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Simplifying simple epidemic models

Denis Mollison
Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK

Interest has recently revived in the use of simple models for
epidemic diseases. In particular, Anderson et al.' have introduced
an improved simple differential equation model for diseases such
as fox rabies which regulate the population density of their host.
Here I describe how such apparently simple models can be dissected
into their basic components. This dissection facilitates a structural
sensitivity analysis in which we explore the dependence of features
of a model’s behaviour on the assumptions regarding each com-
ponent. I report that particular features can be related to particular
components, for example, oscillations depend mainly on population
growth and the generation gap of the disease, while estimates of
the effect of potential control strategies such as vaccination or
culling can be related directly to assumptions concerning the
infection term and the way it changes with population density.
Some features, for example, the level of prevalence of the disease
and the period of any oscillations, turn out to be robust, depending
mainly on basic ecological parameters. Others, including the
crucial estimates regarding control, prove very sensitive to the
details of the model. This is unfortunate, as the detailed form of
the components is to a large extent chosen, not for ecological
reasons, but to keep models simple, for example, the infectious
period of a disease is often assumed to have an exponential
distribution because this implies a constant death or recovery rate
for infectious individuals which is mathematically very convenient
for a comtinuous-time model. Because our dissection is in terms
of components with straightforward ecological interpretations, any
required improvements in modelling can be related to observational
evidence which either exists or for which experiments can be
suggested ™.

The three basic components essential for modelling the
endemic state of a host-regulating disease are: (1} the population
growth term, describing the population dynamics in the absence
of disease; (2) the infection term, describing the infectious
contacts made by a diseased individual; and (3) the ‘generation
gap’ of the disease, that is, the time interval between an
individual’s becoming infected and his passing on the disease.



The model presented by Anderson et al.' for fox rabies is about
as simple as a complete model incorporating all three com-
ponents can be, but it nevertheless consists of a set of three
differential equations in which the relationships between
individual components and the model’s behaviour are not easy
to discern. These equations, slightly simplified, for the densities
of susceptible (X), incubating (I} and infectious (Y)
individuals, are:

X /at=pX —BXY
al/at=BXY —ol (1)
aY/ot=o0l—aY

where B, o and a are constants. In this model, pX defines the
population growth term, 8XY the infection term, and of and
aY the distribution of the generation gap. The per capita net
growth rate p may be density-dependent; usually it is reasonable
to assume that it decreases with density, from a value r in
low-density populations to zero at the carrying capacity K of
the habitat.

A number of such complete models, including a difference
equation alternative, with time step equal to the mean generation
gap, are analysed in work described elsewhere®. Here I shall
concentrate on the results and understanding that can be
obtained by considering the basic components on their own.

First I shall discuss the infection term in isolation, showing
how conclusions on control depend directly on assumptions
concerning this term. It is common in simple epidemic models
for the infection term to be specified in terms of the overall rate
at which infectious contacts occur; for example, the infection
rate is commonly assumed to have a multiplicative form, XY,
as in equation (1). However, a better understanding is achieved
if we work in terms of the mean number of potentially infectious
contacts made by an infectious individual, R, (often called the
‘basic reproductive rate’ of the epidemic, although ‘ratio’ would
be more accurate). In most cases it is reasonable to assume (i)
that R, does not depend on the density of infectives Y, so that
the overall contact rate is (Ry/7,) Y, where 7, denotes the mean
infectious period [7, = 1/a in the model of equation (1)]. If we
also assume (ii) that a proportion X/ N of such contacts are
successful, as will be the case if a population of density N mixes
homogeneously (here N =X +1 + Y), the mean number of suc-
cessful infectious contacts (the ‘effective reproductive ratio’)
will be R=R,X/N. The overall infection rate will then be
(R/7,) Y = BXY, where B8 = Ry/(N7,).



