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Plan of talk

Phase transitions (on a computer)
String Theory (on a computer)
3D Plaquette Ising (Gonihedric) Model - a cautionary tale

Gauging/Subsystem symmetry/Fractons
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Phase Transitions (on a computer)
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First and Second Order Transitions

First-order phase transitions are those that involve a latent
heat.

Second-order transitions are also called continuous phase
transitions. They are characterized by a divergent
susceptibility, an infinite correlation length, and a
power-law decay of correlations near criticality.

Johnston Fractons  4/53



Transitions - Examples

First order - melting Second order - Curie

SHN 1114

Applied Magnetic ~ Applied Magnetic
Field Absent Field Present
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Transitions - on/in a computer

Spins interact with nearest neighbours

Low-T, like to align - ordered phase

High-T, disordered phase
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Transitions - on a computer

Hamiltonian g-state Potts,c =1...qg
%q = = Z (50-“0]
(if)
Evaluate a partition function, 5 = 1/k, T

Z(B) =" exp(—pHq)
{o}

Derivatives of free energy give observables (energy,
magnetization..)

F(B) =InZ(p)
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Measure 1001 Different Observables

Order parameter
M = (qmax{n;} — N)/(q — 1)
Per-site quantities denoted by e = E/N and m = M/N

u(@) = (E)/N,
C(B) = PBEN[(e?) —(e)?].
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First and Second Order Transitions -
Characteristics

Second order - divergences in
First order - discontinuities in specific heat, susceptibility
magnetization, energy (latent
heat)
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Continuous Transitions - Critical
exponents

(Continuous) Phase transitions characterized by critical
exponents

Define t =|T — T¢|/T¢
Theningeneral, é ~t“, M~ t%, C~t y ~t7
Can be rephrased in terms of the linear size of a system L

E~LM~L BV, C~ Lo, x~ LY
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2nd Order Transitions - Continuum
Limits
At a second order transition, correlation length diverges,
lattice “washes out”

Define a continuum limit at this point

e.g. 2D Ising described by CFT at transition point (ditto 3, 4
state Potts)

Use a suitable discretized model with a continuous
transition to define the theory we are interested in by taking
such a continuum limit
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1st Order FSS: Heuristic two-phase
model

A fraction W, in g ordered phase(s), energy e,

A fraction Wy =1 — W, in disordered phase, energy &4

iy




1st Order FSS: Energy moments

Energy moments become
<en> = Woeg + (1 - Wo)eg

And the specific heat then reads:

Cv(B, L) = L9p2 (<e2> - <e>2) A AN

Max of C* = L9 (p>Ae/2)% at W, = Wy = 0.5

Volume scaling
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1st Order FSS: Specific Heat peak
shift

Probability of being in any of the states
Wo ~ g exp(—BL o), Wy ~ exp(—BL% fy)
Take logs, expand around 5>

In(Wo/Wg) = Ing+pBLY(fg—f)
= Ing+L%e(B - )

Solve for specific heat peak W, = Wy, In(W,/Wy) =0

Ing

Cmax _ OO_
/BV(L)_B LdAe+
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1st Order FSS: summary

Peaks grow as L9 (volume)
Transition point estimates shift as 1/L9 (1/volume)

Should be true for all first order PTs
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String Theory (on a computer)
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String worldsheets - Random
Surfaces

Particle action - proper length
S ~ Length ~ / ar
String action - proper area

SNAreaw/dA:/dadT\/g

Polyakov action

S~ / /et g g% 9aX,p X"
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String worldsheets - Random
Surfaces

Game is to calculate a partition function

Z= /DgDXexp(—SE)
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Triangulated Surfaces - String Theory
on a Computer

Discretize worldsheet with triangles - sum over metrics
become sum over triangulations

S~ Zx# — X"(j))?
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Typical Surfaces

Collapsed, branch-polymer like
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Modifying the Gaussian Action

Add extrinsic curvature term
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Smoothed Surfaces

Go hunting for continuum limit at a (continuous) transition
between phases

Bad news - doesn’t seem to work
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3D Plaquette Ising



The Gonihedric action

ZIX” DI85, 05 = [lm — |

Gonia: angle
Hedra: face

Go hunting for continuum limit at a (continuous) transition
between phases

Bad news - doesn’t seem to work
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Spins Cluster Boundaries as Surface
Models

Spin cluster boundaries «+» surfaces
Edge spins: U; = —1
Vertex spins: o;0; = —1

Johnston Fractons  25/53



Counting configurations with spins
(areas and intersections)




Ising/Surface correspondence

Allow energy from areas, edges and intersections (A.
Cappi, P Colangelo, G. Gonella and A. Maritan)

H = Z(ﬁAnA + Benc + Biny)

Ba=2J1 +8p, Bc=2J3—2d, Bi=—-4d—4Js

= J ZU,U] + o Z oioj + J3 Z 0ioj0K0]

[7.4,k,1]
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Gonihedric — Tune Out Area Term

One parameter family of “Gonihedric” Ising models
(Savvidy, Wegner)

HE = —2/@20/0’/ Z gjoj — 1 . Z 0j0j0KO]
(i.4)

