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Preface

“Information is physical” (Rolf Landauer)

Quantum computing is the study of information processing which may be realised by physical systems obeying

the laws of quantum mechanics. The purpose of this text is to introduce the subject without assuming any

previous knowledge of quantum mechanics. The most important mathematical prerequisite is linear algebra,

including inner product spaces and the notion of the adjoint of a linear map. The text begins with a review

of the most important tools from linear algebra and then introduces the basic notions and postulates of

quantum mechanics. Our treatment differs from that of standard textbooks in that we consider systems

with a finite-dimensional space of states. This simplifies the mathematics and allows us to exhibit the

algebraic structure of quantum mechanics in more generality than is customary in introductory treatments.

In particular, we introduce advanced concepts like the notion of the density matrix, the description of multi-

particle states via tensor products and entanglement right from the beginning. In the final third of this text

we then introduce basic concepts of quantum information theory and quantum computing. We study some

simple quantum algorithms and look at the basics of quantum cryptography.

The subject of quantum computing is relatively young and is receiving a lot of attention (and funding)

worldwide. Some algorithms for quantum computers have been found which solve important problems faster

than any classical algorithm. The best known example is Shor’s algorithm for factoring large numbers,

which factors a large number in polynomial time. This means that, to factor a number N , the number of

steps required for factoring it into prime factors is a polynomial in logN . For the best classical factoring

algorithm, the number of steps grows (sub-)exponentially.

At the same time, building a functional and practically useful quantum computer remains a formidable

challenge. Existing quantum computers only have very small numbers of qubits (the analogue of bits in a

classical computer). In 2001, IBM illustrated Shor’s algorithm on quantum computer with 7 qubits - and

factored 15 into 5× 3!

While the ultimate fate of quantum computing as a scientific discipline remains uncertain, there is no

doubt that quantum mechanics is an important element in the toolkit of physicists, mathematicians and, to

a lesser extent, computer scientists. In this text we will approach quantum mechanics from an angle which

offers a quick route to central issues for the newcomer and new insights for the experienced practitioner.
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Introduction

1.1 Quantum mechanics (partly excerpted from Wikipedia)

Quantum mechanics is the framework in which most fundamental physical theories are formulated. There

exist quantum versions of most classical theories, including mechanics and electromagnetism (but not general

relativity), which provide accurate descriptions for many previously unexplained phenomena such as black

body radiation and stable electron orbits. The effects of quantum mechanics are typically not observable on

macroscopic scales, but become evident at the atomic and subatomic level. The term quantum (Latin, ”how

much”) refers to the discrete units that the theory assigns to certain physical quantities, such as the energy

of an atom at rest.

Quantum mechanics has had enormous success in explaining many of the features of our world. The

individual behaviour of the microscopic particles that make up all forms of matter, such as electrons, protons

or neutrons, can often only be satisfactorily described using quantum mechanics. The application of quantum

mechanics to chemistry - known as quantum chemistry - can provide quantitative insight into chemical

bonding processes by explicitly showing which molecules are energetically favourable to which others, and

by approximately how much. Most of the calculations performed in computational chemistry rely on quantum

mechanics.

Much of modern technology operates at a scale where quantum effects are significant. Examples include the

laser, the transistor, the electron microscope, and magnetic resonance imaging. The study of semiconductors

led to the invention of the diode and the transistor, which are indispensable for modern electronics.

In the formalism of quantum mechanics, the state of a system at a given time is described by an element

of a complex vector space. This abstract mathematical object allows for the calculation of probabilities

of outcomes of concrete experiments. For example, it allows one to compute the probability of finding an

electron in a particular region around the nucleus at a particular time. Contrary to classical mechanics,

one can never make simultaneous predictions of conjugate quantities, such as position and momentum, with

arbitrary accuracy. Heisenberg’s uncertainty principle quantifies the inability to precisely specify conjugate

quantities.

Quantum mechanics remains the subject of intense research, both concerning applications and the founda-

tions of the subject. One important challenge is to find robust methods for directly manipulating quantum

states. Efforts are being made to develop quantum cryptography, which will allow guaranteed secure trans-

mission of information. A long-term goal is the development of quantum computers, which are expected to

perform certain computational tasks exponentially faster than classical computers. Another active research

topic is quantum teleportation, which deals with techniques to transmit quantum states over arbitrary dis-

tances.

1.2 A brief history of quantum mechanics

The foundations of quantum mechanics were established during the first half of the 20th century by Max

Planck (1858-1947), Albert Einstein (1879-1955), Niels Bohr 1885-1962), Werner Heisenberg (1901-1976),

Erwin Schrödinger (1887-1961), Max Born (1882-1970), John von Neumann (1903-1957), Paul Dirac (1902-

1984), Wolfgang Pauli (1900-1958) and others.

