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Summary

The analysis of infectious disease data presents challenges arising from the dependence

in the data and the fact that only part of the transmission process is observable. These

difficulties are usually overcome by making simplifying assumptions. This paper ex-

plores the use of Markov chain Monte Carlo (MCMC) methods for the analysis of

infectious disease data, with the hope that they will permit analyses to be made

under more realistic assumptions. Two important kinds of data sets are considered,

containing temporal and non-temporal information respectively, from outbreaks of

measles and influenza. Stochastic epidemic models are used to describe the processes

that generate the data. MCMC methods are then employed to perform inference in a

Bayesian context for the model parameters. The MCMC methods used include stan-

dard algorithms, such as the Metropolis-Hastings algorithm and the Gibbs sampler,

as well as a new method that involves likelihood approximation. It is found that

standard algorithms perform well in some situations, but can exhibit serious conver-

gence difficulties in others. The inferences that we obtain are in broad agreement

with estimates obtained by other methods where they are available. However, we

are also able to provide inferences for parameters which have not been reported in

previous analyses.

Keywords: BAYESIAN STATISTICS; EPIDEMIC DATA; STOCHASTIC EPIDEMIC
MODELS; LIKELIHOOD APPROXIMATION; MARKOV CHAIN MONTE CARLO METH-
ODS; METROPOLIS-HASTINGS ALGORITHM; GIBBS SAMPLER; MISSING DATA

1 Introduction

When analysing infectious disease data it is usually desirable to use models which

attempt to describe the way in which the data were generated. Such models help the

analyses to be focused on the epidemiological quantities of major interest and thereby

promote a deeper understanding of the infection process. However, the task of fitting

such models to data is hampered by the fact that parts of the infection process are not

observed, which has the consequence that the likelihood function involves multiple

integrals and is usually intractable. Sometimes only the eventual number of cases

is observed, in which case only certain parameters of the transmission model are

estimable, and maximum likelihood estimation is difficult because the probability

distribution of the eventual size of the outbreak can be tedious to compute even

for small groups of individuals. At best we observe the times at which each of the

infected individuals are detected. However, the likelihood function is typically very

complicated for such data since neither the times of infection nor the times when

the infectious periods start are observed, and each unobserved time gives rise to an

additional integration in the expression for the likelihood.

There have been substantial advances recently in the development of methods for the
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analysis of data from studies with latent variables or missing observations. It is there-

fore timely to explore the potential these methods have for the analysis of infectious

disease data. Typically, the methods rely on some form of data augmentation, see for

example Tanner (1996). An example is maximum-likelihood (ML) estimation via the

Expectation-Maximisation (EM) algorithm, which uses data augmentation within a

likelihood-based analysis of infectious disease data. However, the conditional expec-

tation required for the E-step is usually difficult to compute in these applications. An

attractive alternative is to use Markov chain Monte Carlo (MCMC) methods, which

are typically straightforward to implement, often even for very complex models, and

which have the additional potential of being suitable for models that incorporate

heterogeneities.

Our main purpose in this paper is to explore the potential that MCMC methods

have for contributing to the analysis of infectious disease data. Specifically, we shall

consider two types of data set for outbreaks of a disease in households. The first set

consists only of the eventual sizes of outbreaks, but the analysis allows household

members to acquire disease from an external source. This is an important type of

data set because the diagnoses of disease are laboratory-based and therefore problems

with unobserved subclinical infections are avoided. The second data set consists of

the times between the detection of measles cases in household outbreaks. These data

have previously been analysed using the unrealistic assumption that the infectious

period is of constant duration. This assumption is made because it greatly simplifies

ML estimation of the parameters. This data set is of interest because it contains the

most detail we can typically hope to observe during an infectious disease outbreak and

contains some information about the duration of the latent and infectious periods.

The first of our two data sets can be analysed using a relatively straightforward

MCMC algorithm, thanks largely to various closed-form formulae for the final size

distribution in question. In particular, no data augmentation is necessary. Our

purpose here is to provide a simple example of the use of MCMC, and illustrate how

various realistic modelling assumptions can readily be incorporated. Our second data

set is analysed in two ways, the first using data augmentation to simplify the form of

the likelihood, and the second replacing the exact likelihood with a simulation-based

approximation. This example illustrates both the powerful nature of the methods in

being able to cope with a large increase in the number of model parameters, and the

high level of modelling flexibility that can be achieved. It also serves to indicate some

of the difficulties, both those associated with MCMC methods applied to large-scale

problems and those inherent in attempting to draw inferences from infectious disease

data, such as confounding of parameters.

Some preliminary work on the application of MCMC methods for simple epidemic

models can be found in O’Neill and Roberts (1999) and Gibson and Renshaw (1998).

These papers are both mainly concerned with the situation in which data arise from

a single large outbreak of a disease. In contrast, we shall consider data on many small

outbreaks across a large number of households.
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Number Number of susceptible individuals in the household
infected 1 2 3 4 5

0 110 149 72 60 13
1 23 27 23 20 9
2 13 6 16 5
3 7 8 2
4 2 1
5 1

Total 133 189 108 106 31

Table 1: Frequencies of outbreak sizes of influenza in household of various sizes

2 Sizes of Household Influenza Outbreaks

There is a long history of studying outbreaks in households affected by a disease.

It is difficult to assess the extent to which disease transmission from outside affects

the outbreak size when data are collected only on affected households. It is often

true that a susceptible is far more likely to be infected by a given infective household

member than by a given infective who is not a household member. However, during an

epidemic there are many infectives outside the household and the probability of being

infected by at least one of them might not be negligible compared with the probability

of being infected by a household member. It is therefore important to consider types of

data and analyses that do not ignore disease transmission between households. Our

aim is to demonstrate that a Bayesian analysis, based on an existing transmission

model for homogeneous individuals, is straightforward by MCMC methods and can

easily be extended to estimate the extent of heterogeneity among individuals.

2.1 The Data

Suppose that a random sample of households is selected at a time prior to the epi-

demic season and every member of these households is tested to see if they are still

susceptible to a certain disease. After the epidemic season all those individuals who

were susceptible are tested again, to see if they were infected during the season. This

is an important type of data set because the diagnoses are verified by laboratory tests,

so that subclinical cases are included and case verification is more objective. It is also

an important type of study because it can be designed: the number of households

and their sizes can be chosen in advance.

Data of this kind were collected on influenza A(H3N2) infections in households as

part of the Tecumseh study of respiratory illness (see Monto et al. (1985)). The

data in Table 1, taken from Addy et al. (1991), are a summary in a form suitable

for our analysis. Note that there are a number of households with no infections; this

information is the key for an analysis that allows for disease transmission from outside

the household.
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2.2 Modelling Assumptions

Longini and Koopman (1982) propose a model to describe such data, in which dis-

ease transmission from outside the household is allowed for by assuming that there

is a global force of infection acting equally on all susceptibles. To remain susceptible

an individual must escape infection by this global force of infection and must es-

cape infection from any household member infected during the epidemic season. Let

qc denote the probability that a susceptible individual escapes community-acquired

infection during the epidemic season and let qh denote the probability that a suscep-

tible escapes infection when exposed to one infected household member. Then ωjs,

the probability that exactly j of the s initial susceptibles of a given household are

infected during the epidemic season is given as

ωjs =

(
s

j

)
ωjj(qcq

j
h)
s−j (2.1)

by Longini and Koopman (1982). Beginning with ω0s = qsc , s = 0, 1, 2, . . . , and using

the fact that

ωjj = 1−
j−1∑
i=0

ωij, (2.2)

equation (2.1) enables us to compute the ω1s, then the ω2s, and so on. It is also

possible, however, to obtain a closed form for ωjs in terms of a non-standard family

of polynomials called Gontcharoff polynomials, whose definition we now recall (see, for

example, Lefèvre and Picard (1990)). Let U be a sequence of real numbers u0, u1, . . ..

