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ABSTRACT

This paper describes the use of linear deterministic models for examining the
spread of population processes, discussing their advantages and limitations.
Their main advantages are that their assumptions are relatively transparent
and that they are easy to analyse, yet they generally give the same velocity
as more complex linear stochastic and nonlinear deterministic models.

Their simplicity, especially if we use the elegant reproduction and dispersal
kernel formulation of Diekmann (1978) and van den Bosch et ol (1990), allows
us greater freedom to choose a biologically realistic model, and greatly facili-
tates examination of the dependence of conclusions on model components and
of how these are incorporated into the model and fitted from data. This is
illustrated by consideration of a range of examples, including both diffusion
and dispersal models and by discussion of their application to both epidemic
and population dynamic problems.

A general limitation on fitting models results from the poor accuracy of most
ecological data, especially on dispersal distances. Confirmation of a model is

thus rarely as convincing as those cases where we can clearly reject one (see
§4.1, §4.4).

We also need to be aware that linear models only provide an upper bound
for the velocity of more realistic nonlinear stochastic models, and are almost
wholly inadequate when it comes to modelling more complex aspects such as
the transition to endemicity and endemic patterns. These limitations, which
will be discussed in §§4.5-7, are, however, to a great extent shared by linear
stochastic and nonlinear deterministic models.



1 INTRODUCTION

1.1 Basic model components

Many potentially useful conclusions from models for spatial spread are sensitive to the
assumptions made in formulating and fitting them, and it is therefore essential that
they be formulated in a way that presents such assumptions clearly and encourages
their discussion by both theorists and applied workers. It is usually most helpful if
models are framed as far as possible in terms of basic ecological parameters that are
readily understood and (as far as possible) can be estimated from data.

In this subsection we introduce the main ecological components involved in the spatial
spread of epidemics and populations. In the next (§1.2) we shall illustrate their use in

a simple example, a spatial epidemic with recovery.

The basic reproductive ratio Ry is the mean number of contacts made by an infective
(or in the population context, the mean number of offspring). Ry plays a crucial part

in determining whether an epidemic outbreak can occur.

The time T of a typical infection relative to that of its ‘parent’ infective we call the
generation gap, and its relative location in space X the dispersal distance (strictly this
should be the dispersal vector). We call the distribution of T the reproduction kernel
B, and that of X the dispersal or contact distribution V.

Note that T is not the same as the lifetime T’, defined for an epidemic as the time
from infection of an individual to the end of that individual’s infectious period. In the
population context, T' is the age of the parent at the birth of a typical offspring, and
T' is the lifetime of an individual. While for any individual T is, of course, less than its
parent’s T”, the fact that individuals with large values of 7" tend to have more offspring
means that the average value of T is not necessarily less than that of 7'. Confusingly,
T and T' have exactly the same distribution in the case where contacts are made at a
constant rate (i.e. in a Poisson process) during an exponentially distributed infectious

period; this is one of a number of simple ‘paradoxes’ associated with the Poisson process.

We shall use K to denote the (maximum) population density, or carrying capacity; as-
sumptions as to how Ry depends on K will be of importance in applications (see §4.3).
Where an epidemic depletes the population significantly, or where we are interested in
a long time scale, the (re)growth rate of the population and its dependence on popu-
lation density will also be important. However, we shall not include this aspect in our

introductory example, which follows.



1.2 Example: a spatial epidemic with recovery

Suppose we have a population of density K (carrying capacity), divided into susceptibles
S(z,t) and infectives I(z,t); here = denotes space and ¢ time. Suppose that infectives
remain in that state for an infectious period distributed exponentially with mean 7, and
that during this period they make contacts at constant rate $; then, as explained in
§1.1, T is also exponentially distributed with mean 7, and Ry = fr.

We shall consider the case where the (vector) distance from an infective to one of its
contacts, X, is independent of the generation gap T, and assume that the individuals
contacted are chosen randomly, so that the probability that a contact is successful in
causing a new infection is equal to the proportion of susceptibles at the chosen site.
The dynamics of the process can thus be summed up by specifying the transition rates
for a recovery at z at time ¢ as I/7 [i.e. the probability of a recovery in time dt is
(I/7)dt], and the transition rate for an infection as (Ro/7)IS/K, where I(z,t) denotes
the convolution of I with V, = [ I(z —y,t)dV(y); I can be thought of as describing the

infectious pressure at = due to all current infectives.

This kind of infection rate term has traditionally been written as 8'IS, where §' =
Ro/K7. Although mathematically convenient, this has had the unfortunate conse-
quence that there has been a tendency to treat 3’ as though it were a constant for any
one disease, with the dubious implication that Ry < K (see Mollison 1984, 1985). This
kind of unthinking assumption is much easier to fall into when dealing with a compound
parameter such as 8’ [which has units of (population X time)~!], because neither math-
ematician nor ecologist can be expected to have any feel for what its value should be or

whether it should indeed be constant.

Eschewing 8’ then, we have for our model that I = K — S, so that the infection rate
is (Ro/7)I(1 — I/K). Where I is small, as for instance at the front of advance of the
epidemic, it is of interest to consider the linear approximation in which we ignore the
probability I/K that an attempted infection will fail. In the present instance this linear
stochastic model is simply a spatial birth-and-death process with birth rate (Ry/7)I(z, ?)
and death rate (1/7)I(z,t).

We can define deterministic versions of both linear and nonlinear models by writing

down differential equations using the form of the stochastic transition rates, that is,
I=(Ro/T)(1-I/K)—1/T

for the nonlinear model, and

I= (Ro/T)I = I/T
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for the linearisation. The relations between these four models will be discussed in the

next subsection.

1.3 The connections between deterministic and linear models

We can cross-classify models for spatial population dynamics as stochastic/deterministic
and linear/nonlinear. There are known and conjectured close connections between the
behaviour of three of these classes — the exception unfortunately being the most realistic

case, stochastic nonlinear models.

First, in the linear case there is a close connection between stochastic and deterministic
models, namely that the expected numbers of the former satisfy the latter. Thus the
expected numbers of the linear stochastic model of the last subsection, the spatial birth-

and-death process, satisfy the linear deterministic equation I = (Ro/7)I — I/r.

Note that the linear differential equation here depends only on the difference between
the rate terms. Thus the same deterministic linear model can correspond to a wide
variety of stochastic models, for instance including one which cannot die out and others
with arbitrarily small probability of survival. Possibly the simplest example of this is
the non-spatial birth process with rate 3, compared with the birth-and-death process
with rates 8+ u and u, p large.

The connection relative to mean numbers does not carry over in general to nonlinear
models. For instance, for the epidemic with recovery where the transition rates include
a second-order term II, the equation for expected numbers will differ from the ‘de-
terministic version’ by a term representing the difference between its mean E[/I] and
E[I|E[]], namely the covariance of I and I.

Further, quite different nonlinear models can have the same linearisation. For instance,
our epidemic with recovery has the same linearisation as the epidemic with removal with
removal rate I/7 and infection rate (Ro/7)IS/K. (These formulae are the same as for
the former model, though with different interpretation; removals now form a separate

class instead of being returned to the susceptible class, so we can no longer replace S

by K —1.)

Secondly, it is strongly conjectured that nonlinear differential equations for population
spread will always have the same velocity as their linear approximation. This Linear
Congjecture, developed from many instances over more than fifty years (see §3.1), is

stated explicitly by van den Bosch et al (1990) as likely to hold under two conditions:
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(i) The average rate of reproduction of an individual experiencing throughout its life
(infectious period) an environment ‘occupied’ by a certain (possibly varying) popula-
tion is always smaller than the rate of reproduction in a ‘virgin’ environment (i.e., in
particular, there are no Allee-like effects).

(ii) the influence of an individual on the environment very far from its (present) position
is negligible.

The second condition does not refer to long distance dispersals — we can allow arbitrary
dispersal distributions, though if these do not have exponentially bounded tails linear
and nonlinear velocities will both be infinite (Mollison 1972b) — but rather to nonlocal
nonlinearities such as in

n=Dn" +rEn

where the ‘environment’ E,= 1 — [, n(z,t)dz, ‘deteriorates everywhere’ as soon as the
total population nears 1, so that no wave can develop (Hans Metz, personal communi-

cation).