In 1900, Max Planck introduced the idea that energy is quantised, in order to derive a formula for

2



1.3 Quantum computing 3

the observed frequency dependence of the energy emitted by a black body. In 1905, Einstein explained the

photoelectric effect by postulating that light energy comes in quanta called photons. In 1913, Bohr explained

the spectral lines of the hydrogen atom, again by using quantisation. In 1924, Louis de Broglie put forward

his theory of matter waves.

These theories, though successful, were strictly phenomenological: there was no rigorous justification for

quantisation. They are collectively known as the old quantum theory.

Modern quantum mechanics was born in 1925, when Heisenberg developed matrix mechanics and Schrödinger

invented wave mechanics and the Schrödinger equation. Schrödinger subsequently showed that the two ap-

proaches were equivalent.

Heisenberg formulated his uncertainty principle in 1927, and the Copenhagen interpretation took shape at

about the same time. Starting around 1927, Paul Dirac unified quantum mechanics with special relativity.

He also pioneered the use of operator theory, including the influential bra-ket notation, as described in his

famous 1930 textbook. During the same period, John von Neumann formulated the rigorous mathematical

basis for quantum mechanics as the theory of linear operators on Hilbert spaces, as described in his likewise

famous 1932 textbook. These, like many other works from the founding period, still stand and remain widely

used.

1.3 Quantum computing

A quantum computer is any device for computation that makes direct use of distinctively quantum mechanical

phenomena, such as superposition and entanglement, to perform operations on data. In a classical (or

conventional) computer, the amount of data is measured by bits; in a quantum computer, it is measured by

qubits. The basic principle of quantum computation is that the quantum properties of particles can be used

to represent and structure data, and that devised quantum mechanisms can be used to perform operations

with these data.

Experiments have already been carried out in which quantum computational operations were executed on

a very small number of qubits. Research in both theoretical and practical areas continues at a frantic pace.

Many national government and military funding agencies support quantum computing research, to develop

quantum computers for both civilian and national security purposes, such as cryptanalysis.

It is widely believed that if large-scale quantum computers can be built, they will be able to solve certain

problems faster than any classical computer. Quantum computers are different from classical computers

based on transistors, even though these may ultimately use some kind of quantum mechanical effect. Some

computing architectures such as optical computers may use classical superposition of electromagnetic waves,

but without some specifically quantum mechanical resource such as entanglement, they do not share the

potential for computational speed-up of quantum computers.
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Linear Algebra

Most of quantum mechanics is linear - the only exception being the measurement process. Linear algebra

therefore provides a natural language for formulating quantum mechanics. In this chapter we review key

concepts and results in linear algebra, focusing on the main ideas and examples. Please refer to any standard

book or on-line material on linear algebra for further details and formal definitions.

2.1 Vector spaces

2.1.1 Basic concepts and notation

A vector space is a set whose elements one can add together and multiply by a number, often called a scalar,

and which contains a special element 0, the zero vector. The scalar will generally be a complex number in

this text. Vector spaces with complex numbers as scalars are called complex vector spaces. In quantum

mechanics, the vectorial nature of a quantity v is usually expressed by enclosing it between a vertical line and

a right bracket |v〉. We will adopt this convention here, which goes back to Paul Dirac, who also introduced

the name “ket” for a vector. As we shall see later, this name is motivated by thinking of a vector as “half a

brac-ket”.

Example 2.1 The set C2 of column vectors made up of two complex numbers is a complex vector space.

Find the vector obtained by adding the vectors

|v1〉 =

(
i

−4

)
, |v2〉 =

(
6− i
5 + i

)
,

and multiplying the result by the scalar α = 3ei
π
2 .

Since 3ei
π
2 = 3i we have

α(|v1〉+ |v2〉) = 3i

(
6

1 + i

)
=

(
18i

−3 + 3i

)
.

