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We re-examine the work of Antoniadis et al. [1] on the apparent gauge-parameter dependence 
of the mass counterterm for a scalar field coupled to gravity and show that the same effect 
appears in a spontaneously broken abelian Higgs model. In both cases the Nielsen identities 
assure the gauge-parameter independence of the pole masses. 

In ref. [1] Antoniadis, Iliopoulos and Tomaras observed that 

O ~  on-mass-shell = 

0~ 0 (1.1) 

in a Yang-Mil ls /scalar  system without spontaneous symmetry breaking, where Z is 
the scalar self-energy and ~ is the gauge-parameter, whereas this was not true for a 
scalar minimally coupled to gravity. They suggested that this constituted an im- 
por tant  difference between the two examples, although gauge invariance and 
unitarity were still guaranteed in the gravitational case by virtue of an identity 
describing the scale variance of the generating functionals. We shall show in this 
paper  that (1.1) is the result of carrying out the calculation for the unbroken 
symmetry case, where the vacuum expectation value of the scalar field, (@), is zero. 
If we have (~,) :~ 0, eq. (1.1) is no longer true, but the appropriate Nielsen identity 
guarantees the gauge-parameter independence of the mass at the pole of the 
propagator.  The gravitational case is similar to the latter, because here we have the 
full gravitational field acquiring a "vacuum expectation value". We have 

~'L-~g.~ = rl~,~ + h~,~, (1.2) 
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where h ~" is the graviton field and ~ "  is the Minkowski metric, so 

(ffZ-g-g"') = rfl'" (1.3) 

but in this case the gauge symmetry is not broken. Amusingly, for the "symmetric" 
case in the gravitational theory 

(~L~-g . . )  = 0  (1.4) 

we find that (1.1) would still hold true. 
In sect. 2 of this paper we give a brief review of the Antoniadis et al. result at 

one-loop level and in sect. 3 we present a similar calculation for a spontaneously 
broken abelian (for simplicity) Higgs model, showing that (1.1) does not hold in this 
case. In sects. 4 and 5 we discuss these results in the light of the Nielsen identities 
for the theories. 

2. One-loop results of Antoniadis et al. 

We shall consider an abelian gauge theory for simplicity, non-abelian gauge 
theories merely introduce more indices and no further features. The lagrangian in 
ref. [1] was given by 

_ l i t ; '  /7'/~' , - . -  + 

1 ^ 2 A 2 z 2  1 . 2 ~ 2  1 2 -e~ij(0,e~,)dpjA" + ~¢ ~ ~ - i m  ,p - ~ G (  A) , (2.1) 

where elo = -%1 =1,  i, j = l , 2  and G(A) is the gauge-fixing function. A non- 
standard form was taken for the gauge-fixing 

E3+~ 2 
G(A) I~ 2 (OuA~), (2.2) 

which provided an infrared regulator via #2 (we solve this problem ourselves by 
adopting an R~ gauge in sect. 3). In the gauge of (2.2) the gauge-boson ~ropagator 
is given by 

1 (  k,k~ ) k ,k ,  ~4 
iDi, ,=-ff~ ~,,- k--- 5- +~ -~ ( k2-#2)2' (2.3) 

which allows one to calculate the gauge dependent part of Z, which we shall call Z~, 
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Fig. 1. One-loop self-energy graphs for the scalar field which contribute to .~ in the gauge used 
by Antoniadis et al. 

from the two diagrams of fig. 1 

2, _ f d4k ( 2 p - k ) ~ ( 2 p - k ) ~ k ~  k~ p:_m2- f d4k k2 
k4( k2 ~ 2 ?)-~--~ ~ 2 ] k4(k2 ~2)=0. (2.4) 

From (2.4) we can see that (1.1) holds. 
In the gravitational case the appropriate part of the lagrangian was given by 

~ =  ~2--~[_ 2 lm2q~2 ] 1 v 2 l ) ,  (2.5) 

where R is the gravitational curvature, ~ is the uncharged scalar field and 

n + / t  2 
G"-  I* ~ O.h ~ . (2.6) 

The gravitational equivalent of the diagrams in fig. 1 then gives us 

1 
~,~- -ldm21.t2 f d4kk2(k2_l~2) 2 --/=0. (2.7) 