It is not surprising that the nonlinear model should be bounded by its linearisation, and
therefore have at most the same velocity, provided a condition such as (i) holds. The
converse is perhaps surprising, and depends crucially on the fact that the set of possible
velocities for linear models turns out to be of the form {c¢ > ¢z} and that for bounded
initial conditions the minimal velocity ¢z is what matters (see §2.1). Now the nonlinear
model may be expected to behave like the linear one at its front where numbers are
small, provided (ii) holds. Therefore its set of possible velocities must be a subset of
those of the linear model; but this implies that its velocity must be at least ¢g.

Combining the above known and conjectured relations, linear stochastic and nonlinear
deterministic models can be expected to have the same velocity as the simpler linear
deterministic case. It also turns out that for some of the most basic models there is a
much stronger direct connection: namely that the nonlinear differential equation gives
the distribution of the furthest forward individual in the linear stochastic process. Two
of these cases are given by McKean (1975) and Mollison & Daniels (1977). A third,
which generalises the second, is the linear example of §1.2, the dispersal birth-and-death
process. (McKean’s example can be similarly generalised to a diffusion birth-and-death

process. )

For the dispersal birth-and-death process we find (using the same, backwards, approach
as McKean and Mollison & Daniels) that, if S; denotes the position of the furthest
forward individual, then y(z,t) = Prob(S; > s) satisfies § = (Ro/7)§(1—y)—y/7, which
is the nonlinear differential equation of §1.2 with y = I/ K. Results on the convergence
of nonlinear waves for such equations (e.g., Bramson 1983) can then be interpreted

as showing how the front S; of the birth and death process has unrealistically small
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stochastic variability; this can also be understood as a consequence of the independence
of descendants of different individuals in the (exponentially growing) population of the

linear stochastic process.

There are no such close relations between the basic nonlinear stochastic epidemic and
the other three models, except that the linear stochastic model provides an upper bound
[in general presumably subject to a condition such as (i)]. There do exist general results
on the convergence of nonlinear stochastic processes to deterministic versions (see e.g.
Kurtz 1980), as some indicator of population size, here K, tends to infinity. However,
such results generally only hold over a fixed time interval, whereas velocities are defined
asymptotically over time; and we are often interested in relatively small values of K,
here interpreted as a measure of the number of others with whom an individual interacts.

Certainly, the conditions for finite velocity can be quite different (Mollison 1972b).

1.4 Advantages of linear models

We have seen that linear deterministic models for spatial spread have close connections
with both linear stochastic and nonlinear deterministic models. Thus, at least if the
Linear Conjecture holds, there is no advantage to using nonlinear deterministic or linear
stochastic models for the calculation of velocities. Indeed there is a strong reason
for preferring linear models, namely that the complexity of nonlinear models, and the
difficulties of analysing them, distract attention from discussion of the assumptions
that go into them, and the difficult and delicate matter of assessing what ecological

conclusions can safely be drawn from mathematical results (see Section 4).

The considerable effort that still goes into analysing nonlinear models, each time provid-
ing one more example supporting the Linear Conjecture, would be much more usefully

devoted to proving it rigorously or finding a counter-example.

A further advantage of linear models is that they can be described simply in terms of
their reproduction and dispersal kernel (essentially a combination of Ry and the joint
distribution of X and T'; the details will be presented in Section 2), in a way that reflects
their structure, in particular their basic ecological components, much more clearly than

a traditional differential or difference equation presentation.

Surprisingly complex sets of equations (for example, the rabies model of §3.2) can be
dealt with through a single kernel. The historic and continuing prevalence of diffusion
rather than dispersal models is largely due to the greater difficulties of analysing the
latter. The Linear Conjecture sets us free to study a reproduction and dispersal kernel

chosen on biological rather than mathematical grounds.
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1.5 Limitations of linear and deterministic models

As already noted in §1.3, quite distinct models may share the same linear approximation
and thus have the same velocity, though for nonlinear stochastic versions these will not

be equal.

For instance, consider Harris (1974)’s Contact Process, which is our epidemic with
recovery in the case where individuals live at integer sites, with recovery rate yp = 1/7 =
1 and infection rate A for each neighbour. This one-dimensional Contact Process can
survive if A > A, & 1.65 and then has velocity between A — A, and A — 1 (Liggett 1985).
However the corresponding epidemic with removal becomes extinct with probability
one, provided only that the removal rate p is nonzero (Kelly, in discussion of Mollison

1977; this result holds more generally, for any dispersal distribution of finite mean).

A second fault of linear models — though one which simplifies their analysis greatly
- is that for them dimensionality is trivial. Thus if we have a linear model in any
number of spatial dimensions, its projections into one dimension can be analysed as
one-dimensional processes. Through the Linear Conjecture, nonlinear deterministic
models to a large extent share this fault.

In contrast, the behaviour of nonlinear stochastic models can change radically with
dimension. For instance, in two dimensions the epidemic with removal can survive,
provided Ay > A, = 1.13 (Kuulasmaa 1982). [Note that we need to be careful when
extending the definition of Ry to stochastic nonlinear models. For consistency with
linear models, we should take Ry to be the mean number of contacts by an individual,
here equal to 4 (giving R, ~ 4.5), whereas the mean number of different individuals
contacted = 4A/(1 + A) (giving R, = 2.12, Mollison & Kuulasmaa 1985).] For the
Contact Process in two dimensions, A, = 0.41 (Brower et al 1978).

As an example of how velocities can change with dimension, the simple epidemic (i.e.
the epidemic with removal/recovery in the case where u = 0) with nearest-neighbour
dispersal distribution has velocity 0.5 in one dimension, ~ 0.84 in two (see §4.5, and

Figure 3), although its linearisation has velocity = 1.5 in both one and two dimensions

(Mollison 1986).

When using linear models for velocities, we need to appreciate that they give upper
bounds, the closeness of which is likely to depend on features such as the number with
whom an individual interacts and the shape of the dispersal distribution (see §4.5).
Thus a conclusion that a linear model gives a velocity too low to be consistent with
data is safe, whereas if it were too high, further consideration of the likely difference

from the nonlinear stochastic model would be required.
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Lastly, nonlinear models are clearly necessary when considering endemic equilibrium,
and the transition to it. However the evidence is that present deterministic nonlinear

models, at least in the spatial context, are inadequate for this (see §4.6).

We conclude that for problems of spatial epidemic and population spread there is good
reason to prefer linear deterministic to nonlinear deterministic (and linear stochastic)
models, because they are much simpler and more transparent, while differing little if
at all in their limitations. Because they are not exact, and in any case exact fitting
from data is usually far from possible, they are best used in an exploratory way, ideally

paralleled by simulations of nonlinear stochastic models.

2 CALCULATION OF VELOCITIES FOR LINEAR MODELS

In this section we shall look at two basic types of model, diffusion and dispersal. Dis-
persal models, in which the dispersal vector X and generation gap T are treated as
independent, are particularly suitable where individuals have a home base (e.g. a range
or territory). Where individuals are nomadic we may expect the magnitude of X to
be positively correlated with T'; diffusion models offer an example of this, though they
have less flexibility, in that for them the conditional distribution of X given T is fixed
as being Normal.

For each of these types of model we shall show how velocities can be calculated in the
linear case, and examine how they depend on basic components such as Ry, and the
distributions of X (the dispersal or contact distribution V) and T (the reproduction
kernel B).

There are two major advantages of the reproduction and dispersal kernel technique we
shall use (see §2.1). First, it allows a general relationship between X and T'. Secondly, it
can naturally be expressed in terms of the basic ecological components; in contrast, these
are often quite difficult to recognise in a traditional description such as a differential

equation (see, e.g., §3.2).

Because the effect of dimension for linear models is trivial (see §1.4), we shall restrict
this exposition to one dimension. For two dimensions, especially the case of asymmetric

dispersal distribution, see van den Bosch et al (1990).
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2.1 Introduction

The basic technique of looking for exponential travelling wave solutions of linear models
of the form A e~%(*=!) | goes back at least to Kolmogoroff et al (1937) and Fisher (1937)
for the diffusion case, Mollison (1972b) and Atkinson & Reuter (1975) for the dispersal
case. Both these cases are covered by a general framework in terms of a reproduction
and dispersal kernel, introduced by Diekmann (1978) and van den Bosch et al 1990).

