not
circular in the ordinary sense of the word. In fact, the norm depends upon the shape of the distri-
bution of the travel times between adjacent lattice points: the “circle” becomes a diamond when
this distribution has little dispersion, and becomes rounder as the dispersion increases. Just what is
the mechanism behind this change of norm? Intuitively, one feels that the norm becomes rounder
when the first-passage route becomes more crooked—or, in other words, when that route strays
more erratically from the direct route. After all, that is what happens in diffusion, when the route
is perfectly erratic and the norm achieves perfect roundness. Now this crookedness manifests
itself in the so-called height problem: see Hammersley and Welsh (1965, Section 8.3). In turn, the
height problem exhibits the transverse motion of the stochastic process at right angles to the principal
direction of advance. So my question is this: What can one say about transverse oscillations in
spatial contact models, and to what extent do they affect the roundness of the norm?

Dr D. Y. Downsaum (University of Liverpool): Dr Mollison is to be congratulated for this very
interesting and far-ranging paper. The unity he finds between seemingly diverse topics contributes
greatly to our understanding of these difficult problems.

In the first paragraph of Section 3.3, it is suggested that crinkliness could be used to estimate B/a.
However, an error of 0-1 when estimating the value 0-1 is great, and so the argument of the
inadvisability of using crinkliness to estimate «/f remains unchanged. However, to obtain alterna-
tive estimators seems a worth-while exercise, since research biologists and biochemists (and other
scientists) frequently wish to make inferences from series of photographs of growths. Because of
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its simplicity, the Williams and Bjerknes model could be used to obtain estimators other than
crinkliness and the impractical maximum likelihood estimator (Downham and Green, 1976). The
robustness of such estimators could then be studied by simulating other models.

Professor D. G. KenpALL (Statistical Laboratory, Cambridge): I should like to express my
great pleasure in and admiration for this beautiful paper by Denis Mollison. The present subject
has a long and chequered history. An extremely influential paper was that by H. E. Soper in
Volume 92 of the Journal (1929) which is well worth rereading today, particularly for the lively
discussion, in which we find (on p. 67) some remarks by Dr Halliday which contain what would
seem to be the first indication that it is worth considering, and indeed possible to make numerical
comments on, the actual speed of advance of an epidemic in an extended community (in that case,
the city of Glasgow). In view of the very wide range of applications covered by the present paper,
it is interesting to bracket these remarks by Halliday with a fascinating paper by C. A. J. Armstrong
(1948) on the rate of spread of news in medieval England. The question dealt with there was, if
rebels land at Milford Haven, or elsewhere, and the King happens to be, say, at York, how much
time will elapse before he has news of the invasion? There is a great deal of information about the
rate of transmission of such catastrophic messages, and Dr Armstrong was able to present a rather
considerable volume of facts of this kind. Of course, one has to distinguish carefully between the
diffusion or percolation of news, and the almost instant transmission of it by a prepared series of
fire-beacons. The subject is a very interesting one, but I will not enlarge further upon it here.

I cannot now remember what it was that first sparked off my own interest in these matters;
almost certainly it would be a remark by Professor Maurice Bartlett. But I remember very well
that my 1948 paper which is referred to here by Dr Mollison was to have been followed by a much
longer one entitled “The rise and fall of epidemics”, and that I suppressed this last for about 10 years
because in the course of writing it I suddenly became aware of the striking contrast between the
indifference of my medical friends, and the probable but unwelcome enthusiasm of experts in
biological warfare. Gradually the climate changed and 10 years later the attitude of the medical
community was sufficiently welcoming to make one feel that the balance of good and evil would be
at least neutral, if not slightly favourable, for further developing and publishing this work, and
that is why I wrote the note which appeared in 1957, and pursued the question more or less con-
tinuously after that. Even in 1957, when I published a summary of the earlier suppressed work, it
is interesting to notice that Norman Bailey in the general introduction to his famous book on the
Mathematical Theory of Epidemics was careful to say that “It is the duty of responsible scientists
working in special fields to point out to the general public the risks, if any, inherent in their
activities.” The risks are clear, and are still with us; the difference is, that there is now also the very
great likelihood of substantial notice being taken of work of this kind in a positive rather than
negative sense. Having suffered invasions of influenza, and of Duich elm disease, and being now
in the position of watching anxiously for a possible invasion by rabies, it has become clear that
man is only one of his own worst enemies, and that there is something to be said for developing
techniques which may help to combat some of his other enemies, even if he may occasionally
misuse them himself.