The dependence on / t  2 cancels after doing the integration 

~ - - ~ m  2 , ( 2 . 8 )  

so this is not an artifact of the chosen gauge. In the next section we shall see how to 
reproduce this non-zero result for the gauge-dependent part of ~ in a spontaneously 
broken abelian Higgs model. 
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3. One-loop results for a spontaneously broken abelian Higgs model 

We shall now calculate Z for spontaneously broken abelian Higgs model in an R~ 
gauge [2, 3]. We choose to work in this gauge rather than (2.2) because we have 
already done the relevant calculations ourselves in this gauge in ref. [3]! We take the 
lagrangian to be 

~= ! F  F~ v --4*ltv~ + ½( Otz~)i)( OIl*i) 

X 1 
.q- ID,-/2dlb2 _ ~.l~) 4 -- ~ (  OizAl~ + e~eij(epj)eOi) 2 

+ o~c*  o ~ c  - e ~c*c%~,,( , / ,3 , / , j ,  (3.1) 

which differs from (2.1) in the sign of the mass term, the introduction of a quartic 
coupling and a different gauge choice. In this case the ghosts do not decouple and 
we have retained them (C* and C). The theory given by (3.1) is spontaneously 
broken with, at the classical level 

To calculate Z at the one-loop level we must consider the diagrams of figs. 2a and 
2b. To make our task more tractable, following ref. [2], we choose ?~ - O(e 4) and 

(t) O 
C2) 

Fig. 2a. One-loop self-energy graphs which do not contribute to OX/Op 2 in our expansion scheme. 
Diagram 2a.1 is of O(?~ 2) and the other two are p2 independent. 
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0 
Fig. 2b. One-loop self-energy graphs which do give a contribution to O•/ap 2. 

expand to the lowest order at which gauge dependence appears, which we know 
(with hindsight) to be O(e2M. As we are already working to one-loop order the 
argument of 2~ is the tree-level pole mass 

m2=3 ~ ) (3.3) 

so, expanding Z to order e2~k, we find 

m 2 a ~ 2 2 )  p2=0 Z(ml 2) =~(0)  + + . . - .  (3.4) 

In the calculation of the second term in (3.4) the graphs in fig. 2a do not contribute 
because of the reasons stated in the figure captions. If we calculate the remaining 
graphs of fig. 2b in an MS renormalization scheme, with M as the arbitrary 
renormalization mass, we find 

Op 20~ p2=0= e2~ [ 3 1 6 ~  "2 ~ - I  ~ ]  (2b.1) -z---z-.In ~ - , 

= (2b.2) 
Op z 16~r 2 ' 

a p~21 e2~ [2  e2~(ff) 2 3 ln~l (3.5) 
(2b.3) = 1--~-2 + In M-----q-- ~ _ ~  , 

p 2 = O  
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which sum to give 
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0 ~tota I e2~: [ e 2~(q~) 2 ] 

OP2 p~=0= 16~2 [ln ~ 1]. (3.6) 

To complete our calculation of (3.4) we note that 

0 2V(1) ~= (4') 
02~ = ml 2 + ~ ( 0 ) ,  

where V 0) is the one-loop effective potential. This gives us [2, 3] 

and for (3.4) 

N(0)=e2~X(~b)2[ 1 e 2 ~ ( ~ b ) 2 3 2 ~ r  2 ~ln M2 ~] 12~ ~ 2 g  ( ) 

~,(m21)-e2~(dP)2[ e 2 ~ ( e p ) 2 ~  In ~ 1 - ~  ~ ) ] xX ~b 2, 

(3.7) 

(3.8) 

(3.9) 

which is manifestly gauge-parameter dependent when (~) ~ 0 

O~,(m 2 ) e2~(q~)2 in e2~{q~)2 " 
0f 32qr 2 M 2 (3.10) 

We have thus reproduced the apparent gauge-parameter dependence of the scalar 
self-energy at the mass pole in the simplest of gauge-boson/scalar systems, the 
abelian Higgs model. In the next section we explain why we have written "apparent" 
gauge parameter dependence and why this is linked to {4) 4: 0. 