The reproduction and dispersal (‘RE&D’) kernel B(z,t) specifies the distribution in space
and time (both measured relative to the parent) of the mean numbers of contacts of an
infective individual (or, in the population context, offspring of an individual). Provided
the total mean number Ry is finite, it is convenient to write (z,t) = Ryfo(z,t), where
Bo is a probability kernel describing the joint distribution of X and T'. For notational
simplicity we shall always write By as a probability density function, though the theory
applies equally to general probability kernels, for instance with either space or time

discrete rather than continuous.

We shall use B, with density b(¢) and mean 7, to denote the marginal distribution of T'
(the reproduction kernel); and V, with density v(z) and root mean square d, to denote
the marginal distribution of X (the dispersal or contact distribution; we shall often
concentrate on the symmetric case, when V has mean zero and standard deviation d).
We can generally regard d and 7 as scaling parameters, and it is thus often convenient

to express a velocity ¢ as (d/7)co.

For consistency with van den Bosch et al, and because it allows more felicitous phrasing
in a number of places, we shall mostly use the terminology of population growth rather
than of epidemics, speaking of parents and offspring rather than infectives and their
contacts. Nevertheless, these models in one respect fit the epidemic case more naturally:

the population interpretation is in terms of reproduction by single individuals.

Note that the R&D kernel only depends on mean numbers. Thus we have families
of distinct models sharing the same kernel, and therefore the same velocity, although
they may differ in important ways, for instance (see §1.3, §3.4) in their probability of
extinction. Also, in the epidemic context, note that movement of susceptibles does not

matter; the linear model implicitly assumes an inexhaustible supply.

These facts simplify analysis. For instance, a set of differential equations will often
have a range of consistent probabilistic interpretations; when we need to calculate the
corresponding kernel, we can choose whichever of these seems simplest (see example
of §3.2). (Exceptionally, §3.4 provides an example in the other direction, where by
changing the definition of what constitutes an individual we relate what is essentially

the same stochastic model to two different kernels.)
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However it is clearly a drawback from the modelling point of view that features that
presumably do matter in a full nonlinear stochastic model should have no effect. In-
tuitively, the explanation of the insensitivity to correlation between the sites of the
offspring of any one individual is that the advance of a linear process is governed by the
behaviour of the very large numbers in its exponentially growing population.

For a population with R&D kernel § it is immediate that the mean density of births a

satisfies the spatial renewal equation

a(z,t) = /000 /R a(z —y,t — u)B(y,u)dy du

(van den Bosch et al 1990). If we then look for an exponential travelling wave of velocity
¢ for the right hand edge of the population, we find that this is possible for any ¢ for
which there is a 8 > 0 such that L(c,0) = 1, where

L(c,0) = / / B(x,t)e’ =) dg dt.
0o "R
Note that L is the expectation of a product of random variables,
L(ca 0) = ROE[eGX e~ ]a
since 8 = Ry, where fy is the probability kernel describing the joint distribution of

X and T.

Thus for the dispersal model, where X and T are independent,
L(c,0) = RoMpg(—cl) My (9),

where My and Mp are the respective moment generating functions of the dispersal
distribution and the generation gap (e.g. My () = E[e!X)]).

The set of possible velocities turns out to be of the form {c¢ > ¢ }. Now for any such c,
the population will be bounded, for all time, by the wave solution Ae~%(*=<) provided
this bounds it at time zero. For realistic conditions in which the initial population is
only nonzero on some bounded set, we can always use the wave of minimal velocity, ¢g,

which is therefore an upper bound for the velocity of the process.

It has been proved that the asymptotic velocity actually is ¢g in a number of cases,
even when non-linearities are incorporated (see van den Bosch et al 1990, Section 4, for
references), confirming that this is the only velocity of practical importance. We shall
therefore henceforth refer to ¢ as the velocity of the linear model with R&D kernel 3.

Thinking of stochastic models, the velocities we are talking about here refer to the

expected numbers that satisfy our linear differential equation. For certain special cases
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in which the position of the furthest forward individual S; is given by a well-known
nonlinear differential equation (see §1.3), results on the latter confirm the importance

of cg: S; asymptotically travels at velocity cg with very little stochastic variability.

It is often convenient to characterise ¢g as the solution of L(c,0) = 1 together with

L'(c,0) = 0 (where the prime denotes differentiation with respect to ).

Note that cs can be negative, but only in the case of asymmetric dispersal kernel,
with E(X) < 0. The condition for ¢g < 0 is that L(0,6) < 1 for some § > 0. Now
L(0,0) = RyMy (9), which is > 1 for all # > 0 provided that (a) Ry > 1 (the condition
for the population to survive) and (b) E(X) = M;,(0) > 0.

The interpretation of L as the expectation of a product of random variables allows a

simple proof that positive association between X and T tends to decrease the velocity.

To be precise, if /X and e=°¢T

are negatively correlated, then

L(c,0) = RyE[e’® 7T | < E[e’* |E[e™*T | = Ry Mp(—c8) My (6).

Thus L is smaller than in the dispersal case where X and T' (and hence eX and e=<T )

are independent, and consequently the minimal velocity is lower.

This explains why diffusion models and Ball’s dynamic epidemic (see §3.4) have lower
velocities than the dispersal models with the same marginal distributions of X and T.
In both these cases the conditional distribution of X given T has increasing dispersion
in the sense that Mxr—, (0) is an increasing function of ¢ for all 8, from which it is easy
to show that e?X and e=%T are negatively correlated (for ¢ > 0).

2.2 Diffusion models

Suppose that individuals have reproduction kernel b(t) and throughout their reproduc-
tive life move in Brownian motion with diffusion coeflicient D, so that their position at
age t has Normal distribution N(0,2Dt), with probability density function ¢:(s) say.
Offspring start off at their parent’s site, subsequently moving similarly in Brownian

motion.

First note that the r.m.s. distance d of offspring from their parent is given by

&= [ (@Dow(t)dt = 2D
0
Now the R&D kernel f(z,t) = Ro¢:(z)b(t), so that
L(c,0) =R " b(t)e b= dzdt
(c,0) 0/0 /R (t)e~"¢ ¢;(z)e"* dz
— ~t(c9-D4?) b()dt
Rf e ®
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since [, ¢:(z)e’”dz is equal to the moment-generating function of N(0,2Dt),= e 0>

Comparing this expression for L(c,8) with the definition of a population’s intrinsic rate
of natural increase r (Keyfitz 1968, Roughgarden 1979),

/ ” Bt)e Tt dt =1,
0

where here 8(t) = Rob(t), we see that L(c,0) = 1 is equivalent to c§ — D§? = r. Our
second condition for ¢, L'(c,8) = 0, then gives (¢ — 2D8)L(c,9) = 0, that is, § = ¢/2D.
Hence ¢ = 2v/rD (van den Bosch et al 1990), and substituting D = d? /27 we find that
¢ = (d/7)co, where

co = V2rr.

Thus the velocity depends more directly on r7, which can be interpreted as the pop-

ulation increase per generation on a logarithmic scale, than on the ‘mean family size’

Ry.

For given r and 7, Ry is minimised when the reproduction kernel is Constant, that is,
when b(t) is the delta function at 7. In this case r7 = In(Rp), and the standardised
velocity ¢ is therefore v/ 21In(Rp).

At the other extreme, it is possible to make r, and thus the velocity, infinite by assigning
sufficient probability to reproduction at age zero. Just about the most extreme case of
practical interest (because of the large probability it attributes to small values of T')
is the Exponential distribution, which arises where individuals throughout their lives
reproduce at a constant rate and are also subject to a constant death rate. This case
has received perhaps excessive attention because of its mathematical simplicity: it arises

naturally in Markov process and differential equation models. In this case rr = Ry — 1,

and so co = V2(Ro — 1).

An intermediate case that is often considered is where individuals go through two expo-
nentially distributed stages: first a non-reproductive (‘latent’) stage of mean 7, then
a reproductive (‘infectious’) stage of mean 77 during which they reproduce at constant
rate. Perhaps counter-intuitively, this gives a reproduction kernel which is symmetric
with respect to 71, and 7;. Thus, for example, we get the same Exponential kernel as
in the previous case when individuals have an exponential latent period followed by an
instantaneous reproductive period producing a family of average size Ry. The explana-
tion lies in the Poisson paradox of §1.1, which tells us that in each case the generation
gap T has the same distribution as the lifetime 7"”; and the lifetime distributions for the
two cases are obviously equal, being the sum of independent Exponentials of means 7,

and 77; thus the reproduction kernel in either case is
b(t) = (e_t/” — et )/(T[ —7L).
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For the same reason the mean generation gap is in each case simply the sum of the two

parameters, 7 = 71 + 7.

