First order phase transitions - PhD students aren't always wrong

Marco Mueller (good guy), Wolfhard Janke (good guy),

Des Johnston (bad guy)

MACS Xmas. Dec 2016

Plan of talk

Phase transitions, first and second order

Phase transitions on a computer (lattice models)

A problem (with simulations of first order transitions)

A solution

First and Second Order Transitions

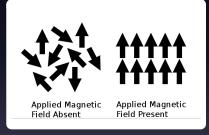
First-order phase transitions are those that involve a latent heat.

Second-order transitions are also called continuous phase transitions. They are characterized by a divergent susceptibility, an infinite correlation length, and a power-law decay of correlations near criticality.

Transitions - piccies

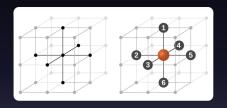
First order - melting

Second order - Curie



Transitions - on/in a computer

Spins interact with nearest neighbours



Low-T, like to align - ordered phase

High-T, disordered phase

Transitions - on/in a computer

Hamiltonian q-state Potts, $\sigma = 1 \dots q$

$$\mathcal{H}_{m{q}} = -\sum_{\langle ij
angle} \delta_{\sigma_i,\sigma_j}$$

Evaluate a partition function, $\beta = 1/k_bT$

$$Z(eta) = \sum_{\{\sigma\}} \exp(-eta \mathcal{H}_q)$$

Derivatives of free energy give observables (energy, magnetization..)

$$F(\beta) = \ln Z(\beta)$$

Measure 1001 Different Observables

Order parameter

$$M = (q \max\{n_i\} - N)/(q - 1)$$

Per-site quantities denoted by e = E/N and m = M/N

$$u(\beta) = \langle E \rangle / N,$$

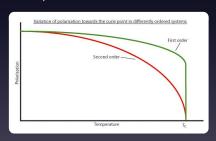
 $C(\beta) = \beta^2 N[\langle e^2 \rangle - \langle e \rangle^2].$

$$m(\beta) = \langle |m| \rangle,$$

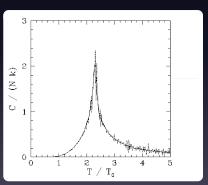
 $\chi(\beta) = \beta N[\langle m^2 \rangle - \langle |m| \rangle^2]$

First and Second Order Transitions - Piccies

First order - discontinuities in magnetization, energy (latent heat)



Second order - divergences in specific heat, susceptibility



Continuous Transitions - Critical exponents

(Continuous) Phase transitions characterized by critical exponents

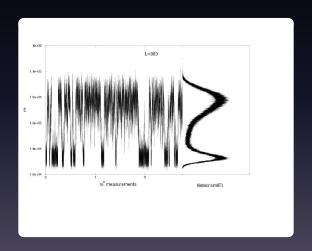
Define
$$t = |T - T_c|/T_c$$

Then in general, $\xi \sim t^{-\nu}$, $M \sim t^{\beta}$, $C \sim t^{-\alpha}$, $\chi \sim t^{-\gamma}$

Can be rephrased in terms of the linear size of a system L

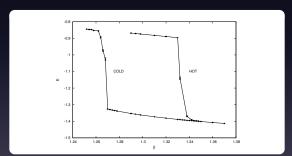
$$\xi \sim L$$
, $M \sim L^{-\beta/\nu}$, $C \sim L^{\alpha/\nu}$, $\chi \sim L^{\gamma/\nu}$

What does a first order system look like (at PT) I?



What does a first order system look like (at PT) II?

Hysteresis



1st Order FSS: Heuristic two-phase model

A fraction W_0 in q ordered phase(s), energy e_0

A fraction $W_{\rm d}=1-W_{\rm o}$ in disordered phase, energy $e_{\rm d}$

Ignore transits

1st Order FSS: Energy moments

Energy moments become

$$\langle e^n \rangle = W_{\rm o} e_{\rm o}^n + (1 - W_{\rm o}) e_{\rm d}^n$$

And the specific heat then reads:

$$C_V(\beta, L) = L^d \beta^2 \left(\left\langle e^2 \right\rangle - \left\langle e \right\rangle^2 \right) = L^d \beta^2 W_o (1 - W_o) \Delta e^2$$

Max of
$$C_V^{
m max} = {\it L}^{\it d} \, (eta^\infty \Delta e/2)^2$$
 at $W_{
m o} = W_{
m d} = 0.5$

Volume scaling

1st Order FSS: Specific Heat peak shift

Probability of being in any of the states

$$W_o \sim q \exp(-\beta L^d f_o), \ W_d \sim \exp(-\beta L^d f_d)$$

Take logs, expand around β^{∞}

$$\ln(W_o/W_d) = \ln q + \beta L^d (f_d - f_o)$$

=
$$\ln q + L^d \Delta e(\beta - \beta^{\infty})$$

Solve for specific heat peak $W_o = W_d$, $\ln(W_o/W_d) = 0$

$$\beta^{C_V^{\max}}(L) = \beta^{\infty} - \frac{\ln q}{\int d \wedge e} + \dots$$