4. The Nielsen identities: generalities 

We shall follow closely the introductory discussion of ref. [2], which the reader is 
urged to consult. The Nielsen identities describe the gauge-parameter dependence of 
the generating functionals and objects derived from them, such as the effective 
potential V 

-- ~2V = F[  constant field, (4.1) 

where $2 is the spacetime volume and F is the 1PI generating functional, or the pole 
mass for the scalar field given by the zero of 

82F 
(4.2) 
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the inverse propagator. If we consider first the effective potential, we note that, 
being an off-shell object, it will depend on the gauge-parameter ~ (see, for example, 
the one-loop calculations in ref. [4]) as well as the semiclassical field which we will 
denote generically in this section by ~. The ground state will be given by the 
solution to 

O V _  
~-~(, ,~1 = 0 (4.3) 

and we will have spontaneous symmetry breaking if we can find a non-zero ~, say 
(if), such that (4.3) is satisfied. This solution will be gauge-invariant if 

V((qb) + 8 ( 0 ) ,  ~ + 8~) = V( (O)  , ~) = Vmi n (4.4) 

(remember that (~)  is calculated using a gauge-fixed lagrangian, so a change in 
~, 8~, will produce a corresponding change 8(¢)  = 8(q~)8~/8~). Rewriting (4.4) in 
differential terms we find 

Oq~ ~d~ + = 0 ,  (4.5) 

which can also be written as 

dV 
- -  = 0 ,  (4.6) 
d~ 

where d /d~  represents the total derivative with respect to ~, which takes account of 
both the explicit ~ dependence and the implicit dependence via (q~). 

We have an equation similar to (4.5) for the gauge-parameter independence of 
other quantities, such as the pole mass for the scalar 

a m  z dd._~ am 2 = 

0~ + 0~ <,> 0. (4.7) 

Nielsen showed that it was, indeed, possible to derive equations of the form (4.5) 
and (4.7) by making use of the BRS [5] invariances of the theory concerned, thus 
guaranteeing the gauge-parameter independence of physical quantities. We em- 
phasize that we do not find 

Ore2 (q') 
0~ = 0 (4.8) 

as the condition for this gauge-parameter independence but rather (4.7) which takes 
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account of the implicit dependence in (~a). Eq. (4.7) of course implies a similar 
condition for the gauge-parameter independence of the self-energy 

d Z ( m  2) 

d~ 
- -  = 0 ,  (4 .9 )  

where the total derivative is again used. For the symmetric theory with (q~) = 0 eq. 
(4.8) will, however, be true which explains the observation that Z~ = 0 to one-loop 
order in an unbroken abelian Higgs model and assures us that it will remain true to 
all orders. 

5. The  N i e l s e n  identities:  particulars 

We shall derive the Nielsen identity for the inverse scalar propagator (4.2) in this 
section for both the gauge-boson/Higgs model and the gravity/scalar model, 
following the methods of refs. [3] and [6]. To facilitate our derivation of the identity 
we write the gauge-fixing for (3.1) in auxiliary field form 

½tiB 2 + B( O uA j' + e~eij( ~j)q~i ) (5.1) 

and introduce an additional BRS transformation on the gauge-fixing parameter 

~ = e x (5.2)  

where e is the global, anticommuting BRS parameter and X is also a global, 
anticommuting object. We must introduce compensating terms into the lagrangian 

"~x = ½X c * B  + exC*~eiJ( fPj)gPi (5.3) 

to maintain its BRS invariance. Carrying out a BRS transformation on the aug- 
mented generating functional Z, 

Z = f[DO]exp ~ ,5fl+.~Px+J~At~W~*C+C*rl+JBBWJidp i 

+0;aT (5.4) 

where we have introduced sources to couple to the BRS variations of ~i and A., 
and Legendre-transforming gives an equation of the following form for F 

fll ar ar ar ar _ a t  OF 
+ x - g {  = o. (5.5) 
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we (5.5) with to x, 

ar -I i ax x-0 

= r - $( apA’- etEij(+,,)Oi) 5 1 
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(5-e) 

where P denotes an operator insertion, we find 

0. (5.7) 

If we take the 1 direction in Higgs space as the physical scalar differentiating (5.7) 
twice with respect to +i gives the Nielsen identity for the inverse propagator (4.2) 

s3r w(p) + 2 s’_r s*r(p) + B ST(p) s3r w(p) -- 
sPs*& spp S*+, SK, &I sc* s*& + G SK, 