[7:4,K, 1]

x = 0 pure plaquette

= = Z Oi0joKT|

[i7j7k7/]
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Plaquette Ising/Gonihedric model

Hamiltonian
H = —Zo;ajaka/
O

Spins at vertices of 3D cubic lattice

Strong first order phase transition (so no use for continuum
limits)
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Duality - geometric

Square lattice - self dual
Triangle - hexagon dual

a%a%a%2a %0
A‘ﬁn‘ﬂ“ﬂ.“ﬁ
NEDEDLN

Stastasiesies
A‘ﬂ.‘ﬂ.‘ﬂ“ﬂn
NI
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Duality - spin models

Spins on orginal lattice <> spins on dual lattice

High-T < Low-T
tanh 8 = e 2Paual

Ising, square lattice

Z(B)
Z(Bduar)

(14 N tanh(B)* +..))

2

2
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Duality - plaquette spin model

Plaquette Ising model

H = *ZO’,’U]'O';(O'/
O
Dual to this
Honas = =3 0= Y 7= Y vy
(i) x (i), (i)
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Exercise for a starting PhD student
(Marco Mueller)

Simulate 3d plaquette model and dual

Do a better job than, ahem, before at determining transition
point of both

Obtain consistent estimates of transition point
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A Problem

Determine critical point(s) L = 8. . .27, periodic bc, 1/L3
fits

Original model:

3% = 0.549994(30)

Dual model:
Baua = 1.31029(19)

Translate back with tanh 3 = e~2Aaa giving

B> = 0.55317(11)

Estimates are about 30 error bars apart
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(Non) Solutions

Blame the student (yours truly....)
Blame the student (yours truly....)

Think - What is special about plaquette model?
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Groundstates: Plaquette

Persists into low temperature phase: degeneracy 23-
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Groundstates: Dual

Dual degeneracy
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Typical Ground state - subsystem
symmetry

(subextensive) exponential degeneracy ~ 23L
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1st Order FSS with Exponential
Degeneracy

Normally g is constant

lf goxet (qg=eB"AL) asin Gonihedric model

max |n q
C _ Qoo
BV L) =F"~1apg T
becomes 312
Cmax oo n
/BV (L)*ﬁ _Ld_1Ae+
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Scaling L? not L®

9 14 19 24 4 9 14 19 24

Standard 1/L2 gives much poorer quality
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Gauging/Subsystem Symmetry/Fractons
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Gauging: From here to there:

Here - Quantum Transverse lsing:
H=-p Z e Z o)
Gauge the global Z, symmetry

_ ZZZ zZ_Z, _Z
H = —ﬁg of 7jj of hg of —dJp g 7','7'j7'k7'/z
d

B — 0, gauge invariance: oX [[;c, 7% =1
There - Toric Code:

= —h> A-h> B
v P
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Toric Code

H=-d) A - By
4 p
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Toric Code: Ground State

\§0>:1:[ 1 (1, +A)|0) ®...® |0)

Netimes



Toric Code: Excitations

Defects (i.e. quasiparticles) appear on the end of strings

Braiding excitations reveals anyonic behavior
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Toric Code: Anyons

e, m bosonic w.r.t. themselves
Take e for a walk around m, gives —1 phase — anyons

Other interesting properties, topological degeneracy of
ground state etc
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The X-cube Model

X Xy ,yz,Xz z
a=I1# 8"= =] 5

IEnit je+,i
H=—dpd Ap—dy ) BY ) B ~Jed BY
i i i
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Toric Code: Fractons

Magnetic excitations
Electric excitations

Pics c/o Vijay et.al.
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From here to there: Subsystem
Symmetry Gauging

Here - Quantum Transverse Plaquette Ising:
H= —BZUZ fokof — hZa,)-(
i
Gauge the Z, subsystem symmetry

H = —,BZTDO'IZ ofokof — hZJ,)-( +
i
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From here to there: Subsystem
Symmetry Gauging I

Equivalent of plaquette flux term in 2D is matchbox (not
cube)

- XY, YZXZ _ z
Gives B; = [ljey,iof flux terms
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From here to there: Subsystem
Symmetry Gauging

There (almost)
H = —ﬁZTéJ,Z /zafalz hZU,)-(

USSR S 5
i

8 — 0, gauge invariance: o [[; 7 =
There

H=-h) Ag—dyd BY—dpd B —dd B¥
i i i
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Gauging

Gauge global Z,, get Toric Code, anyons etc

Gauge subsystem symmetry, get fractons
(reduced mobility anyons)

Johnston Fractons  52/53



References

G.K. Savvidy and F.J. Wegner, Nucl. Phys. B 413, 605
(1994).

M. Mueller, W. Janke and D. A. Johnston,
Phys. Rev. Lett. 112 (2014) 200601.

S. Vijay, J. Haah and L. Fu, Phys. Rev. B94 (2016) 235157

R. M. Nandkishore and M. Hermele, Fractons
[arXiv:1803.11196]

Xie Chen, Han Ma, Michael Pretko, Kevin Slagle........

Johnston Fractons  53/53