The only other general comment I want to make in this discussion is a methodological one.
If one reads between the lines of Dr Mollison’s paper, one sees that a sharp change of course can
now be discerned in the mathematical approach to this problem. We are leaving behind differential
equations and nicely defined diffusion processes, and beginning to examine the phenomena in
terms of models phrased in a language of more difficult but more flexible (because less hypothesis-
ridden) techniques. Perhaps the most important single influence in bringing this about has been
the work of Dr J. M. Hammersley in pursuing the appalling complications of the theory of perco-
lation over a long period, and with others developing that subject to the point at which it is now
receiving very substantial applications in a wide range of areas, this being one of them. I do not
know if Dr Hammersley would agree with me here, but this might be regarded as a splendid
example of the importance of pursuing a substantial mathematical enquiry for its own sake, in the
confident belief that it will ultimately find some rewarding if unexpected application. Of course,
I know very well that percolation theory in its original form as described by Broadbent and
Hammersley was linked to a particular and practical problem which they had in mind, but I am
sure that it is creative curiosity rather than a wish to solve that *“applied” problem which has been
responsible for the enormous amount of splendid work in the area.- The moral of all this seems to



1977] Discussion of Dr Mollison’s Paper 321

be that if you can isolate a new and difficult branch of mathematics, and if you can think of one
(perhaps quite frivolous) application of it, then you should go ahead, because certainly in the lon
run another very serious and important application will turn up. .

Dr B. D. Rieiey (Imperial College, London): Dr Mollison has admirably reviewed the
mathematical models for epidemics. I would have welcomed a fuller discussion of the purposes of
such modelling as I wonder whether the two key assumptions of homogeneity and very limited
interaction between individuals may limit its usefulness.

I will concentrate on one such purpose, prediction. Here we seek the probability of occurrence
in space-time rather than the expected number of infectives. The distinction may seem slight but
demands a different class of approximations. (An analogous problem occurs in queueing theory
when we are interested in nearly empty queues.) Clff ez al. (1976) provide an example and data.
The “McKean connection” is relevant for if we have a CBP with known contact distribution ¥ we
can find the time delay before the probability of one case is appreciable. Although this is a point
process prediction problem the relevant theory (Jowett and Vere-Jones, 1972) is still in its infancy
and has little to offer.

I feel someone must take up Denis Mollison’s challenge about inference. First a negative point.
I do not believe that it is possible to estimate the contact distribution from a single pattern; ‘“‘great
leaps forward” would surely be missed if from behind the front line. Even if the evolution is
known, non-parametric diagnostic techniques for the “‘guess, simulate, test” method are far from
obvious so inspiration would be needed in good measure. However, I can offer one ray of hope.
If the distribution ¥ can be restricted to a finite-parameter family then the updating techniques
surveyed by Vere-Jones (1975) look promising for the estimation of the parameters.

Dr A. D. BarBour (Cambridge University): A further note can be added to the work of
Atkinson and Reuter on deterministic contact models, described in Section 2.2 of this paper. It is
shown in Barbour (1977) that, for ¢>cp, the solution they construct is the only possible travelling
wave with velocity c¢: this applies to both simple and general epidemics. The argument, however,
does not cover the single most important case, ¢ = Cy.

The author replied in writing, as follows.

1 should like to thank all the discussants, especially the proposer and seconder, for their kind
remarks, and for their contributions which offer evidence of increasing interest in what has been at
times a lonely furrow of research. I should also like to thank others who have offered helpful
comments or advice during the preparation of this paper, including Mark Westcott, David Stirzaker,
Jack Carr and Ken Brown, Peter Freeman and Professor Bartlett.

1 shall reply to the discussants approximately in order, with one exception. I was delighted by
Frank Kelly’s proof of my conjecture that for the general epidemic in one dimension extinction
is certain, no matter how small the death rate B (provided it is not actually zero). I am unsure
whether to be the more delighted because the proof is in the spirit of my own results on the simple
epidemic in one dimension (3.21), or to kick myself for having tried to prove it on so nearly the
right lines. Fortunately, with a little assistance from Dr Kelly himself, I can retaliate by proving
that the converse result holds in all dimensions greater than one; though not under quite such
neatly general conditions as for his one-dimensional theorem.