1st Order FSS: summary

Peaks grow as L^d

Transition point estimates shift as $1/L^d$

Strong First Order Transition

Plaquette Ising model

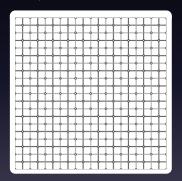
$$\mathcal{H} = -\sum_{\square} \sigma_i \sigma_j \sigma_k \sigma_l$$

Only inaccurate (yours truly...) determination of transition point

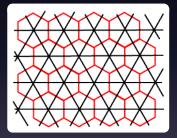
Same for dual model - only inaccurate (yours truly ...) determination of transition point

Duality - geometric

Square lattice - self dual



Triangle - hexagon dual



Duality - spin models

Spins on orginal lattice \leftrightarrow spins on dual lattice

High-T
$$\leftrightarrow$$
 Low-T $anheta=e^{-2eta^*}$

Ising, square lattice

$$Z(\beta) \simeq (1 + N \tanh(\beta)^4 + ...)$$

 $Z(\beta^*) \simeq (1 + N \exp(-2\beta^*)^4 + ...)$

Duality - plaquette spin model

Plaquette Ising model

$$\mathcal{H} = -\sum_{\square} \sigma_i \sigma_j \sigma_k \sigma_l$$

Dual to this

$$\mathcal{H}_{ extit{dual}} = -\sum_{\left\langle ij
ight
angle_{\mathbf{x}}} \sigma_{i} \sigma_{j} - \sum_{\left\langle ij
ight
angle_{\mathbf{x}}} au_{i} au_{j} - \sum_{\left\langle ij
ight
angle_{\mathbf{z}}} \sigma_{i} \sigma_{j} au_{i} au_{j} \,,$$

Exercise for a starting PhD student (Marco Mueller)

Simulate 3d plaquette model and dual

Do a better job than, ahem, before at determining transition point of both

Obtain consistent estimates of transition point

A Problem

Determine critical point(s) L = 8...27, periodic bc, $1/L^3$ fits

Original model:

$$\beta^{\infty} = 0.549994(30)$$

Dual model:

$$\beta_{dual}^{\infty} = 1.31029(19)$$

$$\beta^{\infty} = 0.55317(11)$$

Estimates are about 30 error bars apart

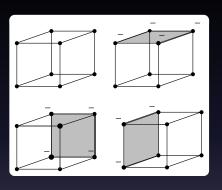
(Non) Solutions

Blame the student (yours truly....)

Blame the student (yours truly....)

Think - What is special about plaquette model?

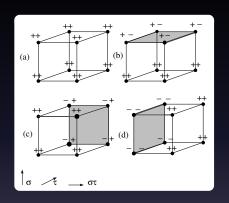
Groundstates: Plaquette



Degeneracy 23L

$$\mathcal{H} = -\sum_{\square} \sigma_i \sigma_j \sigma_k \sigma_l$$

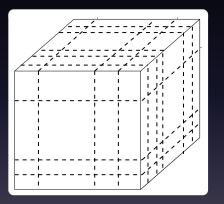
Groundstates: Dual



Degeneracy 23L

$$\mathcal{H}_{ extit{dual}} = -\sum_{\left\langle ij
ight
angle_{m{x}}} \sigma_i \sigma_j - \sum_{\left\langle ij
ight
angle_{m{y}}} au_i au_j - \sum_{\left\langle ij
ight
angle_{m{z}}} \sigma_i \sigma_j au_i au_j \,,$$

Typical Ground state



1st Order FSS with Exponential Degeneracy

Normally q is constant

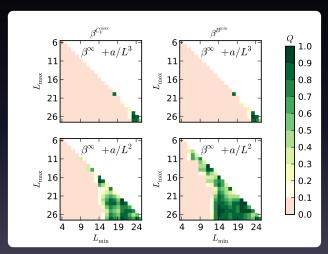
Suppose instead
$$q \propto e^{L}$$
 ($q = e^{(3 \ln 2)L}$)

$$\beta^{C_V^{\max}}(L) = \beta^{\infty} - \frac{\ln q}{\int d \Lambda e} + \dots$$

becomes

$$\beta^{C_V^{\max}}(L) = \beta^{\infty} - \frac{3 \ln 2}{L d - 1 \wedge e} + \dots$$

Quality of fits



Forcing a fit to $1/L^3$ gives much poorer quality

Conclusions

Standard 1st order FSS: $1/L^3$ corrections in 3D

Exponential degeneracy: $1/L^2$ corrections in 3D

PhD students are not always wrong

References

G.K. Savvidy and F.J. Wegner, Nucl. Phys. B **413**, 605 (1994).

M. Mueller, W. Janke and D. A. Johnston, Phys. Rev. Lett. **112** (2014) 200601.

M. Mueller, D. A. Johnston and W. Janke, Nucl. Phys. B **888** (2014) 214; Nucl. Phys. B **894** (2015) 1.

M. Mueller, D. A. Johnston and W. Janke, MPLB **29** (2015) 1550109; Physics Procedia **57**, 68 (2014)