Then the Gontcharoff polynomials associated with U are defined recursively by G0(x|U) = 1,

Gj(x|U) = xj

j!
−∑j−1

i=0
uj−ii

(j−i)!Gi(x|U) (j = 1, 2, . . .).
(2.3)

Following the arguments in Section 5 of Ball and O’Neill (1999), define Hj = ωjj/j!,

so that by (2.1) and (2.2) we obtain

Hj =
1

j!
−

j−1∑
i=0

1

(j − i)!(qcq
i
h)
j−iHi.

By comparison with (2.3) it follows that Hj = Gj(1|U), where U is the sequence with

ith term ui = qcq
i
h. Further,

ωjs =

(
s

j

)
(qcq

j
h)
s−jj!Gj(1|U). (2.4)

Note that (2.4) is a simplification of the expression for ωjs given by Ball et al. (1997),

equation (3.11), in the case where the within-group epidemic is of Reed-Frost type

(see Bailey (1975, Ch. 14)).

So far, we have assumed that the population is homogeneous. One way of checking

the validity of this assumption is to fit a more general model that collapses to the
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homogeneous case when certain parameter values are specified. We now consider such

a model, which incorporates two different kinds of heterogeneity, as follows.

Suppose first that infectives differ in their potential to infect others. In (2.1) this

means that qh depends on the infective. We might model this by letting qh be a

realisation of the random variable Q, selected independently for each infective. More

specifically, we shall take Q = exp(−Y ), where Y is the duration of the infectious

period when each infective has infectious contacts with a given susceptible at times

given by the points of a Poisson process of rate 1. Thus, qh = lE[exp(−Y )] = φY (1),

say, where φY (θ) = lE[exp(−θY )] is the moment generating function of Y . In this

case, due to the extra dependencies involved we can no longer argue as before to

find ωjs. However, a closed form is still available, from equation (3.11) of Ball et al.

(1997), and we find that

ωjs =
1

(s− j)!
s∑

i=s−j

s!

(s− i)!φY (i)s−iqicGi−s+j(0|Es−jU), (2.5)

where now U is the sequence with ith term ui = φY (i), and where EiU denotes the

sequence ui, ui+1, . . .. Note that if Y is a constant then (2.5) defines the outbreak

size distribution for a Reed-Frost type model, while if Y is negative exponential then

(2.5) defines the outbreak size distribution for a general stochastic epidemic model

(see Bailey (1975, p. 88)). Note also that since the data do not include temporal

information, the temporal scaling of Y can be defined arbitrarily. In particular if we

set Y to have mean length one time unit, then φY (i) = exp(−i) if Y is constant, and

φY (i) = (1 + i)−1 if Y is negative exponential.

Additionally, suppose that there is some heterogeneity between susceptibles. A simple

way to model this, which ought to enable us to detect the presence of any substantial

heterogeneity, is to assume that each susceptible has some probability v of being im-

mune to the disease, perhaps as a result of their cautious behaviour. In the present

case we refer to v as the probability of being protected from infection. Thus the num-

ber of unprotected susceptibles available at the start of the epidemic has a binomial

distribution. So, using ωjs(v) to denote the probability of j infections among s initial

susceptibles we have

ωjs(v) =
s−j∑
i=0

(
s

i

)
vi(1− v)s−iωj,s−i. (2.6)

Note that if v = 0, the model reverts to the homogeneous susceptible population case.

Finally, of the households that had s a priori susceptible members prior to the epi-

demic season, let there be njs households with j cases at the end of the epidemic

season. It follows that the likelihood function is given by

L =
5∏
s=1

s∏
j=0

[ωjs(v)]njs , (2.7)

so that L can be calculated using equation (2.4) for the completely homogeneous case,

and equations (2.5) and (2.6) for the two kinds of heterogeneity.
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2.3 Metropolis-Hastings Algorithm for Bayesian Inference

In the general model described in the previous section there are three parameters of

interest, namely qh, qc and v. Our objective is to make valid and useful inferences

about these parameters on the basis of the data and the modelling assumptions. To

this end, we compute π(qh, qc, v| {njs}), the joint posterior of qh, qc and v. From

Bayes’ theorem we have, assuming initial independence between qh, qc and v,

π(qh, qc, v| {njs}) ∝ L(qh, qc, v)π(qh)π(qc)π(v), (2.8)

where π(qh), π(qc) and π(v) are respectively the prior distributions of qh, qc and v, and

L is the likelihood function given by (2.7). We shall use MCMC methods, as described

below, to sample from π(qh, qc, v| {njs}). Any desired property of π(qh, qc, v| {njs}),
such as the posterior mean or standard deviation of an individual parameter, is readily

approximated by the corresponding property of the sample.

We use a particular type of MCMC method known as a Metropolis-Hastings algorithm

(see, for example, Gilks et al. (1996)). Suppose that we have a likelihood L and a prior

density π. By Bayes’ Theorem, the posterior density is cLπ, where c is the normalising

constant. Construct a Markov chain {Zn} in the following manner. Given the current

state of the chain, Zn = x say, draw a possible new point (known as a candidate) y

from a proposal density q(y|x). Accept the candidate with probability

min

(
1,
L(y)π(y)q(x|y)

L(x)π(x)q(y|x)

)
, (2.9)

in which case Zn+1 = y. If however the candidate is rejected, then set Zn+1 = x. It

can be shown under mild conditions (see Gilks et al. (1996)) that the stationary dis-

tribution of this Markov chain is indeed the (correctly normalised) posterior density.

Thus to sample from π we simply run the Markov chain until it is deemed to have

converged, and then draw samples from the chain’s output.

Although the proposal density is in principle arbitrary, in practice a careful choice can

facilitate computation and speed up convergence of the algorithm. If the parameter

space is all of IRd, for some d, it is often convenient to set q(·|y) to be a Normal

density with mean y. One benefit is that q(x|y) = q(y|x), so that the acceptance

probability (2.9) reduces to

min

(
1,
L(y)π(y)

L(x)π(x)

)
.

In the present example, and those in later sections, informal methods of convergence

assessment were adopted, such as visual inspection of the sample chain output, and

tracking the estimates of the quantities of interest. This seemed to work well in

practice insofar as it generally seemed clear whether or not convergence had occurred.

Returning to the present case, the above algorithm is implemented as follows. The

target distribution is π(qh, qc, v| {njs}). Since each of the three parameters has range
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(0, 1) we transform each one using the logistic transformation

t→ t̃ = log(t/(1− t)),

so that the transformed parameters all have range IR, and we can use a Normal

proposal density. Note that t = exp(t̃)/(1+exp(t̃)) = g(t̃), say, and that the Jacobian

of this transformation is given by J(t̃) = exp(t̃)/((1 + exp(t̃))2). The corresponding

transformed version of the RHS of (2.8) is now obtained by replacing qh, qc and v by

g(q̃h), g(q̃c) and g(ṽ) respectively, and multiplying by J(q̃h)J(q̃c)J(ṽ).

2.4 Results and discussion

We found that convergence to the stationary distribution was easily achieved. As a

typical example, using a Gaussian proposal density with standard deviation 0.1 for

each of the parameters, a ‘burn-in’ period of 200 steps was ample. Samples were then

drawn from the output of the Markov chain at every tenth step.

It is relatively straightforward to find maximum likelihood estimates of parameters.

By using uniform prior distributions the posterior density is equivalent to the likeli-

hood, and a simple numerical maximisation technique applied to the MCMC output

yields the required estimates. The estimates were found to be virtually identical to

the values given in Addy et al. (1991) for the case without protection (i.e. v = 0)

considered there. For example, in the Reed-Frost case we obtained qc = 0.8677 and

qh = 0.8408 while Addy et al. (1991) give an identical qc, and a qh value of 0.8406.