Theorem. Let G*(a, B, V) denote the general epidemic on the two-dimensional square lattice.
Consider the initial condition with everyone susceptible except a single infected individual (at the
origin say); let 7 denote the probability of extinction, i.e. that the epidemic dies out in finite time,
or equivalently that only & finite number of individuals become infected. Let B,=inf{B: = = 1}.
Then for fixed p, « and ¥, B, is greater than zero provided ¥ attributes some weight to each of the
four nearest neighbours. (This condition could be weakened; it seems likely that all that is really
required is that ¥ should be properly two-dimensional.) In any case Bo<ou

Proof. That B, < o follows trivially from comparison with the underlying birth and death process
G(a, B, V), for which B, = . Let ¥, denote the contact distribution attaching equal weight (}) to
the four nearest neighbours i; choose «’ such that av(i) = o’[4 for each such i. Then G*(«, B, V)
and G/, B,V,) can be coupled (see Section 1.4) so that the set of “infected plus dead” of the
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former contains that of the latter (a.s.). Hence it suffices to prove the theorem for G(«, B, ¥;).

The idea of the proof takes up a comparison with the ordinary (non-temporal) percolation
process suggested in the first paragraph of Section 3.2. That is, to consider the set of individuals
infected during the course of the epidemic as a directed graph A, with i linked to j(j =) iff {
infected or attempted to infect j (failing if j was already infected or dead); and to compare this
graph with the ordinary percolation process, in which links exist independently with probability p,
for which it is known that =<1 if p>p,, 0-5<p,<0-65 (Harris, 1960). There are two difficulties:
in our epidemic case, the links from a given individual 7 are not independent (this is not only true
for the present case of exponential lifetimes; for any non-trivial life-time distribution F, it is easy to
show that the correlation coefficient between presence-absence (0-1) random variables for a pair of
such links is o3/(p,(1—p,), where p = Pr (i - j| lifetime of i is T) = 1 ~€xp (—aT/4) and T~ F).
The second difficulty, that the known percolation process result applies to non-directed graphs,
is easily got round: to ensure that links in both directions exist with probability > p,, it suffices to
consider the directed graph B with links existing independently with probability p>./p,. (Inde-
pendence here is no problem, since links from different individuals are independent.)

Let . denote the probability that, in A4, there are k links from an individual. This is most
easily evaluated by considering the probability for G* of a further infection (link) before death
conditional on the number m of individuals infected so far, which is equal to

{4—m) o/4}[{(4 — m) a/4+ B}.
Setting » = 4B/« it is found that

ro=r/(4+r), res=r{d—k)/G—k+r)}.

For the graph with independent links, B, the equivalent probabilities g; have the binomial distri-
bution B(4, p). To prove that,(if r is sufficiently small, 4 can be coupled to B in such a way that
links in A4 exist also in B (a.s.), it suffices to show that r can be chosen such that the probabilities of
k or more links satisfy

3 ra> Zan O<k<d). Q)

Ml

I shall show that this holds provided only that r,<g,, i.e. that rld+ry<s(1-p)t, or
Bla<{(1-p)—*-1}
Recalling that =<1 for B if p>,J0-65, this shows that
Bo>0-0014«
for GY(a, B,7,), and thus completes the proof of the theorem.

Consider the ratios
Fear Qelre Qe = {(k+ )]G =k + )} {p/(1 -p)}.

These are monotone increasing with k. Hence, if /. = log (i:/q.), ly41—1I; is also increasing. /[,<0
by assumption; if a first [, is >0 (k = k, say), so are all subsequent /,’s. Hence there exists %,
(possibly = 5) such that

Frsqn iff k< kg,

and therefore the (signed) difference between the two sides of (*), 2.4 (5. —qw), is minimal for k = 0.
But the ;’s and ¢;’s are both sets of probabilities, and therefore sum to unity; so this minimal value
is 0, i.e. (*) holds for all k. :

The actual lower bound obtained here for B,/c (+0-0014) is not to be taken seriously, of course;
nor even the improved bound (=0-0074) obtained if the conjecture p, = 0-5 holds for the ordinary
percolation process. Although, for the special case G(a, B,%), a simple branching process
comparison shows that B,/a <1, it seems a quite reasonable conjecture that Bofo can be arbitrarily
close to unity; perhaps By/a -1 as p (or oy) - .