�
Recall that a vector |v〉 is called a linear combination of vectors |v1〉 and |v2〉 if it can be written

|v〉 = α1|v1〉+ α2|v2〉

for two complex numbers α1 and α2. The span of a subset S = {|v1〉, . . . , |vn〉} is the set of all linear combi-

nations of the vectors |v1〉, . . . , |vn〉 and denoted [|v1〉, . . . , |vn〉]. We say that the subset S = {|v1〉, . . . , |vn〉}
of a vector space V is a spanning set if any vector can be written as a linear combination of the vectors

|v1〉, . . . , |vn〉 i.e. if [|v1〉, . . . , |vn〉] = V . The vectors |v1〉, . . . , |vn〉 are called linearly independent if

n∑
i=1

αi|vi〉 = 0⇒ αi = 0, i = 1, . . . , n. (2.1)

Conversely, the vectors |v1〉, . . . , |vn〉 are linearly dependent if we can find complex numbers α1, . . . , αn,

not all zero, so that

n∑
i=1

αi|vi〉 = 0. (2.2)

4
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Example 2.2 Show that the vectors |v1〉 =

(
1− i

1

)
and |v2〉 =

(
1

1
2 + i

2

)
in C2 are linearly dependent.

Since (1 + i)|v1〉 = 2|v2〉 we have (1 + i)|v1〉+ (−2)|v2〉 = 0. �

Example 2.3 Suppose that the vectors |v1〉, . . . , |vn〉 are linearly independent. Show that a vector |v〉 in V

can be written as linear combinations of |v1〉, . . . , |vn〉 in at most one way.

Suppose that there are two ways of writing |v〉 as a linear combination, i.e.

v =

n∑
i=1

αi|vi〉 (2.3)

and

v =

n∑
i=1

βi|vi〉. (2.4)

Then, taking the difference, we deduce that

n∑
i=1

(αi − βi)|vi〉 = 0.

But since the |vi〉 are linearly independent we deduce that αi = βi for i = 1, . . . , n, so that the two linear

combinations (2.3) and (2.4) are in fact the same. �
A set S = {|v1〉, . . . |vn〉} is called a basis of the vector space V if S is both spanning and linearly

independent. One can show that every vector space has a basis. The basis is not unique - in fact there are

infinitely many different bases as we shall see below - but the number of elements in any basis is the same;

that number is called the dimension of the vector space. The dimension may be finite or infinite. In this

text we only deal with finite dimensional vector spaces. For a vector space of finite dimension n one can

show that any set of n linearly independent vectors is automatically spanning, i.e. a basis. In order to check

if a given set containing n vectors constitutes a basis we therefore only need to check for linear independence.

There are simple tests for this, one of which we give below.

The vector space Cn has a canonical basis consisting of the column vectors

|b1〉 =


1

0
...

0

 , |b2〉 =


0

1
...

0

 , . . . , |bn〉 =


0

0
...

1

 . (2.5)

The space C2 plays a particularly important role in quantum computing and it is conventional to denote the

canonical basis as

|0〉 =

(
1

0

)
|1〉 =

(
0

1

)
. (2.6)

The notation anticipates the role of the space C2 as a quantum bit or qubit. Whereas a classical bit can be in

one of two states “0” or “1”, quantum bit can be in the basis states |0〉 or |1〉 or in any linear combination

of the basis states. Any two vectors

|x〉 =

(
x1

x2

)
, |y〉 =

(
y1

y2

)
in C2 are independent (and hence constitute a basis) if the matrix made from the column vectors has a

non-vanishing determinant:

det

(
x1 y1

x2 y2

)
6= 0. (2.7)
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2.1.2 Coordinates and basis change

Suppose that V is a complex vector space of dimension n and that B = {|b1〉, . . . |bn〉} is a basis of V . Then

a vector |x〉 has a unique expansion

|x〉 =

n∑
i=1

xi|bi〉 (2.8)

in terms of this basis. The complex numbers x1, . . . , xn are called the coordinates of the vector |x〉 with

respect to the basis B.

A vector can be expanded in any basis, and its coordinates with respect to different bases differ. We are

interested in the change of coordinates under a change of basis. Suppose the basis B′ = {|b′1〉, . . . , |b′n〉} of

an n-dimensional vector space is obtained from the basis B = {|b1〉, . . . , |bn〉} via

|b′i〉 =

n∑
j=1

Mji|bj〉, for i = 1, . . . n, (2.9)

where Mji, j, i = 1, . . . , n, are the matrix elements of an invertible n× n-matrix of complex numbers. Now

we have the two expansions

|x〉 =

n∑
j=1

xj |bj〉 (2.10)

and

|x〉 =

n∑
i=1

x′i|b′i〉. (2.11)

Inserting the relation (2.9) into the expansion (2.11) we have

|x〉 =

n∑
i,j=1

x′iMji|bj〉. (2.12)

Comparing with (2.10) and using the uniqueness of expansions in a basis we deduce

xj =

n∑
i=1

Mjix
′
i. (2.13)

Collecting the coordinates xj , j = 1, . . . , n, and x′i i = 1, . . . , n, into column vectors this can be written
x1

x2

...

xn

 =


M11 M12 . . . M1n

M21 M22 . . . M2n

...