Figure 2.1 near here

By way of example, the posterior densities for the Reed-Frost case without protection

is shown in Figure 2.1. For the model without protection, we find a simple well-

peaked distribution with mode close to the ML estimates of qh and qc; estimates of qh
(=0.84) and qc (=0.87) agree to 2 significant figures for both Reed-Frost and ‘general

epidemic’ models. As can be seen from Figure 2.1, qc < 1 with probability close to

1 and thus there is strong evidence to support the existence of community-acquired

infection under the assumptions of the model. Any estimate of qh made under the

assumption that the between-household transmission rate is negligible is vulnerable

to the possibility of severe bias.

Figure 2.2 near here

For the model with protection, however, we find that the extra parameter v cannot

be well estimated: the joint posterior density of qh, qc and v is banana shaped (see

Figure 2.2), with high positive correlation between qh and qc (0.87), and high negative

correlation of v with both qh (0.85) and qc (0.91). The mode is at (qh, qc, v) =

(0.60, 0.75, 0.47) for the ‘general epidemic’, and at (0.64,0.76,0.45) for the Reed-Frost.
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However, the fit of these models is not appreciably better than that of the models

without protection, i.e. with v = 0.

It may seem remarkable that a data set covering 567 households is insufficient to

discriminate between a model in which the modal value of the proportion vaccinated

is 47% and one in which it is zero, but closer consideration provides some explanation.

This can be given most succinctly in the Reed-Frost case, for which the probabilities

of outbreaks of size 0 and 1 with parameters (qh, qc, v) are the same as those for

(q′h, q
′
c, 0) where q′c = 1− (1− v)(1− qc) = v+ (1− v)qc, and q′h = (v+ (1− v)qcqh)/q

′
c.

It follows that information classifying outbreaks into sizes 0, 1 and at least 2 is of no

use at all for inference on v (in the absence of other information on the values of qh
and qc). This goes far towards explaining our difficulties in estimating v, since there

are only 21 households in our data set with outbreaks of size greater than 2.

It is also relevant to note that the chi-squared goodness-of-fit statistic already shows

an acceptable fit for the model without protection (e.g. 14.4 on 13 d.f. for the ‘general

epidemic’), suggesting that adding any further parameters may be over-fitting the

data.

This example has illustrated the use of MCMC to analyse non-temporal final outcome

data. Our next example considers a situation where temporal data are available. As

we shall see, this necessitates both a more detailed model, and a more sophisticated

MCMC implementation.

3 Measles Cases in Household Outbreaks

3.1 The Data

We consider Hope Simpson’s data on measles in households of size two around

Cirencester (UK), given by Bailey (1975, Ch. 15). There were 264 households with

two susceptible children under the age of fifteen which had at least one case of measles.

Forty-five households had a single primary case with no further transmission within

the household. The time durations between cases in the 219 households with two

cases are given in Table 2. Within these households, we do not know the number of

primary infectives, which could be one or two. For simplicity we shall initially assume

that in the 32 households where the cases occurred within 6 days of each other, both

cases are primary infectives. Thus in the remaining 187 households, one of the two

infectives is regarded as primary and the cause of the secondary case. However, in

Section 3.4 we relax this assumption and treat the proportion of households with two

primary infectives as a model parameter.

The analyses of Bailey (1975, Ch. 5) and Becker (1989, Ch. 4), are based on maxi-

mum likelihood estimation of disease parameters, such as the mean infectious period,

the mean latent period and the transmission rate within households. We apply a

Bayesian analysis using a modelling framework that is similar, but with more realis-
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Time (days) 0 1 2 3 4 5 6 7 8 9 10
Frequency 5 13 5 4 3 2 4 11 5 25 37
Time (days) 11 12 13 14 15 16 17 18 19 20 21
Frequency 38 26 12 15 6 3 1 3 0 0 1

Table 2: Times between measles cases in 219 two-child households. There were an
additional 45 two-child households in which only one child was affected by measles.

tic assumptions.

3.2 Modelling Assumptions

For a given household, let Xi and Yi denote the durations of the latent and infectious

periods, respectively, for individual i, i = 1, 2. Capital letters are used for random

variables and lower case letters for actual observations on these variables.

When one primary case exerts a force of infection β on a susceptible individual for

the entire duration y of the infectious period, the probability of escaping infection is

exp(−βy). This is a conditional probability, given the duration Y = y, and is the

contribution to the likelihood for a household with a single case when the infected

individual had an infectious period of duration y. When the infectious periods are

not observed, each of the 45 households with a single case makes a contribution

E[e−βY ] =
∫ ∞

0
exp(−βy) fY (y) dy

to the likelihood function, where fY denotes the probability density function (pdf) of

the infectious period.

For each of the 32 households with two primary infectives, it is assumed that these

infectives were infected simultaneously and so the time between their detection is the

difference between two independent realisations of X + Y . An observed difference w

for one of these households therefore makes a contribution

2
∫ ∞

0
fX+Y (u)fX+Y (u+ w) du (3.1)

to the likelihood. On the other hand, if we had observed both latent periods and

both infectious periods the contribution to the likelihood would be

fX(x1)fX(x2)fY (y1)fY (y2) . (3.2)

Similarly, for a household with one primary case and one secondary case, if we knew

the lengths of the latent and infectious periods, and the time t from the start of the

infectious period of the primary infective to the infection of the secondary case, then

the likelihood could be written

fX(x1)fX(x2)fY (y1)fY (y2) βe−βt . (3.3)
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The likelihood contribution based only on the time w between the detection of cases

is obtained by integrating (3.3) over all variables subject to t+ x2 + y2 − y1 = w.

Equations (3.1), (3.2), and (3.3) illustrate that failing to observe key times can in-

troduce integrations into the likelihood formula, the integrals being over all possible

values for the unobserved times. When multiple integrals arise in this way, the like-

lihood formula often becomes intractable. We describe below two approaches to

avoiding explicit evaluation of these integrals. Firstly, in Section 3.3 we develop a

Gibbs sampler algorithm based on a data augmentation approach in which unob-

served values are introduced as additional parameters, often called latent variables.

Secondly, in Section 3.4, we construct a Metropolis algorithm which employs simula-

tion to approximate the likelihood ratio at each iteration of the algorithm, avoiding

both explicit integration and the introduction of latent variables.

Bailey (1975, Ch. 15) and Becker (1989, Ch. 4) simplify the integrations such as (3.1)

by assuming a constant infectious period and restricting fX to a form that enables

direct integration. The approaches introduced here permit more flexible modelling

assumptions. We shall assume that the latent and infectious periods are drawn from

Gamma distributions with parameters (θL1, θL2) and (θI1, θI2), respectively, so that

fX(x) =
1

Γ(θL2)
θL1e

−xθL1(xθL1)θL2−1, (3.4)

and fY is defined similarly. The parameter θL1 in (3.4) can be interpreted as a

scale parameter, whereas θL2 controls the shape of the distribution: θL2 = 1 gives

the exponential distribution, while larger values give distributions which are more

symmetric than the exponential.

Our choice of Gamma distributions is by no means a necessary one; other distributions

can readily be employed. However, the Gamma distribution is smooth and unimodal

which seem appropriate for this application, while the two parameters allow a good

deal of flexibility.

3.3 Gibbs sampler algorithm with data augmentation

3.3.1 The augmented data likelihood

The parameters of interest are β, the force of infection, and θ = (θL1, θL2, θI1, θI2),

the vector of scale and shape parameters for the latent and infectious time distribu-

tions. In order to make inferences about β and θ, we compute π(β,θ|data), the joint

posterior pdf of β and θ.