If, as is conventional'*, we make the further assumption

(iii) that B is a constant, we are effectively assuming that R, is
proportional to the population density N. An immediate con-
sequence of this assumiption is that a control policy, whether
by vaccination or culling, will eliminate the disease if and only
if the susceptible population is kept at or below the threshold
population density Kt defined by Ry=1, that is, Kr=1/(87,)
(refs 1, 2, 5). However, there are few diseases for which the
assumption is quantitatively plausible. In many cases, and
especially among territorial animals such as foxes, it seems
reasonable to assume that R, will rise more slowly than linearly
with population density. (R, would rise linearly with population
density if the area over which an animal ranges were independent
of density, while on a strict territorial model, R, could be
independent of N. It seems reasonable to conjecture that the
truth lies somewhere between: that is, that R, rises with N, but
more slowly than linearly.) This has favourable implications for
a vaccination control strategy, because the criterion for elimina-
tion of the disease is that the proportion unvaccinated should
be less than 1/R,, and this can be met in habitats of greater
carrying capacity if R, rises more slowly with density.

When we consider culling, the basic threshold result still
holds: we need to achieve Ry=< 1, and if we make the conven-
tional assumption of a BXY infection term, with 8 constant,
the conclusion is that we must reduce the population density
to below the threshold carrying capacity Ky. Our analysis in
terms of model components here has an advantage of a rather
negative kind. By revealing that control depends on a single
easily understood ecological parameter, R,, our analysis makes
it much easier to appreciate that our model on its own is
inadequate for a consideration of culling: we cannot expect a
population held down to density Ky by culling to behave like
a natural population at the same density. Indeed, how it does
behave will depend on the culling strategy. There is evidence
that a strategy which disrupts the social pattern can be counter-
productive (Ross, reported in ref. 3), increasing R, even as it
reduces the population density. On the other hand, a relatively
modest culling strategy might succeed if aimed selectively at the
types of individual who make most contacts.

Second, I shall discuss some aspects which depend principally
on the population growth and generation gap terms. In endemic
equilibrium the net growth rate pX must be equal to the infection
rate [8XY inequation (1)}, which in turn must equal the turnover
rates of the incubating and infectious classes, I/7, and Y/ 7,
respectively [here 7, is the mean incubation period, which equals
1/ o for equation (1)]. Hence, in equilibrium the ‘level of preva-
lence’, defined as (I +Y)/ X, will be equal to p(r, +7,). For



strongly endemic areas we may take p = r; also r, + v, i1s approxi-
mately (for some simple models exactly’) equal to the mean
generation gap 7. Hence, the level of prevalence should be
approximately equal to pr, and thus vary from zero in near-
threshold habitats up to r7 in areas where the disease holds the
population down well below the carrying capacity. This simple
argument does not depend on the detatled form of any of our
three epidemic model components (it is sensitive, though, to
spatial heterogeneity®).

The period of any oscillations about equilibrium also seems
to be insensitive to the detailed form of the population growth
and generation gap terms, being approximately equal to
27/(7/p) for models with widely varying details®. (It does,
however, depend on the relationship between R, and the popu-
lation density: if this is less than linear, as suggested above,
the period would be somewhat longer.) On the other hand,
the stability of oscillations is found to be very sensitive to the
form of both terms: a net population growth rate which falls
steadily as the population density rises (for example, linearly'),
and a generation gap with considerable variation [for example,
a sum of two exponentials, as in equation (1)}, are both con-
ducive to stability. Other factors will also affect stability, for
instance, seasonal and stochastic variation (both probably
destabilizing”®) and local rather than homogeneous mixing
(probably stabilizing®).

Although ostensibly restricted to host- regulatmg diseases, the
analysis presented here, especially the discussion of control,
will have wider applications to models incorporating similar
components. For example, in endemic equilibrium we must
stil have R=1, and hence X = N/R, if we still assume
homogeneous mixing (assumption (ii) in the discussion of the
infection term). Thus, in a non-fatal disease such as measles,
where N and hence R, will be unchanged, the equilibrium
proportion of susceptibles will also be unchanged. Qur approach
makes it clear that this result is not related to the dependence
of R, on N, but depends only on the success probability of
contacts remaining the same before and after vaccination.
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