Mn1 Mn2 . . . Mnn




x′1
x′2
...

x′n

 (2.14)

or, denoting the matrix with matrix entries Mij by M ,
x1

x2

...

xn

 = M


x′1
x′2
...

x′n

 (2.15)

so that 
x′1
x′2
...

x′n

 = M−1


x1

x2

...

xn

 . (2.16)
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Performing the inversion explicitly in the case n = 2(
x1

x2

)
=

(
M11 M12

M21 M22

)(
x′1
x′2

)
(2.17)

we find (
x′1
x′2

)
=

1

M11M22 −M12M21

(
M22 −M12

−M21 M11

)(
x1

x2

)
. (2.18)

Example 2.4 Give the coordinates of the vector |x〉 = i|0〉 − |1〉 in C2 in the basis consisting of |v1〉 =
1√
2
(|0〉+ |1〉) and |v2〉 = 1√

2
(−|0〉+ |1〉).

With

M =
1√
2

(
1 −1

1 1

)
and

M−1 =
1√
2

(
1 1

−1 1

)
we have the coordinates (

x′1
x′2

)
=

1√
2

(
1 1

−1 1

)(
i

−1

)
=

1√
2

(
i− 1

−i− 1

)
so that |x〉 = i−1√

2
|v1〉 − i+1√

2
|v2〉.

2.2 Linear maps

Recall that a linear map from a vector space V to a vector space W is a map A : V → W which satisfies

A(α|u〉 + β|v〉) = αA(|u〉) + βA(|v〉) for any complex numbers α and β and any two elements |u〉 and |v〉
in V . In quantum mechanics it is customary to call linear maps linear operators, though mathematicians

tend to reserve this term for situations where both V and W are infinite dimensional. We will mostly be

concerned with the situation V = W in the following. It is not difficult to show (check any textbook on

linear algebra) that a linear map is completely determined by its action on basis of V . This leads to the

matrix representation of a linear map as follows.

Consider a linear map A : V → V in a complex vector space of dimension n, and let B = {|b1〉, . . . , |bn〉}
be a basis of V . We consider the action of A on each of the basis elements, and expand the images in the

basis B:

A(|bi〉) =

n∑
j=1

Aji|bj〉. (2.19)

The matrix made up of the n × n numbers Aij , i, j = 1, . . . , n is the matrix representation of A with

respect to the basis B. The action of A on a general element |x〉 ∈ V can be written conveniently in terms

of the matrix representation. With the expansion |x〉 =
∑n
i=1 xi|bi〉 we have

A(|x〉) =

n∑
i,j=1

Ajixi|bj〉. (2.20)

so that the coordinates of the image A(|x〉) with respect to the basis B are obtained from the coordinates

of |x〉 with respect to B by putting them into a column vector and multiplying them with the matrix

representation of A.

Important notational convention: In the following we will often fix one basis for a given vector space

V and work with coordinates and matrix representations relative to that basis. In particular when working

with V = Cn we use the canonical basis (2.5). In that case we do not distinguish notationally between the

operator A and its matrix representation relative to the canonical basis.
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Example 2.5 The linear map A : C2 → C2 satisfies A(|0〉) = 3i|0〉 + 4|1〉 and A(|1〉) = 3|0〉 − 4i|1〉. Give

its matrix representation with respect to the canonical basis, and give the image of the vector |x〉 = |0〉− |1〉
under the action of A.

The matrix representation is

A =

(
3i 3

4 −4i

)

so the image of the vector with coordinates

(
1

−1

)
has coordinates

(
3i 3

4 −4i

)(
1

−1

)
=

(
−3 + 3i

4 + 4i

)
.

�
Before leaving linear operators we need to understand how the matrix representation of an operator A

changes when we change the basis of V . Consider again a complex vector space V with two distinct bases

B and B′. The basis B′ = {|b′1〉, . . . , |b′n〉} is obtained from the basis B = {|b1〉, . . . , |bn〉} via

|b′i〉 =

n∑
j=1

Mji|bj〉, for i = 1, . . . , n. (2.21)

Suppose we are given the matrix representation of A relative to the basis B via (2.19) and would like to

know its matrix representation with respect to the basis B′. Defining

A(|b′i〉) =

n∑
j=1

A′ji|b′j〉, (2.22)

we replace |b′i〉 by the expression in (2.21) and use the linearity of A to deduce

n∑
k=1

MkiA(|bk〉) =

n∑
j,l=1

A′jiMlj |bl〉. (2.23)

Expanding the left-hand side according to (2.19) we have

n∑
k,l=1

MkiAlk|bl〉 =

n∑
j,l=1

A′jiMlj |bl〉. (2.24)

Comparing coefficients of basis elements |bl〉 we deduce that the matrices M,A,A′ satisfy

AM = MA′ (2.25)

or

A′ = M−1AM. (2.26)

In order to understand these general expressions it is important to study some examples. We will do this in

applications below.