Among the other asymptotic problems to which I referred in Section 4.2, the most straight-
forward is perhaps the question of conditions for the simple epidemic’s velocity to be bounded in
n dimensions (#>1); to tempt Dr Kelly (and others) into considering this on€, I will conjecture
that the required condition is that the (n+ 1)st moment of ¥ converge—at least it seems plausible
that nothing less will suffice.
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Professor Daniels asks about the dependence of S and s, on r, and the difference between
them. On the first point, I had already sketched (1.17-1.18) an argument suggesting

slzt_sfag = O(l)'
This argument can be put on a sounder footing by reference to Daniels (197 5) who showed that

W (s, £)~exp { — Oy(s — ¢y 1)} 2t ()}
which yields the estimate
51— Srexlog (1) Oy.

A’similar argument suggests that S;,— S, = O(1): to prove this easily we need to assume that
av(0) = £>0, and that the velocity of the front, =y, does not vary excessively. Then the numbers
Y at S,.. grow at rate >¢Y, reaching r in time T~ log (#)/e, by which time S, will have increased by
approximately yT'; thus

S1i=SreSylog (e = 0Q1) (r=1)

(taking ¢ = #o+ 7). This may not hold if a suitably bizarre choice of contact distribution is made,
but I have been unable to construct such an example (while keeping the tail exponential to ensure
finite velocity).

Similar arguments can be produced for both S, and s, for nonlinear processes such as the
simple epidemic (we require r<p of course) though in such cases we have no equation for the
expected numbers, so that there is no direct way of calculating .

Because of these connections, I must disagree with the suggestion that S, = 8y, (or 5 = S1.)
is untypically well behaved: the following remarks apply equally to S,,; and s,

As to the difference S;—s;, the Chebyshev argument mentioned (which I think depends on the
above exponential form for W): together with the proof of Biggins (1977) that lim y, = lim ¢, for
¥ with exponential tail (see 3.19): show that, for the cBp

"'O(t) €S-+ 0(1).
The “McKean connection” (Fig. (1.1) a), or my Tatra theorem (3.16), suggests that
| S:—2Z:| = OQ),

where Z, = E(S,) (see third paragraph of Section 4.2). While preserving an intellectual curiosity in
s;, this comparison of S, with Z, seems more natural, and more worthy of study.

Judged by S (or S,.), as I think it should be, the csp is far too well behaved: the simplest non-
linear model (one dimensional percolation process) has

| $:—2Z, |~

and it seems a reasonable conjecture that the variation of S,—Z, is greater than O(1) for most
non-trivial nonlinear models, at least in one and two dimensions (see reply to Professor Cane
below). This is why I do not accept that linear models (or the corresponding deterministic equations)
are adequate at any but the very earliest stage. The only explanation I can see for | S:—Z,| being
O(1) is that the exponentially large numbers at the centre of the population provide a straitjacket
controlling its advance; fluctuations at the actual front have no lasting effect.

The strange behaviour of the variance velocity, and the possibly large difference between s; and
Z,, also appear to be artefacts of allowing unbounded population densities. If (again) we accept
the conjecture based on the McKean-type connection, namely, that the distribution function
Fy(s) of S;—Z, tends to 1— yy(s), where yy denotes the minimal velocity waveform of the “determi-
nistic simple epidemic”, appropriately centred: then the forward tail of F(s)~exp (— Ops), while
the actual number forward of Z,, U(Z,) = 2.{Y (s, 1): s>2Z3}, depends exponentially on s, ~exp (ks)
say. It is a reasonable conjecture that k is at least close, if not equal, to the rate at which the
expected numbers grow, i.e., 8y. This would suggest at least that E(U?) diverges, whence the point
at which var (¥) = 1 must be more than O(1) in front of Z,. In fact, since the variance velocity is
> ¢y, (3.13), we know that this difference ~1. The point of this very sketchy argument is rather to
suggest that the apparent paradoxes associated with the expectation and variance velocities are
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due to multiplying exponentially small probabilities by exponentially large values of Y or Y?:
i.e. that they are artefacts of allowing unbounded population densities. .