As discussed above, the likelihood involves many integrals, but we will eliminate

explicit integrations by introducing latent variables, such as the lengths of latent and

infectious periods, and the infection times. We model the observed times w as if they

were continuously distributed, although they are recorded only to the nearest day.
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This discretization of the observations is expected to have very little effect on the

inferences drawn.

Within-household infections

First, consider the 187 households within which an infection is deemed to have oc-

curred. We set a time-origin in each household by assuming that the cases are detected

at times 0 and w ≥ 6, so that w is taken directly from Table 2. The latent period

is sufficiently long that it is reasonable to assume that the first observed case corre-

sponds to the initially infected individual. We introduce latent variables u1, s, and

u2 (see Figure 3.1) where

u1 < 0 ≡ start time for first infectious period,

s ∈ (u1, 0) ≡ time of within-household infection,

u2 ∈ (s, w) ≡ end time for the secondary infective’s latent period.

Figure 3.1 near here

The augmented likelihood for each household is given by

fY (−u1)β exp(−β(s−u1))fX(u2−s)fY (w−u2), (3.5)

where fX and fY are the Gamma pdfs given at (3.4). Since each household has its

own set of latent variables, we have introduced 3 × 187 extra parameters into the

model. This enormous increase in the dimensionality of the parameter space causes

no obstacle in principle for the Gibbs sampler algorithm, although convergence can

be slower and more difficult to assess in such large spaces.

Two-primary households

Next, consider the 32 households in which there are deemed to be two primary cases,

infected at time τ < 0 and detected at times 0 and w, with 0 ≤ w ≤ 5. Since no

within-household infection could have been observed, we cannot infer anything about

β from these observations. If v1 ∈ (τ, 0) and v2 ∈ (τ, w) denote the ends of the two

latent periods, the augmented likelihood for each household can be written

fX(v1−τ)fX(v2−τ)fY (−v1)fY (w−v2). (3.6)

This introduces 3× 32 extra parameters.

No-infection households

Finally, the contribution to the likelihood from a household in which no secondary

infection occurs can be evaluated exactly, without the need for latent variables. It

is equal to the probability that a single infectious individual fails to infect a single

susceptible:

lE[e−βY ] =

(
θI1

θI1 + β

)θI2
= q, say. (3.7)
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3.3.2 The Gibbs sampler

Before describing the Gibbs sampler algorithm, we note that a Metropolis-Hastings

algorithm following the general procedure described in Section 2.4 can be implemented

relatively easily. We did this as follows: all parameters were transformed onto IR, the

likelihoods multiplied by appropriate Jacobians, and a Metropolis-Hastings algorithm

with Gaussian proposal density employed. In practice we found that this approach

suffered from severe convergence problems, and additionally exhibited very long run

times. Certain blocking strategies were implemented in order to improve matters but

these were largely ineffective.

We then turned to the Gibbs sampler, a special case of the Metropolis-Hastings algo-

rithm in which each parameter is updated in turn according to its conditional distri-

bution given the current values of all the other parameters (see Smith and Roberts

(1993)). In practice the conditional distributions may be non-standard, but since

they are univariate it is often possible to design efficient sampling methods. The

attractiveness of the Gibbs sampler for the measles data set is that it enables us to

exploit the independence structure inherent in the data. For example, the conditional

distributions of each latent variable, given all other parameters, depend only on the

‘global’ parameters θ and β and the latent parameters for the same household: the

parameters associated with other households are irrelevant.

To fully describe the implementation of the Gibbs sampler it is necessary to consider

each of the conditional distributions involved. However, for ease of exposition we

focus now on the five global parameters, since they are of most interest, and their

conditional distributions help to provide insight into the inter-dependence of the vari-

ous model parameters. The sampling methods described below are also illustrative of

the methods used for the other variables, details of which are given in the Appendix,

Section A3.

In describing the sampling schemes we shall often use the techniques of rejection sam-

pling, accounts of which can be found in Morgan(1984, Section 5.3). For a parameter

x we adopt the notation π(x| · · ·) to denote the density of x conditional upon all other

parameters. Parameters for different households are labelled by superscripts in the

obvious manner, and we use w1 and w2 to denote the data w from households with

1 and 2 primary infectives, respectively. Gamma priors are employed; these are all

denoted Gam(λ,m), although in practice the parameters may vary.

Sampling β

¿From (3.5) and (3.7) we find that

π(β| · · ·) ∝
β186+m exp

{
−β[λ+

∑187
j=1(s(j) − u(j)

1 )]
}

(θI1 + β)45θI2
.

We thus need to sample from a density of the form

f(x) =
xa exp(−bx)

(x+ c)d
,
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where a, b, c, d > 0. In order to do so, we construct a bounding Gamma density via

the following Lemma, the proof of which is given in the Appendix, Section A1.

Lemma 3.1

f(x) ≤ g(x) =
γa−bγ

(γ + c)d
xbγ exp(−bx),

where γ = (2b)−1
(
a− bc− d+

√
(a− bc− d)2 + 4acd

)
.

So to sample from f(x), we can use rejection sampling; first draw a sample, Z say,

from a Gam(b, bγ+ 1) distribution, and then accept this with probability f(Z)/g(Z),

repeating this process until an acceptance occurs.

Sampling θL1

¿From (3.5) and (3.6) we have

π(θL1| · · ·) ∝ θm−1+251θL2
L1 exp

−
λ+

187∑
j=1

(u
(j)
2 − s(j)) +

32∑
j=1

(v
(j)
1 + v

(j)
2 − 2τ (j))

 θL1

 ,
yielding that

π(θL1| · · ·) ∼ Gam(λ+
187∑
j=1

(u
(j)
2 − s(j)) +

32∑
j=1

(v
(j)
1 + v

(j)
2 − 2τ j),m+ 251θL2).

Sampling θL2

We find that

π(θL2| · · ·) ∝
θm−1
L2 exp(BθL2)

Γ(θL2)251
,

where

B =
187∑
j=1

log(u
(j)
2 − s(j)) +

32∑
j=1

log((v
(j)
1 − τ (j))(v

(j)
2 − τ (j))) + 251 log(θL1)− λ.

We thus wish to sample from a density of the form

h(x) =
xa exp(bx)

Γ(x)c
,

where a, c > 0 and b ∈ IR. Our approach to this is similar to that adopted for the

β sampling case above; as before we require a bounding density, and this is provided

by the following Lemma, the proof of which is in the Appendix, Section A2.

Lemma 3.2 For x > 0 and µ > 0,

h(x) ≤ l(x) = δxγµ exp(−µx),
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in which δ = γa−γµ exp((b + µ)γ)Γ(γ)−c and γ is the unique positive root of the

equation
a

γ
+ b− cψ(γ) = 0,

where ψ denotes the digamma function.

We may thus use rejection sampling to obtain a sample for θL2 in an identical manner

to that described for the β case above. The Lemma allows us to choose µ arbitrarily;

we set µ = γ which seemed to work fairly well in practice.

Sampling θI1

It turns out that the conditional distribution of θI1 is identical in form to the condi-

tional distribution of β, and thus we can sample θI1 using the same method. Specifi-

cally, from (3.5), (3.6) and (3.7) we obtain that

π(θI1| · · ·) ∝
θaI1 exp(−bθI1)

(θI1 + c)d
,

where a = m− 1 + 483θI2, b =
∑187
j=1(w

(j)
1 − u

(j)
1 − u

(j)
2 ) +

∑32
j=1(w

(j)
2 − v

(j)
1 − v

(j)
2 ) + λ,

c = β and d = 45θI2.