For this two-stage model, let p = 71, /7, a = 1/p+ 1/(1 — p). Then we find in general
that

rr=(a/2)(V 1+ [4(Ro — 1)/a] — 1),

and hence that co(= \/27'1_'), takes its minimum value of 2v m when p =1/2, i.e.
when the two stages have the same distribution, and its maximum, v/2(Ro — 1) when
p = 0 or 1, that is in the cases in which one stage is instantaneous. The difference
between maximum and minimum is small except when Ry is very large, for instance it
reaches 2:1 only when Ry = 49, although the asymptotic behaviour varies (R(l,/ ? and
R(l,/ * respectively).

We may note further that for Ry close to 1, the velocity ~ v/ 2(Ro — 1) for any repro-
duction kernel B and that for values of Ry up to about 10, velocities vary by less than

2:1 for kernels ranging from Constant to Exponential.

We shall return to diffusion models in the examples of §3.2 (a two-stage model in which
individuals only diffuse during the second stage, so that the result ¢ = v/2r7 does not
hold) and §3.5 (an extension to two competing populations).

2.3 Dispersal models

We here consider the case in which the spatial location X of an individual relative to
its parent is independent of the parent’s age at its birth, 7. Then, as pointed out in
§2.1,

L(c,8) = RoMp(—ct) My (0)

where Mp and My denote the respective moment generating functions of the distribu-
tions of T' and X.

Note that, since Mp is a monotone increasing function and My is convex, there is a
partial ordering on velocities: if My < My (indicating that V' is more dispersed),
then ¢ < ¢ for the corresponding velocities. In particular, for symmetric V with fixed

standard deviation d, the minimum possible velocity is when V is concentrated on +d

(Mollison 1972b).

Note also that if V does not have exponentially bounded tails then My (8) = co (except
at § = 0), so that the velocity is infinite regardless of B. Therefore the most extreme
dispersal distribution we shall consider here is the Double Exponential, with density
v(z) = (1 /dﬂ)e"'ﬁ/ 4. (In contrast, at least a wide class of nonlinear stochastic

13



models in one dimension — those bounded by the simple epidemic — will have finite
velocity provided only that d is finite (Mollison 1972b, see §4.5).) Note that the Double
Exponential arises naturally as the marginal density when juveniles disperse through

diffusion for an Exponential period (van den Bosch et al 1990, Section 5).

We shall survey values of the velocity, and its dependence on Ry, for a range of distri-

butions of T' and X, starting in each case with the most concentrated distribution.

Suppose first that T is constant, = 7. If V is concentrated on +d, it is immediate that
the velocity cannot exceed d/7 (¢ = 1), no matter how large Ry is; and it is not difficult
to show that this bound is attained for Ry > 2. More generally if T is bounded below
by 7/ and X is bounded above by d’, the velocity will have a bound d'/7’ independent

of Ry.

Continuing with T constant, if X has a Normal distribution we have the unique case
where the dispersal and diffusion models coincide (note that for the diffusion model X
and T can only be independent if T is constant), so (from §2.2) ¢o = v/ 2In(Ry). For X
with Double Exponential distribution (see above), ¢ o In(Rp) for large Ro.

In contrast, if 7' has an Exponential distribution, ¢y is approximately proportional to
Ry. Here Mp(0) = (1—70)~1. Let V' denote the distribution V scaled to have standard
deviation = 1. Then ¢ = (d/7)co(V), where

RoMy:(0) —1
7 .

Co = MiNg>o

Then it is not difficult to show that ¢o is greater than a ‘diffusion approximation’ (N.B.
not diffusion model) value of RoV m for all V and Ry, and = ¢y Ry for large
Ry, where ¢y = minMy(0)/0. Values of ¢y range from a minimum = 1.51 when
V is concentrated on =+d, through /e =~ 1.65 for V Normal to = 1.85 for V Double
Exponential.

An example intermediate between T' constant and 7' Exponential arises where individ-
uals go through two exponentially distributed stages, with reproduction only in the
second of these. For instance, when V is Normal, this gives velocity approximately
proportional to v/Ry for large Ry.

The strongly increasing dependence of the velocity on R, as the generation gap’s distri-
bution B ranges from Constant through the two-stage case to Exponential is associated,
pace van den Bosch et al, not so much with increasing dispersion of B as with the pos-
sibility of very short generation gaps (i.e. very small values of T'). Thus the Constant
distribution has minimal value equal to its mean, in contrast to the Exponential distri-

bution which has its maximum density at 0. It is easily shown that, if the generation
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gap has a minimal value > 0, the asymptotic dependence of the velocity on Ry will be
as for the case of constant T'.

Van den Bosch et al give an expression for the velocity as an expansion in terms of the
bivariate cumulants «;; of the R&D kernel fy(z, ), arguing that, at least for Ry near 1,
the velocity will usually be close to that for the case where B is Constant and V' Normal
(the case where diffusion and dispersal models coincide), that is that ¢y =~ v/ 21n(Ry).

More exactly, their expansion approximation is
co = V' 2In(Ro)(1 + aln(Ro)),

where a = var(T) /72 — k21 /(d?*7) + (1/12) k40 /d“4 (note that k23 = 0 in the dispersal
case because X and T are then independent).

While it may be useful in many practical cases, the cumulant expansion does rather
obscure the crucial role in determining velocities played by the behaviour of B near 0,
and by the tail behaviour of V. An admittedly somewhat artificial example illustrating
the importance of the behaviour of B near 0 is the case where it actually has an atom
at 0, for instance, where B is concentrated on 0, with Prob{T = 0} = ¢ > 0, and on
7!,= 7/(1 — q). This distribution is well behaved in terms of moments, yet its velocity
becomes infinite when Ry reaches 1/q.

The dependence of the behaviour of the velocity on the tails of the dispersal distribution
is of more practical importance; this will be discussed further in §4.5. For well-behaved
kernels, meaning that the probabilities of short generation gaps and long dispersals are
both low, a very rough ‘rule of thumb’ which may nevertheless be sufficiently accurate
relative to the quality of data usually available is that co rises from zero at Ry = 1 to
co=1—-2at By =2, and ¢y =2 —4 at Ry = 10.
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3 EXAMPLES

This section demonstrates the use of the R&D kernel technique in providing a unified
treatment of a wide range of models, including the ‘dynamic epidemic’ (§3.4) and a
model for two competing populations (§3.5).

For the reasons presented in §1.4, in each case we concentrate on extracting the R&D

kernel, throwing away the nonlinear details.

The kernel technique yields clear and simple analyses which provide a good basis for
discussion of questions of applied importance, as with the contrasted rabies models of
§3.2 and §3.3. The significance of the differences between these two models will be
discussed later (§4.3).

3.1 Early diffusion models

The earliest calculations of velocity were those of Kolmogoroff, Petrovsky and Piscounoft
(1937) (‘KPP’) and Fisher (1937), who by slightly different routes both derived the
KPP/Fisher equation

y=Dy" +ry(l-y)
for the advance of an advantageous gene.

For the linearisation of this,

§=Dy" +ry,

the straightforward choice of kernel (others are possible) is B(s,t) = r¢,(s), where ¢;(s)
is the probability density function of the Normal distribution N(0,2D¢). From the
diffusion case theory of §2.2 we therefore have that the velocity ¢ = 2v/7D. (Note that
in this case we cannot express the velocity in terms of d, 7 or Ry because these are all
infinite.)

Fisher, in an attempt to resolve the ambiguity of velocity, considered a linear stochastic
model for which the distribution of the mean numbers at time ¢ can be found, and with
the same velocity, 2v/rD. This ‘confirmation’ in fact rests on two lucky coincidences —
or perhaps we should say the intuition of genius — for Fisher’s second model is actually
a dispersal model, with T' constant and V Normal. Firstly, this is the only dispersal
model with the same velocity as its diffusion equivalent (see §2.3); and secondly, even
then it can be considered to give the same velocity only if we match the models through
their values of r, as Fisher indeed did.
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Skellam (1951) later applied Fisher’s discrete-time model, for instance to the reinvasion
of northern Europe by oaks (see §4.4).