Using the relation (2.26) we can now define the determinant and trace of a linear map. Although one

requires a matrix representation to compute both, the result is independent of the basis to which the matrix

representation refers. To see this, recall that for any two n× n matrices A and B

det(AB) = det(A)det(B), (2.27)

which implies in particular det(A−1) = (detA)−1. Recall also that the definition

tr(A) =

n∑
i=1

Aii, (2.28)
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which implies

tr(AB) =

n∑
i,j=1

AijBji = tr(BA). (2.29)

It follows that for the two matrices A′ and A related by conjugation with M as in (2.26) that

det(A′) = (det(M))−1det(A)det(M) = det(A) (2.30)

and

tr(A′) = tr
(
M−1AM

)
= tr

(
MM−1A

)
= tr(A). (2.31)

Example 2.6 Show that, for any diagonalisable 2×2 matrix A with eigenvalues λ1 and λ2, tr(A) = λ1 +λ2

and det(A) = λ1λ2.

A matrix A is said to be diagonalisable if there exists a basis of eigenvectors. The matrix representation

relative to the basis of eigenvectors is

A′ =

(
λ1 0

0 λ2

)
.

Now trA = trA′ = λ1 + λ2 and detA = detA′ = λ1λ2. �

2.3 Inner product spaces

For vector spaces to be of use in quantum mechanics they need to be equipped with an addition structural

feature: an inner product or scalar product. For complex vector spaces this is defined as follows.

Definition 2.1 (Inner product) An inner product on a complex vector space V is a map

(·, ·) : V × V → C (2.32)

which satisfies

(i) (|v〉, α1|w1〉+ α2|w2〉) = α1(|v〉, |w1〉) + α2(|v〉, |w2〉)
(Linearity in the second argument)

(ii) (|v〉, |w〉) = (|w〉, |v〉), (Symmetry)

(iii) |v〉 6= 0⇒ (|v〉, |v〉) > 0 (Positivity)

Note that the last condition makes sense since (|v〉, |v〉) is real, which follows directly from condition 2.

Before we study examples we note an important property.

Lemma 2.1 (Conjugate linearity) The inner product (·, ·) is conjugate-linear in the first argument, i.e.

(α1 |v1〉+ α2 |v2〉 , |w〉) = ᾱ1(|v1〉 , |w〉) + ᾱ2(|v2〉 , |w〉) (2.33)

Proof Using the properties of the inner product we compute

(α1 |v1〉+ α2 |v2〉 , |w〉) = (|w〉 , α1 |v1〉+ α2 |v2〉) (Property 2)

= ᾱ1(|w〉 , |v1〉) + ᾱ2(|w〉 , |v2〉) (Property 1)

= ᾱ1(|v1〉 , |w〉) + ᾱ2(|v2〉 , |w〉) (Property 2). (2.34)

�

Example 2.7 Define an inner product on C2 via

(

(
x1

x2

)
,

(
y1

y2

)
) = x̄1y1 + x̄2y2. (2.35)

Show that it satisfies all the properties of the Definition 2.1.
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Checking linearity and symmetry of (2.35) is left as a simple exercise. For positivity note that

(

(
z1

z2

)
,

(
z1

z2

)
) = |z1|2 + |z2|2,

which is a sum of positive terms and non-vanishing if z1 and z2 are not both zero. �
In quantum mechanics it is customary to write

(|v〉, |w〉) = 〈v|w〉. (2.36)

The mathematical motivation for this notation is that in an inner product space every vector |v〉 defines a

linear map

〈v| : V → C via

|w〉 7→ 〈v|w〉. (2.37)

The inner product 〈v|w〉 can thus be thought of as the map 〈v| evaluated on the vector |w〉. In quantum

mechanics the map 〈v| is called a bra: the “left half” of the “bra-ket”.

The inner product allows one to define the norm of a vector and the notion of orthogonality.

Definition 2.2 Let V be a vector space with inner product.

(i) The norm of a vector |v〉 is

||v〉| =
√
〈v|v〉. (2.38)

(ii) Two vectors |v〉 and |w〉 are orthogonal if 〈v|w〉 = 0.