Sampling θI2

The structure of the conditional distribution of θI2 is identical to that of θL2, so once

again we can use our existing method to perform the sampling. Specifically,

π(θI2| · · ·) ∝
θm−1
I2 exp(BθI2)

Γ(θI2)438
,

where

B = 438 log θI1 +
187∑
j=1

log[(−u(j)
1 )(w

(j)
1 − u(j)

2 )] +
32∑
j=1

log[(−v(j)
1 )(w

(j)
2 − v(j)

2 )]

+ 45 log

(
θI1

θI1 + β

)
− λ.

3.3.3 Results

In this and subsequent sections µL and σL denote respectively the mean and standard

deviation of the latent period, while µI and σI are defined similarly for the infection

period.

The Gibbs sampler algorithm was implemented using Fortran 90 running under Unix

on a mainframe computer. Actual run-time was about 50,000 sweeps per hour (a

sweep refers to a single update of the entire parameter set). Prior distributions,

where needed, were set as negative exponential with mean 1000 (i.e. Gamma with

parameters λ = 0.001 and m = 1) so as to be relatively uninformative. Sample
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chains of the global parameters moved very slowly around their parameter space. One

reason for this is that the conditional densities of the global parameters all involve

summations of independent and similarly distributed latent variables. Thus, a law of

large numbers effect ensures that the distribution of each global parameter will not

change greatly unless there are substantial changes across the latent variables.

The sample chains also exhibited clear correlations, which is expected because of the

correlations of the global parameters, and the lack of detail in the data set. It is well-

known that such correlations are a cause of slow convergence in the Gibbs sampler

(see for example Hills and Smith (1992)); however in the present case any sensible

reparameterisation of the global parameters seems likely to drastically increase the

complexity of the conditional distributions, with resulting increase in computation

time.

More specifically, the β and Y parameter output values were correlated: as β in-

creased, so Y tended to decrease. Intuitively, this can be explained by the data

providing little information to distinguish between short infectious periods with high

infectivity, and long infectious periods with low infectivity. Furthermore, these sam-

ple chains did not appear to converge, but instead displayed rather erratic movement

around the sample space. Consequently, no reliable estimates of posterior distribu-

tions were obtained for β or for the Y parameters. However, the avoidance probability

q, which is derived from β and Y by (3.7), did exhibit convergence. The estimates

of posterior mean and standard deviation of q were given by 0.194 and 0.026, re-

spectively, and a 95% equal-tail credibility interval by (0.15, 0.24). In fact, it is

straightforward to calculate the posterior distribution of q exactly, and we find that

π(q|data) ∝ q45(1− q)187π(q),

so that if q has a Beta prior distribution, it also has a Beta posterior distribution. With

a uniform prior (which is essentially comparable with the priors used in our MCMC

simulations in the region of interest) we thus find the posterior mean and standard

deviation to be 0.197 and 0.026 respectively, and an equal-tail 95% credibility interval

(0.15, 0.24), all of which compare favourably with our MCMC estimates, providing

some reassurance that the algorithm is functioning correctly.

The sample chains associated with the latent period parameters appeared to exhibit

convergence, and we were thus able to obtain posterior estimates. Both µL and

σL had approximately symmetric unimodal posterior densities. The posterior mean

and median of µL were 10.86 and 10.89 days, respectively, and the 95% equal-tail

credibility interval for µL was (10.43,11.22). Similarly σL had posterior mean and

median 2.31 days and 95% equal-tail credibility interval (2.13, 2.51).

Stronger priors

In view of the convergence problems that were encountered, we also considered the

use of much stronger prior assumptions. This was found to improve the convergence

properties of the algorithm and thus posterior density estimates for all parameters of
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β µL σL µI σI
Weak priors – – 10.86 2.31 – – – –

– – (10.51,11.15) (2.17,2.46) – – – –
Strong priors 0.39 9.41 1.59 4.53 1.03

(0.29, 0.51) (8.91,9.90) (1.38,1.83) (3.44,5.63) (0.81,1.24)

Table 3: Posterior means and equal-tail 90% intervals assuming weak priors (i.e.
all parameters have prior density Gam(0.001,1)) and strong priors (β is Gam(8,2);
θL1, θI1 are Gam(1,2); θL2, θI2 are Gam(1,20).) The posterior densities were all roughly
symmetric.

interest were obtained. Specifically, β was given prior mean 0.25 and prior standard

deviation about 0.2, while θ was assigned priors such that the infectious and latent

periods both had prior mean 10 and prior standard deviation just over 2 days.

The results are summarised in Table 3. For the latent period parameters, the data

are sufficiently informative to reduce the effect of the priors, and we find that the

posterior estimates are roughly comparable with those obtained in the weak prior

case. Note that the prior on β is quite restrictive; for example, values greater than 1

are more than 3 standard deviations from the mean. As a consequence, the posterior

credibility interval for β is quite narrow. Restricting β effectively forces the MCMC

algorithm to separately distinguish between β and the Y parameter values, in contrast

to the weak prior case. Consequently, it is inappropriate to compare results under

strong and weak prior assumptions for these parameters. For example, the strong

prior results are appreciably different from those obtained using the Monte-Carlo-

within-Metropolis algorithm as described in the next Section under weaker priors

(see Table 6, Model (b)).

It seems likely that the convergence problems in the weak prior case were caused by

the large number of latent variables and the high correlation of model parameters.

As an attempt to overcome these difficulties a new algorithm was developed, which

we now describe.

3.4 Monte-Carlo-within-Metropolis (MC-w-M) Algorithm

3.4.1 Monte Carlo estimation of the likelihood ratio

The large number of latent variables in the formulation described in Section 3.3 raises

concerns about convergence of the Gibbs sampling algorithm. Here, we eliminate

the need for latent variables by implementing an ‘MC-w-M’ algorithm, obtained by

replacing the likelihood ratio R in a standard Metropolis algorithm with a simulation-

based approximation R∗, defined below at (3.8) and (3.11).

Before describing the algorithm, we introduce two desirable modifications to the mod-

elling assumptions outlined in Section 3.2, which are readily incorporated here. First,
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the proportion of ‘two-primary’ households will be regarded as an additional param-

eter, ∆, which is estimated from the data. (Previously the two-primary households

were assumed to be exactly the 32 households in which cases arose within 6 days of

each other.) Secondly, the data show local maxima at 7, 14 and 21 days, suggesting

an effect of rounding to the nearest week. It seems difficult to adequately model any

such rounding process, and instead we weaken its effect on inference by coarsening

the data as shown in the first row of Table 4.

Write C ≡ (c1, . . . , ck) for the observed frequencies in each time period; for the data

of Table 4, we have k = 13 and
∑13
i=1 ci = 219. Let p(∆, β,θ) denote the expected

proportions given parameter vector (∆, β,θ), that is

p(∆, β,θ) ≡ lE[C|∆, β,θ]/219.

As previously discussed, evaluating p(∆, β,θ) exactly involves multiple integrations

and is generally infeasible, but it is readily approximated by the sample proportion,

p̂(∆, β,θ), obtained by simulating a large number, n, of households under the model

with parameter vector (∆, β,θ). Similarly, the likelihood ratio,

R ≡ L(∆, β,θ)

L(∆′, β′,θ′)
=

k∏
i=1

(
pi(∆, β,θ)

pi(∆′, β′,θ
′)

)ci
,

is naturally estimated by

R̂ ≡
k∏
i=1

(
p̂i(∆, β,θ)

p̂i(∆′, β′,θ
′)

)ci
, (3.8)

(see Diggle & Gratton, 1984).