Peter Diggle, Brian Ripley and Professors Bartholomew and Cane all raise points concerning
the assumption of spatial homogeneity. The qualitative effects of this simplifying assumption are
likely to be worst when a process hovers around some threshold determining whether it can spread;
this is related to the problem of barriers raised by Professor Bartholomew (for the specific case of
evolutionary spread across wide barriers see Mollison, 1977c). For some processes, especialy
those involving human populations, “#-site” models may be more appropriate. Most other specific
types of spatial inhomogeneity would probably be best investigated by simulation. Simulation is
also likely to be a mainstay in problems of prediction, estimation and robustness.

I am impressed by the success of Julian Besag’s straightforward way of looking for the contri-
bution of the nearest-neighbour part of a contact distribution. I would agree with him that apparent
long tails may arise from mixing two distributions; however, my simulations involving “great leaps
forward” (Section 3.3) show that this need not be the case.

Professor Bartholomew asks when one expects to find a logistic population growth curve: I
would expect this only for essentially non-spatial processes, i.e. where the time for all sites to
become infected is short compared to the time taken for the process to run its course at each site.
As to his reference to “models which constrain communication in terms of direction” (an application
that springs to mind is the spread of foot-and-mouth disease in prevailing SW winds (Wright, 1969)),
most of the results I have described hold for asymmetric contact distributions; ‘“highly structured
populations” I cannot deal with though!

Professor Cane asks about the variability of realizations of spatial processes. Conceptually we
can, as for any Markov process, divide the variability of, for example, the time Ty to reach size N
into a component depending only on the sequence of states, obtained by replacing each transition
time by its expected value, and the “Markovian” component due to transition time variability. In
the simple case of the cBp the first component of Ty is deterministic, because the transition rates
(= Na) depend only on the population size; thus E(Ty) =log (N)/a. The second component here
has variance 3, (no)~%, - n3%/a®6 as N -co. Thus the variance of Ty is bounded. The apparent
variability Professor Cane refers to is another effect of the exponential growth of linear processes,
like the bizarre fact that the most probable value of N, for all #=0, is its initial value of 1!

Estimates of variability are more difficult for nonlinear processes, such as the simple epidemic.
However, assuming the transition rates do not fluctuate too wildly, we can estimate the number and
average transition rates of the steps required for the simple epidemic in n dimensions to increase
from a population of ks® (radius = s) to k(s+1)». This yields estimates for the Markovian
component of variance of the time T to radius s of ~¢ in one dimension, ~log(¢) in two, and
~ constant in all higher dimensions. This confirms the conjecture that S, — Z;~ /¢ in one dimension,
but casts doubt on it in higher dimensions, though it may be that the contribution of the first
component of variance is dominant for these cases. I have plotted {log ()}~ var (S,) for the two-
dimensional data of Morgan and Welsh (1965)—it increases between ¢ = 10 and ¢ = 150 in much
the same way as 7~ var (S,) falls. A sharper test could be obtained by suppressing the Markovian
variability; note that in this case of a nearest-neighbour process, the remaining (first) component
is closely related to the within-realization variability of the crinkliness C, since the transition rates
equal 2wasC.

Peter Green’s simulations of nearest-neighbour processes on irregular lattices provide welcome
confirmation that there is nothing too special about regular lattices. It would also be interesting
to look at nonlinear continuous space processes which spread by colonization, rather than with
individuals at predetermined locations as here.

I am not sure whether it is worth attacking the theoretical difficulties of irregular lattices unless
we have a conjecture on some qualitative difference of behaviour of such processes. Apart from the
circularity or otherwise of the asymptotic shape I', I wonder whether such differences exist: it
seems intuitively likely, for instance, that the difference between regular and irregular lattices is
greatest for nearest-neighbour processes. Incidentally, I doubt whether the tail behaviour of the
Tyy’s is important: it was Pr (T; = 0) that mattered in Hammersley’s work with arbitrary transition
time distribution (Hammersley, 1966).