3.2 The rabies diffusion model of Murray et al

This model will be compared with that of van den Bosch et al (§3.3) in Section 4. It
seems worth giving the details for a number of reasons. It does not yield to the simple
result for diffusion models, co = v2r7 (§2.2), because of the authors’ assumption that
infected individuals do not move during their latent period. Nevertheless, it provides
a good illustration of the kernel technique, giving a simple expression for the epidemic
threshold, and a derivation of an equation for the linear velocity which is more straight-
forward than that of the authors. This allows us to plot the relation between the velocity
and the basic parameters Ry and p = 77/7, which greatly facilitates comparison with

the alternative model of §3.3, and discussion of the model in relation to data (§4.3).

The rabies model of Murray et al (1986) can be written as follows:

$ = (a—b)(1-N/K)S — BSI
L=BSI—¢'L—[b+ (a—b)N/K]L
I=0'L—o'I-[b+(a—bN/K|I+DI"

where S, L and I are the 'respective densities of susceptible, latent and infectious indi-
viduals, N = S+ L+ 1, and K as before is the carrying capacity, that is the population

density in the absence of the disease.

For the linearisation we take L, I small, S =~ K; then

L =pBKI-oL
I =p;oL —al+DI"

where 0 = 0’ + @, @ = @' +a, and p; = o' /o (= the probability that a latent individual
will reach the infected state).

A corresponding kernel can then be defined as follows. Individuals go through an
exponentially distributed latent period of mean 7, = 1/0, followed with probability
1 — p; by death, otherwise by an exponentially distributed infectious period of mean
71 = 1/, during which they infect at rate K and diffuse with coeflicient D. (Note
that this stochastic description is not unique, but it is easily checked that its expected

numbers satisfy the linearisation equations and that it therefore gives a correct kernel.)
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Hence Ro = BKp;7r (Ro > 1 then gives the threshold condition for the epidemic), and
the kernel is

t
BKp; [ oert) o2 ,(2)ds,
0

where ¢;(2) is the probability density function of N(0,2Dz). Multiplying by e~%(ct—2)

and integrating over first s (from —oo to co0) and then ¢ (from 0 to co), we obtain

o] t
L(c,0) = acRy / g (otbe)t / e(7=)7 eD¥z g, gt
0 0
1

= ack (0 + bc)(a + 0c — D6?)

-999

-99

Figure 1 : Murray et al’s rabies model. Standardised velocity ¢, as a function of the

basic reproductive ratio Rp for a range of values of p = 7;/7 [p ~ 0.15 for the data
quoted in Murray et al (1990)].
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Setting this equal to 1 gives a cubic for 0. If we let 7 = 71 + 71, d = V2D7, and
substitute
y=crd, k=cr/D, p=7/r, q=71[/T=1—Dp,
we obtain 5
y 1 s 1 1
— t (——= - 1)y* — —y+ — -1)=0.
okz + (2<1k2 W g’ * pq(R° )
This cubic has positive roots iff £ > ¢9, where ¢y, p and Ry are related by
2 1.5 _ 9,3 _
1+ 2(a® + 3b) 2a® — 9ab

Bo = 27b ’

where

a= 1 2¢2, b=2c}/pg (remember q =1 — p).
q

This explicit expression for Ry as a function of ¢p and p allows us to plot the standardised
velocity ¢o as a function of Ry for various fixed values of p (Figure 1). Note how the shape
changes as p varies. At p =1 we have the diffusion model of §2.2 with B Exponential,
for which co = V/2(Ro — 1). At p = 5/33 =~ 0.15, the data value used by Murray et dl,
¢o is close to half this value over the range of values plotted. The limit as p — 0 is a
dispersal model with V' Normal, again with B Exponential, so that the velocity grows
approximately linearly with Rj.

3.3 The rabies model of van den Bosch et al

Van den Bosch et al (1990) criticise some of the assumptions of Murray et al (1986),
suggesting that what is known about fox rabies (Andral et al 1982) supports a dispersal
model rather than a diffusion model and that the movements of rabid foxes do not differ
significantly from those of normal ones. To illustrate this they take a dispersal model
with a less variable reproduction kernel, based on estimates of Berger (1976), whose
standard deviation v is small compared with 7 (4.94 and 33.44 days respectively). They
take a Normal dispersal distribution, for which x49 = 0. Then the parameter « in their
expansion approximation for ¢y (see §2.3) is simply v?/72, = 0.02, sufficiently small to
neglect (except for very large Ry). They thus conclude that ¢, ~ v/21n(Rp).

While this has different behaviour from Murray et al’s ¢y, it is quite similar over the range
Ry = 1 to 10 (see Figure 2(a), page 27). The large differences in their conclusions, which
will be discussed in §4.3, are thus almost wholly due to the way they fit their models
to data for d (or D) and Ry, especially the dependence of the former on population
density.
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3.4 Ball’s dynamic epidemic model

Ball (1991) describes a dynamic epidemic model in which infective individuals migrate
between integer sites, able to infect only at their current site; and, among other results,
gives calculations for the velocity of the linear version of this model based on the kernel
technique. He conjectures on the basis of numerical calculations that the dynamic epi-
demic always has a lower velocity than what he calls the corresponding dispersal model,
namely the one with the same marginal distributions of X and T (this has a general ex-
planation; see last paragraph of §2.1). I show here that there is another dispersal model
whose kernel can be matched exactly to the dynamic epidemic; it therefore (inter alia)

has exactly the same velocity as the dynamic epidemic.

While it is pleasing thus to extend the dispersal case analysis to a wider class of models,
this also illustrates the caution with which linear models need to be treated, by providing
an example of two models with the same kernel but with different correlation structure

and probability of extinction.

The linearised version of Ball’s dynamic epidemic is a birth, death and migration process
with birth rate 3, death rate «, migration rate a and migration distribution U. It can
be viewed as a discrete-time version of the diffusion model of §2.2, the Brownian motion
being replaced by a continuous-time simple random walk with rate «, and migration
distribution U.

For quite general B and U, the R&D kernel is
B(z,t) = Rotp:(z)b(t)

where 1;(z) is the probability kernel for the simple random walk at time £, which has

at(My (6)~1)

moment-generating function e . In the basic Markovian case the reproduction

kernel B is Exponential with mean 1/4 [B has density b(t) = ve="*] and Ry = /7.

Continuing for general B and U, we have

L(c,0) = Ro / b(t)eHeA-a(Mu(0)-1) g
0

= ROMB(a(Mu(O) -— 1) - Ca)

Just as for the diffusion model in §2.2, we may compare the first expression for L here
with the definition of the intrinsic growth rate r. We obtain ¢ — a(My(8) — 1) = r,
whence the velocity is
a(My(@)—-1)+r

7 .

¢ = mingsg
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For the basic case where B is Exponential and U is the nearest-neighbour distribution,
giving equal probabilities 1 each to +1, we have r = 8 — v and My (0) = cosh(f), so

that
afcosh(f) — 1)+ B8 -«
0

€ = mingyo
as found by Ball (1991).

We now turn to an alternative way of looking at the dynamic epidemic, in which it has
the same kernel as a dispersal model. We need to restrict ourselves to the Markovian

case of age-independent rates o, f# and ~, but can allow a general migration distribution

U.

Then we observe that we can treat a migration from s to u as the combination of a
death at s plus birth of an offspring at u. This has the same kernel as if these deaths and
births were independent, that is those of the birth-and-death process with respective
rates f + a and v + a, and dispersal distribution V' = ¢A + pU, where A denotes the
distribution concentrated at 0 and p = a/(8 + a), ¢ = 1 — p. This is a dispersal model
whose reproduction kernel B’ is Exponential with mean 7/ = 1/(y+ ) and so is covered
by the theory of §2.3.

We thus obtain the alternative kernel

B(z,t) = By(q + pu(z))¥'(t)
for which
L(c,8) = Ro(q + pMy (0)) Mp: (—cb)
where Ry is the basic reproductive ratio for the Birth and Death process, = (8+a)/(y+

a). Hence the velocity is

Ry(q + pMy (0)) — 1
- .