(iii) A basis B = {|b1〉, . . . , |bn〉} of V is called orthonormal if

〈bi|bj〉 = δij , i, j = 1, . . . , n. (2.39)

In the last part of the definition we use the Kronecker delta symbol: δij is 1 when i = j and zero

otherwise. Any basis of a vector space V with inner product can be turned into an orthonormal basis by the

Gram-Schmidt process, which is treated in any textbook on linear algebra. Since every vector space has

a basis it follows from the Gram-Schmidt procedure that every vector space with an inner product has an

orthonormal basis.

Example 2.8 Suppose that B = {|b1〉 , . . . , |bn〉} is an orthonormal basis of V and |x〉 =
∑n
i=1 xi |bi〉. Find

the matrix representation of the linear map 〈x|.

We have only considered matrix representations of maps V → V in this text so far, but it is not difficult

to extend this notion to the situation 〈x| : V → C. The idea is again to apply the map to each of the basis

vectors |bi〉. We find

〈x |bi〉 = 〈 bi |x〉 = x̄i. (2.40)

There is no need to expand the result in a basis since the target space C is one-dimensional. Comparing

with (2.19) and noting that the index i labels the columns of the matrix representation we conclude that

the matrix representation of the map 〈x| is the row vector (x̄1, . . . , x̄n). �

Example 2.9 Show that |b1〉 = (cos θ|0〉 + sin θ|1〉) and |b2〉 = i(cos θ|1〉 − sin θ|0〉) form an orthonormal

basis of C2 with the canonical inner product defined in (2.35) for any value of the parameter θ ∈ [0, 2π).

It is easy to check that {|0〉, |1〉} form an orthonormal basis. Hence 〈b1|b1〉 = cos2 θ + sin2 θ = 1 and

similarly 〈b2|b2〉 = 1. Moreover 〈b1|b2〉 = −i cos θ sin θ + i cos θ sin θ = 0. �

Example 2.10 For the case V = Cn, a canonical inner product is defined via

(


x1

x2

...

xn

 ,


y1

y2

...

yn

) =

n∑
i=1

x̄iyi. (2.41)
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Check that the canonical basis (2.5) is an orthonormal basis with respect to this inner product.

Inserting the coordinate given in (2.5) one finds 〈bi |bj〉 = δij �
The inner product allows one to define the orthogonality not only of vectors but of entire subspaces. For

later use we note

Definition 2.3 (Orthogonal complement) If W is a subspace of a vector space V with inner product

we define the orthogonal complement to be the space

W⊥ = {|v〉 ∈ V |〈v |w〉 = 0 for all |w〉 ∈W} (2.42)

It is not difficult to check that W⊥ is indeed a vector space, and you are asked to do this in the exercises

at the end of this chapter.

Example 2.11 Let V = C3 and W be the linear span of

1

0

0

. Find the orthogonal complement of W .

Elements |v〉 =

z1

z2

z3

 in V are orthogonal to

1

0

0

 iff z̄1 = 0. Thus

W⊥ = {

 0

z2

z3

 |z2, z3 ∈ C}.

�
We have already seen in (2.8) that any element |x〉 of a vector space can be expanded in a given basis.

However, in the previous subsection we did not give an algorithm for computing the expansion coefficients

xi. If the vector space V is equipped with an inner product, the computation of the expansion coefficients

is considerably simplified. Suppose that B = {|b1〉, . . . , |bn〉} is an orthonormal basis of V and we want to

find the coordinates of |x〉 in this basis:

|x〉 =

n∑
i=1

xi|bi〉. (2.43)

Acting on both sides of the equation with the bra’s 〈bj |, j = 1, . . . , n we find

〈bj |x〉 =

n∑
i=1

xiδij = xj , (2.44)

thus giving us an explicit formula for the coordinates xj .

We can similarly give an explicit formula for the matrix representation of a linear operator A on the vector

space V with inner product. We consider the action of A on each of the basis elements in B:

A|bi〉 =

n∑
k=1

Aki|bk〉. (2.45)

Acting on both sides of the equation with the bra’s 〈bj |, j = 1, . . . , n we find

〈bj |A|bi〉 =

n∑
k=1

Ajiδjk = Aji, (2.46)

The inner product structure even helps in explicitly reconstructing the linear operator A from its matrix

representation. For this purpose we introduce the maps

|bi〉〈bj | : V → V

|x〉 7→ |bi〉〈bj |x〉 (2.47)

associated to the elementary bras and kets 〈bj | and |bi〉. We claim
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Lemma 2.2 For any linear operator A in a vector space V with inner product and orthonormal basis B we

have the representation

A =

n∑
i,j=1

Aij |bi〉〈bj |, (2.48)

where Aij = 〈bi|A |bj〉.