For notational convenience, we will sometimes write p and q for p(∆, β,θ) and

p(∆′, β′,θ′), with p̂ and q̂ defined similarly. To avoid problems with division by

zero, we require that q̂i > 0, for all i, but we are interested in values of n sufficiently

large that this requirement has negligible practical effect. If n is also large enough

that (n−1)qi > ci, for all i, then the Dirichlet approximation to the multinomial gives

lE[R̂] ≈ µn(p,q), where

µn(p,q) ≡
 k∏
i=1

ci∏
j=1

(n−1)pi + j − 1

(n−1)qi − j

 219∏
i=1

n− i− 1

n+ i− 2
. (3.9)

This approximation is usually very accurate for the values of n discussed below, so

that µn −R approximates the bias of R̂.

The detailed balance condition underpinning the Metropolis algorithm requires that

min

{
1, R

π(∆, β,θ)

π(∆′, β′,θ′)

}
π(∆′, β′,θ′) = min

{
1,

1

R

π(∆′, β′,θ′)

π(∆, β,θ)

}
Rπ(∆, β,θ),

where π denotes the prior pdf. In the application discussed below, uniform priors are

employed, and in this case the detailed balance condition becomes

min{1, R} = min{1, 1/R}R.
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n=4,000 n=8,000 n=16,000

g(R̂) g(R∗) g(R̂) g(R∗) g(R̂) g(R∗)
R = 1 1.00 1.00 1.00 1.00 1.00 1.00
R = 1.33 1.31 1.37 1.32 1.34 1.33 1.34
R = 2.00 1.90 2.06 1.96 2.01 1.98 2.01
R = 4.00 3.69 4.13 3.85 4.03 3.93 4.01

Table 4: Approximate expectations of g(R̂) and g(R∗) for various values of the sim-
ulation size, n. In row 1, p = q, with the common value being the observed relative
frequencies for measles data: the 13 counts from Table 4, each divided by 219. Rows
2 – 4 correspond to the same p and different choices of q obtained by perturbing p;
the corresponding value of R is shown in column 1. Each entry in the table is based
on 24,000 simulations

It follows that the MC-w-M algorithm will be exactly valid whenever g(R̂) = R,

where

g(R̂) ≡ lE[min{1, R̂}]
lE[min{1, 1/R̂}]

. (3.10)

If (∆, β,θ) = (∆′, β′,θ′), then R = 1 and R̂ has the same distribution as 1/R̂, so that

(3.10) is trivially satisfied. The first entry in each cell of Table 3 shows a simulation-

based approximation to g(R̂), for p equal to the vector of sample proportions, and

various choices of n and q. The bias in R̂ tends to have a ‘levelling’ effect: g(R̂) lies

between 1 and R.

Equation (3.9) suggests a bias correction for R̂, using an idea similar to one ex-

ploited by bootstrap bias corrections. Since R is a smooth function of (∆, β,θ) and

(∆′, β′,θ′), it follows that lE[R̂]/R, which is (well) approximated by µn/R, should

be (less well) approximated by µ̂n/R̂, where µ̂n ≡ µn(p̂, q̂). Hence, R∗ should be

approximately unbiased for R, where

R∗ ≡ R̂2/µ̂n (3.11)

Table 3 indicates that g(R∗) is closer to R than is g(R̂), although there is some

tendency to overcorrection.

3.4.2 MC-w-M for the measles data

An MC-w-M algorithm with simulation size n = 8, 000 was implemented for the

data of Table 4 and the model outlined in Section 3.2. To improve convergence a

reparameterisation was adopted. For the gamma distribution modelling the length of

the latent period, we worked with the expectation, µL ≡ θL2/θL1, and 1/θL2, instead

of θL1 and θL2, and similarly for the infectious period parameters. Further, we rotated

the plane spanned by µL and µI to reduce their correlation. Specifically, we worked
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No inf Time (days) 0 1 2 3 4 5 6–8 9 10 11 12 13–15 ≥16
45 Observed 5 13 5 4 3 2 20 25 37 38 26 33 8
44 Fitted (a) 5 9 7 5 3 2 23 25 32 33 28 39 5
45 Fitted (b) 5 10 7 5 3 3 23 23 33 35 29 37 5

Table 5: Row 1 shows the data from Table 2 coarsened to weaken the effect of possible
week-rounding and possible inaccurate outliers. Rows 2 and 3 show the mean fitted
values (estimated from the same MC-w-M runs as for Table 6) under model (a): fixed
length infectious period; and model (b): gamma-distributed infectious period.

β µL µI θL2 θI2 ∆× 264
Model (a) 0.51 9.9 3.2 26 – – 34

(0.3,3.1) (8.8,10.9) (0.5,6.0) (21,35) – – (26,43)
Model (b) 2.0 10.7 1.6 54 1.7 32

(0.6,17) (10.0,11.1) (0.2,3.0) (24,810) (1.0,30) (24,42)

Table 6: Posterior medians and equal-tail 90% intervals under model (a): fixed length
infectious period; and model (b) gamma-distributed infectious period. Estimates
are based on 4,000 outputs from the MC-w-M algorithm (≡ 1.6 × 106 accept/reject
decisions), with simulation size n = 8, 000.

with

µ′1 = (µL − 2µI)/5

µ′2 = (2µL + µI)/10.

Improper, uniform prior distributions were assigned to µ′1 and µ′2, while 1/θL2 and

1/θI2 were each assigned Uniform(0,1) priors, so that only Gamma distributions with

modes away from zero had a priori support. The force of infection parameter, β,

was replaced as a basic parameter by the ‘escape’ probability q, given at (3.7). Both

q and ∆, the proportion of ‘two-primary’ households, were assigned independent

Uniform(0,1) priors.

The proposal distributions for all six working parameters were (independent) Uni-

form(0,1), each centred at the current value but with differing interval lengths, and

with reflection at boundaries (0 is a lower boundary for all variables; 1 an upper

boundary for all but µ′1 and µ′2, which must satisfy µ′2 > µ′1).

3.4.3 Results

Before reporting results for the principal model, we discuss a simpler model similar

to that employed in previous studies, in which the infectious period was of constant

length. (This corresponds to θI1 = ∞ in our model.) The expected frequencies

under the model, shown in row 2 of Table 5, correspond well to the observations: the

Pearson χ2 goodness-of-fit statistic is about 6.8 on 8 degrees of freedom. However, the
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parameter estimates (Table 6) are imprecise, particularly the length of the infectious

period, µI , whose equal-tailed 90% interval is from 0.5 days to 6 days. Further, the

posterior distribution for the force of infection, β, obtained by inverting (3.7), is highly

skew. The reason is clear from the left panels of Figure 3.2. The upper left panel shows

that µL and µI are highly correlated (ρ = −0.96), while the lower left panel shows

that log(µI) and log(β) are almost perfectly correlated (ρ = −1.00). Further, they

lie on a line of slope −1, indicating that βµI is almost constant. Roughly speaking,

under this model the data cannot ‘choose’ between the following two scenarios (and

intermediate cases):

(1) µL ≈ 11, 0 < µI < 1, β > 3;
(2) µL ≈ 9, 5 < µI < 6, β ≈ 1/3.

Under all scenarios θL2 ≈ 25, indicating a distribution for the latent period which is

close to normal, with standard deviation about 2 days (90% interval (1.5,2.2)).

Figure 3.2 near here

We turn now to our principal model, in which the infectious period varies from case-

to-case according to a Gamma distribution. The expected frequencies (Table 5, row

3) again correspond well to observations: the χ2 statistic is 5.6 a gain of just over

one from the simpler model, at the cost of one extra degree of freedom. However,

the posterior distributions of the parameters are substantially altered, as is shown in

the right panels of Figure 3.2. In particular, the support for scenario (2) above has

almost vanished, while that for scenario (1) has increased. The standard deviation

of the latent period is reduced to 1.4 (90% interval (0.4,2.2)), whereas that for the

infectious period is about 1.2 (90% interval (0.1,1.8)), which is high compared with

its median of 1.6, making the assumption of fixed length infectious period appear

untenable. The posterior distribution for β supports larger values than under the

simpler model, but remains highly skew.