(5.8) 

where we have been careless with the spacetime arguments for brevity. The first 
term vanishes because Sr(P)/Sp, is given by a sum of vacuum diagrams and, with 
only scalar legs on shell, there is no way for a vacuum diagram to carry just one 
index. The second term will vanish at the pole (if we were careful with spacetime 
arguments we would have to disentangle a convolution to demonstrate this), the 
third will vanish because B = 0. We thus have at the pole (or, equivalently, zero of 
the inverse propagator) 

i 

a -- 
8.6 / 

w(p) 6 s*r 
SK,G s*& i 

-=o, 
1 

which implies 

(5.9) 

(5.10) 

where m2 is the pole mass. This is of precisely the form (4.7) (not (4.8)) which we 
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lowed was necessary for gauge-parameter independence. At the one-loop level 
;3] 

f S F ( P )  e2~(O), e2~(O) 2 
- - - i n  ~ (5.11) 

J ~ 32~r 2 

if we had (0 )  = 0 we would find 

Om 2 
O----~- = 0  (4.8) 

; did Antoniadis et al. in their gauge. For the gravitational theory we consider 

go= _ m 2 

i~ 2 ( :  
, ~, c2a,I¢C, g(R+A)+5~B.Bdl +B.G"+ 

+ ~ / - ~  ( ½(17~dp )( Vvdp ) gtaV -- ½m2d?2 ) , (5.12) 

here A is the cosmological constant, C *~ the antighost, C ~ the ghost, B~, the 
~xiliary gauge-fixing field, M the Fadeev-Popov determinant, and V~ the gravita- 
9nal covariant derivative. The G ~ is again given by (2.6) 

F] q-/~ 2 

G ~ = i,-----5--- Ooh~'° (2.6) 

I going through the same procedure that led to (5.10) we find, again on-scalar 
ass-shell 

- ~ - f  ~-A g~, f ~o---7 ~--~ m=°' (5.13) 

here K couples to the BRS variation of 0 

ago = -eC'~ O,,O (5.14) 

Ld &, couples to the BRS variation of h, ,  

~h." = ~[ O.C" + O ' C . -  n.'(  OoC") 

- O . (  C"h ~ )  + h'~ O,~C. + h". O,,C"]. (5.15) 

ow (,/,) = 0, so the second term in (5.13) will vanish but the last term need not 
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= 

6p~. 

which we could not have if (~L-g-g~)  = O, so 

-0--~+ "t'r/~v m 2 = O. 

This means, 
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(5.16) 

(5.17) 

following the discussion of sect. 4, that under the transformation 

(h = o (5.18) 

so we must reinterpret (5.17) as implying a rescaling of ~/"~ 

n ~" ---, (1 + r3~)n "~. (5.19) 

This, in turn, could be interpreted as a global scale transformation 

x"--* (1 + 'r~)X/2x tz. (5.20) 

The action, apart from the gauge fixing, is invariant under (5.20) if we assign the 
following transformation properties to the fields 

3'ht'~= - ( n -  2)rl~'~- [ n -  2 + x~' O,]h ~'~, 

3 ' r =  - - [ d F +  x~'O~,]r, (5.21) 

where F represents all the other fields apart from h and d c = d c. = d ,  = O, d B = 1. 
We find the following equation for the variation of F under (5.20) [1] 

2(n+ 2)'~-~ = f ~[n-2+x~'O~,]h ~̀~ 

x (5.22) 

~ 2 ~  g,V) =n ,~ ,  (1.3) 

which means that 

--* ~ + 3~ we preserve gauge-parameter independence with a compensating trans- 
formation (h ~ ) ~ (h ~v) + ~'71~3~. However, we have defined 
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When differentiated twice with respect to ~ and Fourier-transformed this gives 

03 82F p2=m2 83F 0 82I" p2 
2(n + 2 ) f - ~  ~ -  = ( n  -- 2) 8~--ff~-2~ p~,~pt~ ~ ~ =m 2'  (5.23) 

which gives a relation between functions of the same order when calculated in a 
loop expansion. It is thus an alternative expression of the result of (5.17), which, 
because the expansion of r starts at one-loop order, mixes orders in the loop 
expansion. Both (5.17) and (5.23) state that the apparent gauge parameter depen- 
dence of the mass pole is balanced out by a global scale transformation which is 
analogous to the gauge parameter dependence in the abelian Higgs model being 
balanced by a change in (q~). 
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