¢ = —mingso
T

Substituting for Ry, ', p and ¢, we find that

B +aMy(0) — (v +a)
0 b

the same value as was found above using the original kernel.

€ = mingsg

Note that although they share a kernel, the Birth and Death process and the linear
dynamic epidemic have different probabilities of extinction, Ry ™ = [(y+a)/(B8+a)]~™
and Rg™ = (y/B)~"™ respectively, when 8 > + (both are certain to die out when
B <)

As already remarked, the dynamic epidemic can be viewed as a discrete-time version

of the diffusion model. Indeed, if we go through the usual limiting argument, taking
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smaller quicker steps — that is replacing o by 2D/§2, 8 by 08, and letting § — 0 — then
the kernel tends to that of the diffusion case. [In particular, note that aMy () — 62D,
so that the velocity tends to the diffusion model value of 2v/rD.]

3.5 Okubo et al’s two population model

Okubo et al (1989) introduce a two population diffusion model in the context of com-
petition between red and grey squirrels. They only consider parameter values for which
one population (grey) drives out the other. Indeed, when they come to their partic-
ular application (see §4.4), they argue from circumstantial data that the effect of the
red squirrels in impeding the advance of the greys is negligible, so they do not really

use their new model at all; their calculations are essentially for the single population
diffusion model of §2.2 (see §4.4).

We here show, for the linearisation of their two population model, how the velocity of
advance can be obtained by the kernel technique, and point out that for other parameter
values different behaviour may be expected. In particular, it is possible that each

population may advance into the other’s territory.

Okubo et al’s equations, for the one-dimensional case, can be rewritten as
G= DsG" + TgG'(l -~ G[/Kg — R/R'R)

and similarly for R, interchanging R and G. Here K¢ denotes the carrying capacity
for grey squirrels, and Kp the population level of red squirrels sufficient (if sustained)
to drive the greys to extinction. The linearisation when considering the advance of the
greys is given by G small, R ~ Kp:

G = DgG” + PG

where 7 denotes rg(1 — Kr/KRg), the intrinsic growth rate for a small population of
greys in a population of reds at carrying capacity. From the theory of §2.2 we know
that this equation has minimum velocity

C= 2\/f‘gDG [= (dg/Tc;)\/2’lﬁgTG IfDG = dé/27‘g]

Note that this can yield waves of negative velocity if yn = Kg/ Kgp is > 1. These,
however, would require arbitrarily large populations to their rear to be sustained and

are therefore presumably of no practical relevance.

Okubo et al, on the basis of circumstantial evidence for their case of interest, restrict

attention to the case where in equilibrium there are only grey squirrels, that is, when
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7R is < 1 and the similarly defined v is > 1. Then they make a generalisation of the
usual nonlinear conjecture, supported by analysis of one special case, that the greys will

advance at their linear velocity, driving the reds to extinction.

In general there are two other cases of interest. If v and 7 are both greater than 1,
then either population can (at least in the non-spatial version of the model) drive out a
small number of the other, so that if we start with spatially segregated populations we
would expect them to be stable against invasions by each other and therefore to remain

segregated.

On the other hand, if 75 and 4 are both less than 1, an equilibrium of coexistence is
possible, given by

G/Kg¢+ R/Kr =1=R/Kg +G/Kq.

This corresponds precisely to the case in which each in its linearisation has a positive
velocity, so we may conjecture that in this case spatially segregated populations are un-
stable and that (in the nonlinear deterministic model) each will advance at its linearised

velocity among the other, propagating the equilibrium of coexistence.

4 APPLICATIONS AND DISCUSSION

For a variety of linear spatial models, we have seen how the velocity depends on basic
components and the way these are incorporated into the model. We now turn to the

problems of choosing models, and of fitting them to data.

There are many examples in the literature of the fitting of models such as we have
surveyed here, especially the basic diffusion model of Kolmogoroff et al (1937) and
Fisher (1937), first applied by Skellam in 1951. Because of the imprecision of data,
especially on dispersal distances, it is often very easy to obtain a reasonable ‘fit’, but
equally difficult to come to firm conclusions as to the most appropriate model or to

make reliable predictions based on the fitted model.
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We shall deliberately restrict attention to thorough discussion of a small number of
examples. For a wider range, with applied aspects well discussed, see Hengeveld (1989);
and for further examples Elton (1958), Mollison (1986), van den Bosch et al (1988,
1991).

After considering the use of linear/deterministic models in a variety of applications
(§84.1-4), we shall discuss their limitations in relation to velocities (§4.5), and (more

severely) endemicity (§4.6).

4.1 Fitting and falsifying

Many authors have regarded the aim of modelling spatial spread as to obtain ‘good
agreement with data’. In the context of the linear and deterministic models we have
presented here, this essentially means that spread should be at a steady velocity, with
value as calculated from the preferred model. Unfortunately, uncertainty over parame-

ters, especially d and Ry, means that such agreement is often all too easy to obtain.

On the other hand, a wide range of linear models gives broadly similar velocities, rising
from 0 at Ry = 1 to a small multiple of d/7 at Ry = 10 (see §2.3), so that it is not at
all easy to discriminate between alternative models. Thus broad agreement of a model
with data does not provide a safe basis for extrapolation or prediction; cases where we

can actually reject our model may be much more informative.

As to parameter values, 7 may be known fairly accurately, but in many cases d (or its
diffusion coefficient equivalent, +/2D7) is known only to within a factor of 2. The basic
reproductive ratio is often even more difficult to estimate: indeed it is common to argue
that Ry > 1 from the fact that the population does spread. Thus it may be better to
view the model as allowing us to estimate d, and perhaps Ry, from data on velocities

rather than as allowing us to test the model.

Given such problems with data, it is not surprising if it is found to be difficult to
discriminate between quite different models (see §4.2), or quite different assumptions
about how (for instance) Ry and d vary with population density (see §4.3). Some of the
most useful analyses, therefore, are those where comparison with data leads us to reject
a model as false, because this will typically have interesting — and relatively clear-cut -

implications (see §4.4).
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4.2 Problems of fitting

Here we discuss the general problems of estimating the components of the R&D kernel,
namely the reproduction kernel B and dispersal distribution V, the relation between
them, and the basic reproductive ratio Ry. Examples of estimation of these components

from data will be given later.

The mean T of the reproduction kernel B is usually the easiest parameter to estimate,
with reasonably accurate data often available. The shape of B is more problematic;
however, from the analysis of Section 2 we know that the aspect that has the most
important effect on the velocity is whether it effectively has a minimum possible value,
when its behaviour will be similar to that of the Constant distribution (T = 7 with
probability 1), or whether values small compared with 7 have appreciable probability,

which will give a stronger dependence of the velocity on Rj.

Compared with 7, any spatial scale parameter such as, for symmetric V, the r.m.s.
dispersal distance d is much more difficult to estimate with any accuracy, as is the
diffusion constant D for diffusion models.

When using data on dispersal distances we need to be careful to distinguish between the
two-dimensional r.m.s. dispersal distance, d, say, and the one-dimensional marginal val-

ue d; for rotationally symmetric V, d; = dv/2, and the corresponding diffusion constant
D = d?/27 = d}[4rT.

For diffusion models, we have no choice as to the shape of the dispersal distribution
V, only the question as to whether this type of model is appropriate. While there
will certainly be circumstances in which a model with correlation between B and V is
appropriate, for instance where we have nomadic rather than home-based individuals,
and others where the difference between diffusion and dispersal models is negligible
(B near Constant, V near Normal), diffusion models quite often seem to be used as a
mathematically simpler substitute for a preferable dispersal model; a restriction which
the R&D kernel approach (together with the Linear Conjecture) suggests is unnecessary.
Certainly, estimates for the diffusion coefficient D are often obtained by considering the

r.m.s. dispersal distance in a corresponding dispersal model (e.g. Okubo et al 1989, see
below).

As to the shape of V for dispersal models, it is the probability of large values that matters
most. If the reproduction kernel B is near Constant, the shape of V is important if
Ry is large; if Ry is small we have the expansion approximation of van den Bosch et al
(§2.3), with first-order term giving ¢y ~ v/ 2In(Ro). At the other extreme, if B attaches
large probability to small values, the shape of V' matters much less, but ¢, then depends

much more strongly on Ry, approximately proportionally in the case of Exponential B.
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All this assumes that V' has exponentially bounded tails; if not, the velocities of the

linear models considered here are all infinite (see §4.5).