3.5 Comparisons with previous analyses

We now briefly compare the results obtained by the Gibbs sampler (weak priors)

and Monte Carlo-within-Metropolis methods with those obtained in the analyses of

Bailey (1975, Ch. 15) and Becker (1989, Ch. 4). Table 7 summarises the findings.

The MCMC estimates for µL are appreciably higher than the maximum likelihood

estimates; specifically, the ML estimates do not lie within the credibility intervals

given in Table 6. However, it is reassuring to note that the MCMC values are in

harmony with current epidemiological views that the latent period of measles is about

ten days; see for example Benenson (1990). The maximum likelihood estimates for

µI also differ appreciably from the corresponding MCMC values, the former being

considerably larger. It is plausible that the restrictive assumption of an infectious
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β µL σL µI σI
Gibbs Sampler – – 10.9 2.3 – – – –

MC-w-M, model (a) 0.51 9.9 2.0 3.2 – –
MC-w-M, model (b) 2.0 10.7 1.4 1.6 1.2

MLE (Bailey) 0.26 8.6 1.8 6.7 – –
MLE (Becker) 0.24 8.3 2.4 6.2 – –

Table 7: Posterior median values and Maximum likelihood estimates for the infection
rate, and means and standard deviations of the latent and infectious periods.

period of constant length, as employed by both Bailey and Becker, has a bearing on

the ML estimates for µL and µI . However, the difference in the µI values is not of

great consequence since µI cannot be estimated precisely from the data. Our analyses

also indicate the presence of significant variation in the infectious period, so that the

assumption of a fixed infectious period appears inappropriate.

Finally, it is important to note that our analyses lead to credibility intervals for

the parameters of interest. These intervals provide information which is considerably

more reliable than that obtained via standard errors as presented in previous analyses

(eg Bailey (1975, p.280)). There are two reasons for this : first, such standard errors

should be treated with caution since the usual regularity conditions for asymptotic

results are violated; and second, the assumptions of a fixed-length infectious period

and a fixed value of ∆ lead to under-estimation of standard errors because of a failure

to incorporate variation in the infectious period length and uncertainty in the value

of ∆. For example, Table 5 gives very wide credibility intervals for β. In contrast,

the maximum likelihood approach gives an estimate of β̂ = 0.256 with standard error

0.032 (Bailey (1975, p.280)), suggesting a spurious degree of precision.

4 Conclusions

We have considered the application of Markov chain Monte Carlo methods to the

analysis of infectious disease data using stochastic epidemic models. In principle,

the use of MCMC has a number of important advantages over existing methods. In

particular, MCMC can deal with complex models, thus permitting realistic modelling

assumptions to be made; it is well-suited to missing data problems; it can often be

implemented relatively easily; and it naturally caters for a Bayesian inference frame-

work. Conversely, there are a number of a priori obstacles to the use of MCMC for

epidemic data analysis. These include the considerable correlation structure inherent

in epidemic models; potentially very large numbers of unknown variables; and math-

ematical difficulties that arise from the models themselves (for example, having to

calculate distributions arising from conditioned Markov processes).
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Final size data

For the influenza data considered in Section 2, a simple Metropolis-Hastings algorithm

was found to be effective. Moreover our approach enabled a reasonable degree of

modelling detail. In this case, there was no need to incorporate latent variables, and

the analysis was aided considerably by the fact that the likelihood was straightforward

to calculate via certain closed-form expressions.

Temporal data

The measles data set considered in Section 3 proved considerably more challenging.

The data were temporal, and the modelling approach involved the inclusion of a large

number of latent variables. The Metropolis-Hastings and Gibbs sampler algorithms

both encountered some convergence problems, which appeared to be particularly due

to the high correlations between the parameters of interest. These correlations arise

due to a lack of detail in the data. Although it may have been possible to produce

results simply by running the simulations for far longer periods of time, this approach

was rejected as being practically undesirable. Our Monte-Carlo-within-Metropolis

approach seemed to work well in practice, and gave the most complete results for the

measles data set. This approach does not appear to have been considered before in

the MCMC literature, and is clearly worthy of further investigation and development.

Despite the difficulties encountered with the data set, we nevertheless found that the

MCMC methods were able to produce inferences that are in broad agreement with

parameter values accepted in the epidemiological literature, and these were obtained

under assumptions that are more realistic than those used in previous maximum

likelihood analyses. The MCMC methods readily provide credibility intervals for

the parameters of interest. In contrast, parameter confidence intervals obtained in

previous analyses should be treated with caution, since the assumption of a constant

length infectious period invalidates the requisite regularity conditions for standard

asymptotic results of maximum likelihood estimation.

Furthermore we observed appreciable differences between the MCMC parameter in-

ferences and the ML parameter estimates for the measles data. It thus appears that

MCMC methods have a real contribution to make towards the analysis of infectious

disease data.

Future work

In summary, standard MCMC methods can be used to provide useful inferences from

infectious disease data, but are not guaranteed to be successful for all problems.

There is clearly a great deal of scope for further work; firstly in terms of specific

applications, and secondly in terms of improved methodology. Regarding the latter,

since we have in this paper deliberately utilised the most common MCMC algorithms,

an obvious avenue for further exploration is to consider more elaborate algorithms.

In particular it may be fruitful to consider algorithms which take account of the

structure of the target density, such as algorithms based on discrete approximations

to Langevin diffusions (Roberts and Tweedie (1996)), or Hybrid Monte Carlo methods

23



(Duane et al (1987). In addition to the algorithms themselves, our experiences suggest

the need to construct, where possible, model parameterisations that reduce posterior

correlations. This strategy, which is generally regarded as desirable in the MCMC

literature, is of particular importance in our context due to the correlation structures

commonly found in stochastic epidemic models.
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5 Appendix

A1: Proof of Lemma 3.1

We first find γ > 0 such that f is maximised at γ. Differentiating f yields that γ is

the positive root of the quadratic

a(x+ c)− bx(x+ c)− dx = 0, (5.1)

and it follows that γ is as defined in the statement of the Lemma. Next, f(x) ≤ g(x)

if and only if
xa−bγ

(x+ c)d
≤ γa−bγ

(γ + c)d
. (5.2)

It is thus sufficient to show that the LHS of (5.2) is maximised over (0,∞) when

x = γ. By differentiation, the maximum is attained when (a − bγ)(x + c)− dx = 0.

However, this last equation has unique positive root given by x = γ, since in this case

the equation reduces to (5.1).

A2: Proof of Lemma 3.2

First define γ as the point at which h is maximised over (0,∞); differentiating log h(x)

yields the definition of γ given in the statement of the Lemma. Next, note that the

Lemma follows if and only if

δ ≥ xa−γµ exp((b+ µ)x)

Γ(x)c
. (5.3)

However, the RHS of (5.3) is maximised over (0,∞) when (a−γµ)x−1+b+µ−cψ(x) =

0, which by the definition of γ implies that x = γ, and the result follows.

A3: Sampling methods for the non-global parameters

Sampling u1

Since u1 < 0, we focus attention on the quantity −u1. From (3.5) we obtain that, for

u1 < s,
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π(−u1| · · ·) ∝ (−u1)m−1+θI2−1e−(−u1)(λ+β+θI1).

Thus −u1 has a Gam(λ+ β + θI1,m+ θI2− 1) distribution, subject to the constraint

u1 < s. To obtain a sample from this conditional distribution we could repeatedly

sample from the Gamma distribution until a sample satisfied the constraint. However,

this approach will be highly time-consuming if the event u1 < s has low probability

according to the Gamma distribution, and so in practice a more efficient method is

preferable. An example of such a method is described below in Section A4.