To prove this claim we show the left and the right hand side have the same action on each of the basis vectors

|bk〉:

A|bk〉 =

n∑
i,j=1

Aij |bi〉〈bj |bk〉 =

n∑
i=1

Aik|bi〉, (2.49)

which is true by the definition of the matrix elements Aik. �
We note in particular

Corollary 2.1 (Resolution of the identity) The identity operator I : V → V has the representation

I =
∑
i=1

|bi〉〈bi| (2.50)

This representation of identity is often useful in calculations. As an example we give a quick proof of the

Theorem 2.1 (Cauchy-Schwarz inequality) For any two vectors |ϕ〉 and |ψ〉 in the vector space V with

inner product we have

〈ϕ|ψ〉〈ψ|ϕ〉 ≤ 〈ϕ|ϕ〉〈ψ|ψ〉 (2.51)

Proof We may assume without loss of generality that the vector |ψ〉 is normalised i.e. 〈ψ|ψ〉 = 1; otherwise

we divide left and right-hand side of the inequality by the real, positive number 〈ψ|ψ〉. We need to show

that

〈ϕ|ψ〉〈ψ|ϕ〉 ≤ 〈ϕ|ϕ〉. (2.52)

To see this, complete |ψ〉 to an orthonormal basis B = {|ψ〉, |b2〉, . . . , |bn〉} and write the identity as

I = |ψ〉〈ψ|+
n∑
i=2

|bi〉〈bi|. (2.53)

Now consider the inner product 〈ϕ|ϕ〉 and insert the identity:

〈ϕ|ϕ〉 = 〈ϕ|I|ϕ〉 = 〈ϕ|ψ〉〈ψ|ϕ〉+

n∑
i=2

〈ϕ|bi〉〈bi|ϕ〉

≥ 〈ϕ|ψ〉〈ψ|ϕ〉 (2.54)

where we used that 〈ϕ|bi〉〈bi|ϕ〉 = 〈ϕ|bi〉〈ϕ|bi〉 = |〈ϕ|bi〉|2 ≥ 0. �

2.4 Hermitian and Unitary operators, Projectors

Having defined inner product spaces, we now consider operators in such spaces in some detail. We begin

with the fundamental

Definition 2.4 (Adjoint operator) Let A be a linear operator in a complex vector space V with inner

product (·, ·). Then we define the adjoint operator A† by the condition

(|ϕ〉 , A |ψ〉) = (A† |ϕ〉 , |ψ〉) for all |ϕ〉 , |ψ〉 ∈ V (2.55)

or, using bra-ket notation,

〈ϕ|A |ψ〉 = 〈ψ|A† |ϕ〉. (2.56)
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Let B = {|b1〉 , . . . , |bn〉} be an orthonormal basis of V and Aij be the matrix elements of the matrix

representation of A i.e.

〈bi|A |bj〉 = Aij (2.57)

Then, we can read off the matrix representation of A† with respect to the same basis from (2.56):

〈bi|A† |bj〉 = 〈bj |A |bi〉 = Āji. (2.58)

Thus the matrix representing A† is obtained from the matrix representing A by transposition and complex

conjugation. Using the same symbols for the matrices as for the operators which they represent, we write

A† = Āt. (2.59)

Example 2.12 The matrix representing the operator A : C2 → C2 relative to a fixed orthonormal basis of

C2 is

A =

(
2− i 3 + 2i

1− i 1 + i

)
.

Find the matrix representing the adjoint A†.

Transposing and complex conjugating we obtain

A† =

(
2 + i 1 + i

3− 2i 1− i

)
.

We note the following general properties of adjoints:

Lemma 2.3 Let A and B be linear operators in a vector space V with inner product and α, β ∈ C. Then

(i) (A†)† = A

(ii) (αA+ βB)† = ᾱA† + β̄B†

(iii) (AB)† = B†A†

The proof is straightforward.