Lastly, it is seldom possible to estimate Ry at all accurately, still less the form of
its dependence on variables such as the carrying capacity K It is commonly (though
dubiously, see §2.1) assumed that Ry o K, and hence that Ry = K/K, where Kj is
the minimal density at which the disease can propagate. That such a threshold density
usually exists is supported by data, but it is not easy to estimate its value (for an

example see §4.3; for an elegant experimental estimation of a threshold density see van
den Bosch et al 1990a).

Nor is it easy to estimate the value of Ry at other densities. We could try to use
the formula Ry = K/K,, where K, is the equilibrium density of susceptibles, which
holds for homogeneously mixing models and for nonlinear deterministic spatial models
such as that of Murray et al (§3.2); but unfortunately it does not hold for nonlinear
stochastic spatial models (Mollison & Kuulasmaa 1985; note that the definition of R,
in this reference is slightly different from that used here (see §1.5)).

4.3 Comparison of fits

Here we use the two rabies models of Murray et al (1986) and van den Bosch et al (1990)
to illustrate the problems of fitting models from data, especially if we wish to use them
predictively.

Both papers use very similar values for the mean 7 of the generation gap T: Murray et
al 33 days, van den Bosch et al 33.44 days. As to its distribution, the main difference
is that Murray et al's combination of two exponentials allows small values of T, which

means that ¢y will grow faster with Ry (see Figure 2(a)).

For the r.m.s. dispersal distance d, van den Bosch et al take a one-dimensional value of
2.3 kilometres for the position of individual foxes, when living at a density of one fox
per square kilometre (Lambinet et al 1978); arguing that contacts arise between two
individuals with independent movements, this gives d = 2.3v/2 &~ 3.25, equivalent to
D = d*/27 =~ 58 km? /year.

Murray et al, via data on dispersal distances at various times (Andral et al 1982),
estimate D as being in the range 65 —320 km? /yr, with preferred value D = 200 (this is
for foxes at an unspecified density, though an average territorial size of 5 km? is quoted
in part of their argument). The equivalent r.m.s. dispersal distance, defined by d* = 2D7

as in §3.2, is then d = 6.01 km. (The actual r.m.s. dispersal distance, taking into account
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Figure 2 : Comparison of the fitting of the fox rabies models of (1) Murray et al (1986)
and (2) van den Bosch et al (1990).

(2) Plots of the standardised velocity ¢y against Ry ( 1’ shows an alternative standard-
isation, ¢ = (d/d')co, for Murray et al’s model (see text for definition of d')).

(b) Plots of velocity ¢ = (£)co (in km/year) against carrying capacity K foxes/km?).

that this model allows diffusion only during the infectious period, is d' = dv/ 77 /7 = 2.34
km.)

Thus far, there is fairly close agreement between the two models, as shown in the plots
of ¢ = (d/7)co against Ry in Figure 2(a). Major differences enter when we turn to

estimates of Ry, and to the dependence of Ry and d on the carrying capacity K.

Both papers make the dubious assumption that Ry = K/ Ky, and quote similar ranges of
estimates of Ky from the applied literature (Murray et al 0.2 — 1.0 or 1.2, van den Bosch
et al 0.25 — 1.0 foxes/km?); though the estimates they prefer, at least for illustration,
differ widely, 1.0 and 0.4 respectively.

However the most interesting difference is in their assumptions about the dependence
of d on K. Murray et al treat d as independent of K, but van den Bosch et al suggest
that because of the territorial behaviour of foxes d should be inversely proportional
to v/ K. This turns their already slower growth of ¢ with Rg into an actual velocity
¢, vV In(K/Ko)/K , which has a maximum (at Ry = K/K, = ), beyond which it is
a slowly decreasing function of K (see Figure 2(b)). They claim that this is in rough
agreement with observations (Bogel and Moegle 1980) which suggest that the velocity
is roughly independent of K once K is appreciably above threshold.

27



The argument that d should decrease as K increases is interesting and plausible. How-
ever van den Bosch et al do not seem to recognise that in the strong form they adopt,
where the number of individuals living within a given multiple of d is independent of
K (since d x 1/ VK ), it would be more consistent to take R, independent of K rather
than the traditional assumption they adhere to, that Ry o< K. (There are, though, a

variety of plausible models for fox behaviour that lead to intermediate dependence of

Ry on K.)

To take Ry independent of K would be to deny the existence of a threshold population
density. Probably it would be more realistic to have Ry increasing with K, but more
slowly than linearly (Mollison 1985); and d decreasing as K increases, but more slowly
than < 1/v/K. One might model the dispersal density as a mixture of local contacts,
affected by territorial scale and thus « 1/4/K, and of long distance contacts independent
of K; note that the long distance contacts would then be of relatively greater significance
at high densities. (Both papers assume well-behaved dispersal distributions, and thus

implicitly that long distance contacts are of small importance — but see §4.5.)

4.4 Examples of falsifying

Skellam (1951) considered the recolonisation of Britain by oak trees following the last
Ice Age, using Fisher (1937)’s models to argue that the observed velocity was too high
to be explained by local dispersal, i.e. simply by the seeds (acorns) falling and rolling
from their parent trees. Oaks only begin to produce acorns at a substantial age (7o ~ 50
years) and then produce very large numbers (Ry ~ 9,000, 000), so a dispersal model with
constant generation gap 7o should be reasonably accurate. Skellam, following Fisher,
assumed a Normal dispersal distribution, so that co = v/2In(R,) (see §3.1).

Because of the very large value of Ry, the shape of the dispersal distribution has an
appreciable effect on the velocity: varying V over the range from Constant to Exponen-
tial can change the velocity by a factor of ~ v/In(Rp) & 4 in either direction (Mollison
1977). However even this is not enough to alter Skellam’s conclusion, that the observed
velocity of about 0.3 km/year is far too high to be explained by local dispersal (assuming
Normal V, this would require d ~ 3 km).

A similar argument has been presented for the spread of Dutch elm disease within
Britain in the 1960s and 70s, inferring from observed velocities which are too high to
be explained by movement of the disease-carrying beetles from tree to tree that some

other mechanism, probably transport of infected timber, must be responsible.

Grey squirrels (not the red who are among the principal suspects in the oaks case)

provide our third example. As described in §3.5, Okubo et al (1989) set up a competition
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model for the advance of grey squirrels at the expense of red, but when it comes to
estimation treat the effect of the latter as negligible (yg = 0,= g = rg), so that we
are essentially back with the single population diffusion model of §2.2, with velocity

2\/ re :DG .

They first use data on individual squirrel movements to estimate the diffusion rate
D = Dg = 0.63 km?/year, but find that this gives too low a velocity by a factor of
more than 5 (1.4 as opposed to 7.7 km/year).

The clear inference, as for the oaks, is that the assumed local dispersal is insufficient to
explain the velocity of spread. We can go further and estimate what scale of dispersal
is required to fit the observed velocity. This is essentially what Okubo et al go on to do,
though it is unfortunately presented, with ‘good agreement with data’ being claimed

for their revised model when it has just been fitted from the same data !

Their revised model is based on dispersal of subpopulations between neighbouring woods
spaced dy apart. It seems a pity that this model is not formulated fully (the authors
describe it as ‘speculative and tentative’), because it is a nearest-neighbour square lattice
model and a fair amount is known about such processes (Mollison & Kuulasmaa 1985,
Cox & Durrett 1988). Okubo et al only use this dispersal model to estimate a value
for 7 (= 1.4 years), so that they can use a rescaled version of their original model with
revised diffusion constant D = d%/47. They find that a plausible r.m.s. inter-woodland
distance of d; = 10 km (D = 17.9 km?/year) will match the observed velocity of 7.7
km/year.

4.5 Velocities of nonlinear stochastic models

What the examples of the previous subsection have in common is that in each case
the observed velocity is much too high compared with the estimate assuming a local
dispersal mechanism. It is fortunate that examples where the observed velocity is too
low seem to be comparatively rare. Since the linear model velocities we are using are
only an upper bound for the velocity of a more accurate nonlinear stochastic model, the

inference would be less clear in such cases.