Dr Faddy and Professor Kingman both raise points concerning the relations between stochastic
and deterministic models. My condemnation of nonlinear differential equation models, following
the results of McKean (1975) and Mollison and Daniels (1978), was intended to provoke: I am
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honoured to have such a distinguished fish as Professor Kingman rise to this bait. I agree that
logically it is still possible that there exists some relation between the simple epidemic and its
“deterministic analogue” (1.4) (I choose the epidemic example because in the case of genetic
diffusion considered by McKean it is unclear what nonlinear stochastic model is intended). But
the connection established by Professor Daniels and myself (Fig. (1.1) a) shows that any such
relation can be interpreted as a connection between the simple epidemic and the csp. The differences
between these are of such a comprehensive nature: different conditions for finite velocity (at least
in one dimension (3.8), (3.21)), different quantitative velocities (except when both are infinite)
(Table 1) and different qualitative variation of S (see replies to Professors Daniels and Cane); that
it is difficult to think of a close connection which is left possible between the simple epidemic and
equation (1.4), though I have tried (see penultimate paragraph of Section 4.2). Considering also
the non-relation (1.5), I think the onus is on those who wish to continue to use the phrase
“deterministic analogue” in the context of spatial spread to justify their position.

The general question as to when a nonlinear stochastic model can be adequately approximated
by a deterministic equation, or by a linear stochastic model, is a most interesting one which has
been wrongly neglected, especially in comparison to the amount of work which has gone into the
two sorts of approximation (e.g. diffusion equations, branching processes). Two likely circum-
stances in which such approximations may be adequate, or at least useful, are in looking at equilibria
and disturbances from equilibria (e.g. Barbour, 1976) and in behaviour over a finite term, as in the
case Dr Faddy describes. Looking at asymptotic velocities for spatial processes involves neither
of these helpful circumstances; so perhaps it is not surprising that the approximations come so
badly unstuck. That they have been accepted for so long may be attributable in part to the seeds of
confusion sown in the otherwise classic papers which began this subject (especially by Fisher, 1937,
who slid from a nonlinear diffusion equation to a discrete-time linear contact model without ever
defining a nonlinear stochastic model adequately).

I like Dr Hammersley’s conjecture that the roundness of the asymptotic shape I' for a process
on a regular lattice depends on the transverse oscillations of the first-passage routes, which in
turn depend on the dispersion of the travel time distribution. Now there is, as far as I can see, no
such thing as a travel time distribution of maximal dispersion; and in particular the exponential
travel time distribution of Markov processes does not have maximal dispersion. So Dr
Hammersley’s line of reasoning would seem to militate against Eden’s conjecture, that I’ is a circle
for the continuous-time percolation process on a square lattice (see also my remarks in Section 3.3,
second paragraph). Perhaps there is no spatial contact process on a regular lattice for which T’
is an exact circle? (Though presumably processes with I' arbitrarily near circular exist.) Unless
there is a simple counterexample based on the CBP (for which I can be evaluated), this looks like
a typical lattice conjecture: easy to state, difficult to tackle.

I fear T am not on the same wavelength as Brian Ripley (though I agree with him in regretting
that the discussion has been restricted almost entirely to theoretical issues). Thus I have myself
been mainly concerned with the probability of occurrence in space-time rather than the expected
number of infectives; I do not like references to “the relevant theory” at our present undeveloped
state of understanding, though of course I would not wish to deter Dr Ripley from any avenue he
thinks promising for prediction, or for estimation of parameters; and “great leaps forward” are
defined as advances of the front, so they cannot be missed in the way suggested. I do believe
diagnosis from a single pattern is difficult, with the possibility of confusion between different effects;
but the inferences of Downham and Green (1976) on B/« for the tumour growth model show that
something can be done in controlled circumstances for nearest-neighbour models; and I would argue
that contact distributions with long tails are likely to be easier to deal with than nearest-neighbour
ones in the presence of such complications as spatial inhomogeneities.

While welcoming Andrew Barbour’s contribution to the continuing saga of the *“deterministic
simple epidemic” I might mention Aronson’s forthcoming paper (1977) in which he shows that
y(et, t) -0 (resp. 1) if ¢>cy (resp. <cy) for a wide range of initial conditions; these include (2.5),
so that via the Mollison-Daniels connection this provides an independent proof that lim §,/z = ¢p
(= lim ¢,) for the csp (3.19).

It is a pleasure to conclude by thanking David Kendall, who started my interest in this subject,
for his wide-ranging historical and philosophical remarks; and to join him in his tribute to Dr
Hammersley, whose work underlies much of the recent work (including my own) on the most
interesting case of nonlinear stochastic models.
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