Sampling s

¿From (3.5) we obtain that for u1 < s < 0,

π(s| · · ·) ∝ exp(−β(s− u1))(u2 − s)θL2−1 exp(−θL1(u2 − s)).

There are now two possibilities. If β ≤ θL1 then we find that

π(s| · · ·) ∝ (u2 − s)θL2−1 exp(−(θL1 − β)(u2 − s)),

so that (u2 − s) has a Gam(θL1 − β, θL2) distribution subject to the constraint

max(0, u2) < (u2 − s) < (u2 − u1). Sampling from a Gamma distribution over a

finite interval I is straightforward; for example, if the density (f , say) has maxi-

mum value M over I then we can simply sample Z uniformly over I and accept with

probability f(Z)/M .

Alternatively, if β > θL1 then we have

π(s| · · ·) ∝ (u2 − s)θL2−1 exp((β − θL1)(u2 − s)),

again subject to the constraint max(0, u2) < (u2 − s) < (u2 − u1). The situation

is similar to the previous case, except that now we are sampling from the density

proportional to f(x) = xθL2−1e(β−θL1)x over a finite interval. Such sampling can be

carried out fairly efficiently by noting that f(x) ≤ Me(β−θL1)x, with M a suitable

positive constant, and that this bounding density can be simulated directly by using

the inversion method (see for example Morgan (1984, Section 5.2)).

Sampling τ

Since τ < 0 we consider −τ , and note that −τ must satisfy −τ > |min(v1, v2)| > 0.

Define M = M(mτ , λτ ) as the maximum value of the Gamma density π(−τ) over the

interval (|min(v1, v2)|,∞). From (3.6) we find that, for τ < min(v1, v2),

π(−τ | · · ·) ∝
(
v1 + v2

2
− τ

)2(θL2−1)

exp
(
−2θL1

(
v1 + v2

2
− τ

))
[(v1 − τ)(v2 − τ)]θL2−1(

v1+v2

2
− τ

)2(θL2−1)

× (−τ)m−1e(−λ)(−τ)

M

=
(
v1 + v2

2
− τ

)2(θL2−1)

exp
(
−2θL1

(
v1 + v2

2
− τ

))
F1(τ)F2(τ),
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say. By the AM-GM inequality it can easily be shown that F1(τ) ≤ 1, while F2(τ) ≤ 1

from the definition of M .

We can thus sample τ as follows. First sample
(
v1+v2

2
− τ

)
from a Gam(2θL2, 2θL2−1)

distribution, which in turn gives us a sample for τ . This sampling is repeated until

τ < min(v1, v2). Finally, accept the resulting τ value with probability F1(τ)F2(τ),

repeating the whole process until an acceptance occurs.

Sampling u2, v1 and v2

It is straightforward to see from (3.5) and (3.6) that the conditional densities for the

remaining parameters u2, v1 and v2 are identical in structure; essentially each involves

a product of two Gamma densities. We will therefore only describe the method for

the first of these parameters, u2. Now from (3.5) we obtain that for s < u2 < w,

π(u2| · · ·) ∝ (u2 − s)θL2−1 exp(−θL1(u2 − s))(w − u2)θI2−1 exp(−θI1(w − u2)).

We therefore wish to generate samples from densities of the form

f(x) = (x− s)m−1(w − x)n−1 exp(−λ(x− s)) exp(−µ(w − x)),

where s < x < w and n,m > 0.

If λ = µ the situation is straightforward, since then f is simply the density of a Beta

distribution with parameters (m,n) over the interval (s, w). Now for p ≥ 0,

f(x) ∝
{

(x− s)m−p−1(w − x)n−1(x− s)p exp(−(λ− µ)(x− s)) if λ > µ,
(x− s)m−1(w − x)n−p−1(w − x)p exp(−(µ− λ)(w − x)) if λ < µ.

(5.4)

It follows at once from (5.4) that if λ > µ we can simply sample (x − s) (which

immediately specifies x) from a Beta(m − p, n) distribution over the interval (s, w),

and accept this sample with probability proportional to the Gamma density (x −
s)p exp(−(λ − µ)(x − s)). The latter acceptance probability is easy to obtain since

we are only considering values of (x− s) in the range 0 < (x− s) < (w − s).
Although this sampling scheme works for any p ≥ 0, in practice we wish to pick p so

that the acceptance probability is likely to be high. This amounts to ensuring that

the Beta distribution is likely to generate samples in the region where the Gamma

density is highest. One way to do this is to make the mean of the Beta distribution,

namely (w− s)(m− p)/(m− p+n), equal to the mode of the Gamma density, which

is p/(λ− µ). With the additional constraint that 0 < p < m we thus find that

p = (1/2)
(

(m+ n+A)−
√

(m+ n+A)2 − 4mA
)
,

where A = (w − s)(λ− µ). Finally, the case λ < µ is treated similarly.

A4: Sampling from a conditional Gamma density

Our objective here is to sample efficiently from the Gamma density proportional to

f(x) = xm−1e−λx, where m,λ > 0, conditional on x > y, where y ≥ 0. Note that the
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Gamma distribution has mean m/λ and standard deviation
√
m/λ. We shall use the

notation Exp(λ) to denote an Exponential distribution with mean λ−1. We consider

various cases, as follows.

(i) m = 1. In this case we are simply sampling from the Exponential density e−λx,

conditional on x > y. But since this density is proportional to e−λ(x+y), it follows that

if Z is drawn from the Exp(λ), Z + y will be a sample from the required conditional

distribution.

(ii) m < 1. There are two methods, as follows. First, if y ≤ m/λ then it will be

reasonably efficient to simply sample repeatedly from Gam(λ,m) until a sample Z

satisfies Z > y. Second, if y > m/λ we use rejection sampling with an exponential

bounding density: specifically, if x > y, ym−1e−λx ≥ xm−1e−λx. Thus we simply

sample Z from Exp(λ), set X = Z+ y, and accept with probability (X/y)m−1. (Note

that the choice of m/λ as the boundary between the two sampling methods here is

essentially arbitrary; however, it is clear that as the boundary increases, so the first

method becomes increasingly inefficient).

(iii) m > 1. In this case f is unimodal on (0,∞). As in (ii) there are two methods. If

y < (
√
m+m−1)/λ, ie y is less than the mode of f plus one standard deviation, then

use simple rejection sampling as in case (ii). Otherwise, set µ = (λ
√
m)/(

√
m+m−1)

and note that (ym−1e−(λ−µ)y)e−µx ≥ xm−1e−λx. Then, sample Z from Exp(µ), set

X = Z + y, and accept with probability (X/y)m−1e−(λ−µ)(x−y).
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FIG 2.1. Influenza data: Reed-Frost model without protection: MCMC sample values

(1000 values, at sampling interval 10). The solid contour lines surround highest

posterior density credible intervals at 50, 90, 99 and 99.9 % levels. The dashed

contour lines indicate posterior pdf values of 10, 1 and 0.1 % of its maximum.
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FIG. 2.2. Influenza data: Reed-Frost models (a) without protection (same as in Figure

2.1). (b) with protection (again 1000 MCMC sample values, at sampling interval 10),

showing the wide range of credible values for the protection parameter v (roughly 0

to 0.7, with higher values of v corresponding to lower values of both qh and qc).
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FIG. 3.1. Measles data: latent and infective periods for two individuals. Here Y1 and

Y2 denote respectively the infectious periods of the primary and secondary infectives,

and X2 denotes the latent period of the secondary infective.
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FIG. 3.2. Measles data: scatter plots of 1,000 points drawn from the output of

the MC-w-M algorithms under model (a): fixed-length infectious period (left panels);

and model (b): gamma-distributed infectious period (right panels). The upper panels

show µL versus µI ; the lower panels show log(µI) versus log(β).
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