Because there is no known way of calculating the velocities of any but the simplest
nonlinear stochastic models, we cannot generalise authoritatively as to how much lower
they are than the velocities we have studied here for linear and deterministic models,
using the R&D technique. We summarise here what is known or conjectured, largely

on the basis of simulations.
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First, it has actually been proved for the basic case of the nearest-neighbour epidemic
with removal on a square lattice that it does have an asymptotic velocity, in a strong
law sense (Cox & Durrett 1988). Simulations of Mollison et al (1991) confirm that
the velocity, ¢} say, is significantly lower than the velocity ¢, for its linearisation, the
nearest-neighbour birth-and-death process (Figure 3).

Figure 3 : Velocities of nearest-neighbour processes on the square lattice.

In each case the velocity shown is ¢ = ¢/d, where c is the velocity of the process with
infection rate 1 and removal/recovery rate p,= 1/7. [We do not use the usual standard-
ised velocity, ¢g = ¢r/d = ¢ /p, because it is infinite in the basic Simple Epidemic and
Birth & Death Process cases (p = 0).]

Note that d = 1/4/2 for any 1-dimensional projection of the 2-dimensional nearest-
neighbour distribution.

1 Epidemic with removal (critical value is p, & 1/4.55 ~ 0.22, see §1.5).
2 Epidemic with recovery, i.e. Contact Process with A = 1/p. (Approximate, only the

end points are known with any precision; p, = 1/4). = 0.61.)

3 Birth and death process, the linearisation of (1) and (2): velocity in (a) 45° and
(b) axial directions.
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Other nonlinear stochastic epidemic models for which velocities have been found by
simulation (e.g. Mollison 1972b, Ball 1991) may be divided according to whether ¢ is
finite. When cp is finite, simulations show well-behaved advance, with ¢} getting closer
to ¢y as the number with whom an individual interacts increases. Typically, except
where that number is very small (as in the models of Figure 3), the ratio seems to
be closer than 1:2, a difference that is likely to be difficult to distinguish in practice,
because of the difficulty of estimating d (and Rp) reliably. For instance, Mollison (1987)
on the basis of nonlinear stochastic models suggests a velocity for fox rabies of the
order of 25-50 km/year, or rather higher allowing for long-distance dispersals; this is
in reasonable agreement with the estimates from both of the linear models discussed
above (see Figure 2(b)), and from data (Macdonald & Voigt 1985, Ball 1985b).

When V has exponentially unbounded tails ¢y is infinite, and it is possible, at least in
one dimension, for nonlinear stochastic models to have much more irregular patterns of

spread (Mollison 1972b) even when the velocity ¢ is finite.

The borderline case is intriguing, in that such data as exist on dispersal distances
suggest that a distribution with approximately exponential tails is not uncommon (see,
e.g., data for muskrats in van den Bosch et al 1990, for the collared dove in Hengeveld
1989, and for two plant diseases transmitted by airborne spores in van den Bosch et al

1988).

Windborne diseases in particular show irregular patterns of spread (e.g. foot-and-mouth
disease, Smith 1982), suggesting that their dispersal distributions are not exponentially
bounded. Although linear models cannot deal directly with such cases, it may be pos-
sible to approximate their behaviour using separate models for local and long-distance
spread (Zadoks 1989).

4.6 Endemicity and the atto-fox

We here explain briefly why nonlinear stochastic models are needed to model endemic

patterns and the transition to endemicity.

First, the threshold value of R, is generally greater than the linear/deterministic value
of 1 (Mollison & Kuulasmaa 1985).

As to mean densities of each type of individual in the endemic state, deterministic
models generally give the same values as for homogeneously mixing, non-spatial, models,
whereas simulations suggest that this is far from the case. For instance, Mollison &
Kuulasmaa cite an example where the proportion of susceptibles is 80% of the carrying

capacity when homogeneous mixing would have suggested 25%.
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The explanation is that stochastic equilibrium does not look at all like homogeneous
mixing, but rather has a random ‘patchy’ nature, with wandering foci of infection (for
simulations see Mollison & Kuulasmaa, for data analysis Sayers et al 1985). The os-
cillations predicted by many deterministic models are thus almost certainly spurious;

approximate periodicity shown by some data can be explained as a turnover period

(Mollison 1987).

A striking example showing the inability of nonlinear deterministic models to handle
the transition to endemicity is given by Murray et al (1986) in their prediction of how
fox rabies might invade a new country (Britain). They predict a roughly circular ex-
panding wave of advance, followed after a quiet phase of about 7 years by another wave

originating from the same starting point.

This is incredible on two counts. As regards the first advancing wave, the weight of
evidence from fox rabies in Europe suggests that after a short while it would manage
to ‘break back’ across the devastated territory immediately behind it and induce an
endemic equilibrium as described above. The deterministic model’s inability to describe

this is not surprising because it is an essentially stochastic phenomenon.

As to the second wave, close inspection shows that the explanation lies, not so much
in the determinism of the model, as in its modelling of the population as continuous
rather than discrete and its associated inability to let population variables reach the
value zero. Thus the density of infected at the place of origin of the epidemic never
becomes zero, it only declines to a minimum of around one atto-fox (107!® of a fox,
Hughes 1960) per square kilometre. The model then allows this atto-fox to start the

second wave as soon as the susceptible population has regrown sufficiently.

Similar problems arise in attempts to model control zones deterministically. Unless the
control zone is assumed totally impervious, atto-foxes will be found on the other side.
We need stochastic models (e.g. Ball 1985a), and we need to consider the tail of the
dispersal distribution (Mollison 1987).

Lastly, it is important to avoid simplistic assumptions about how parameters, particu-
larly Ry, will change as conditions vary (Mollison 1984, 1985). For instance, to follow
a simple model in assuming that Ry will change proportionately as the density of sus-
ceptibles changes, whether that change is natural or due to vaccination or to culling, is

to allow models to become a substitute for thought.
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5 CONCLUSIONS

In this paper I have tried to show how useful simple linear models can be for investigating
velocities of epidemic and population spread. The R&D kernel formulation due to
Diekmann (1978) and van den Bosch et al (1990) allows us to deal straightforwardly
with a quite general generation gap T and dispersal distance X (and any correlation

between them).

Their strong advantage over nonlinear deterministic models is that, while they generally
have the same velocity, they are far simpler, and their natural formulation in terms of
basic ecological components such as Ry, T' and X greatly facilitates discussion of the
crucial and difficult questions concerning how we relate models to necessarily imprecise
data.

In using linear models we need to be cautious in three respects: first as to the probabili-
ties attributed to small values of T' and large values of X, because these are particularly

influential in determining the velocity (see §2.2 and §2.3).

Secondly, we need to remain aware that they only give upper bounds for the velocity
of the more realistic nonlinear stochastic case, which is likely to be appreciably less at

least when the number with whom an individual interacts is small.

Thirdly, if the dispersal distribution does not have exponentially bounded tail the ve-
locity of the linear model will be infinite, though that of the nonlinear stochastic model
may still be finite, so we certainly need to consider the latter. In any of these cases,
computer simulations of the nonlinear stochastic model can be useful in exploring the

accuracy of the linear model.

Because of the limitations of linear models, and the imprecision of data, they are most
useful as an exploratory tool, clarifying — and possibly falsifying — hypotheses, rather

than fitting or extrapolating from data.

From the applied point of view, there is scope for much closer discussion of the right form
of R&D kernel for particular species or diseases; of how it may be expected to change
with circumstances, for instance as the carrying capacity changes; and of how it can
be estimated from or tested against data. Data on dispersal distributions, particularly

looking at the probability of long distance dispersal, would also be helpful.

On the theoretical side, there is the challenge of clearing up the exact conditions under
which the Linear Conjecture holds. It might also be possible to develop alternative
deterministic nonlinear population models that avoid some of the drawbacks of present

ones, for instance models in which densities can fall to zero in finite time.
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The ultimate goal remains a better understanding of nonlinear stochastic models. There
has been significant progress on this in recent years (see §4.5 and §4.6). The linear mod-
els reviewed here, together with computer simulations, can complement this progress,

revealing patterns to be explained and raising conjectures to prove or disprove.

I am grateful to Frank Ball and Hans Metz for their helpful comments on the draft of
this paper.
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