Example 2.13 Consider two kets |v〉 , |w〉 in an inner product space V . Find the adjoint of the map

|v〉〈w| : V → V |x〉 7→ |v〉〈w|x〉,

which if of the type considered in (2.47)

For arbitrary elements |ϕ〉 , |ψ〉 ∈ V we have

(|ϕ〉 , |v〉〈w |ψ〉) = 〈ϕ, |v〉 〈w, |ψ〉
= 〈v |ϕ〉〈w, |ψ〉
= (|w〉 〈v |ϕ〉 , |ψ〉) (2.60)

Comparing with the definition (2.55) we conclude

(|v〉〈w|)† = |w〉〈v|. (2.61)

�
One can extend the definition of an adjoint to maps A : V → W , where V and W are two different inner

product spaces. In that case A† is a map W → V . The matrix representation of A† is still obtained from

the matrix representation of A be transposition (turning rows into columns) and complex conjugation. We

will not need this definition in full generality, but note the special case where W = C. We saw in Example
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2.8 that any bra 〈x|, thought of as a map V → C, can be represented by the row vector (x̄1, . . . , x̄2) with

respect to a basis {|b1〉 , . . . , |b2〉} of V . The transposition and complex conjugation of this row vector gives

(x̄1, x̄2 . . . , x̄n)t =


x1

x2

...

xn

 , (2.62)

which is just the coordinate representation of |x〉. It is therefore consistent to extend our definition of the

adjoint to

〈x|† = |x〉 (2.63)

so that, by Lemma 2.3

|x〉† = 〈x| . (2.64)

Note that these facts, together with the second part of Lemma 2.3 gives a quick proof of (2.61).

The two classes of linear operators which are important in quantum mechanics are defined by relations

between the operator and its adjoint.

Definition 2.5 (Unitary operators) Let V be a vector space with inner product and U : V → V be a

linear operator. We say that U is unitary if

U† = U−1. (2.65)

An important property of unitary operators is that they preserve the inner product

Lemma 2.4 If U is a unitary operator in the vector space V with inner product 〈·|·〉 then

(U |ϕ〉 , U |ψ〉) = (|ϕ〉 , |ψ〉) = 〈ϕ |ψ〉 . (2.66)

This follows directly from the definition of the adjoint and the definition of a unitary operator:

(U |ϕ〉 , U |ψ〉) = (U†U |ϕ〉 , |ψ〉) = (|ϕ〉 , |ψ〉). (2.67)

�
Specialise now to the case V = Cn with the canonical inner product (2.41) and the canonical orthonormal

basis (2.5). Identifying, as before, the matrix representation of U : Cn → Cn relative to the canonical basis

(2.5) with U , we can write the condition for unitarity in matrix form as

Ū tU = I. (2.68)

Example 2.14 Show that the matrix

U =

(
eiφ cos

(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
e−iφ cos

(
θ
2

))
is unitary for θ ∈ (0, 2π) and φ ∈ [0, 2π)

Using cos2( θ2 ) + sin2( θ2 ) = 1 we find

Ū tU =

(
e−iφ cos

(
θ
2

)
sin
(
θ
2

)
− sin

(
θ
2

)
eiφ cos

(
θ
2

))(eiφ cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
e−iφ cos

(
θ
2

)) =

(
1 0

0 1

)
�

Definition 2.6 (Hermitian operators) Let V be a vector space with inner product and A : V → V be

a linear operator. We say that A is Hermitian if

A† = A (2.69)
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Example 2.15 (Pauli matrices) The following three matrices are called the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(2.70)

Show that they are both Hermitian and unitary.

This is an elementary calculation �
We collect some properties of unitary and Hermitian operators in the following lemma.

Lemma 2.5 In the following V is a complex vector space with inner product. Then

(i) A†A is Hermitian for any operator A : V → V .

(ii) If B : V → V is invertible and Hermitian, then B−1 is also Hermitian.

(iii) If W : V → V is unitary, then so is W−1.

(iv) If B is Hermitian and U unitary, then U−1BU is Hermitian

(v) If W and U are unitary, then WU is unitary

Proof

(i) Applying the rules 1 and 3 in Lemma 2.3, we have (A†A)† = A†(A†)† = A†A, thus establishing the first

claim.

(ii) Taking the adjoint of the equation B−1B = I we find B†(B−1)† = I since the identity is Hermitian.

Now use Hermiticity of B to deduce B(B−1)† = I so that (B−1)† = B−1, establishing the Hermiticity of

B−1.

(iii) Taking the adjoint of the equation W−1 = W † we find (W−1)† = W . Hence (W−1)† = (W−1)−1,

showing the W−1 is unitary.

(iv) (U−1BU)† = U†(U−1B)† = U†B†(U−1)† = U−1BU .

(v) (WU)† = U†W † = U−1W−1 = (WU)−1 �
Finally we turn to a class of operators called projectors or projection operators

Definition 2.7 (Projection operators) An operator P : V → V is called projection operator if P 2 = P .

If V is equipped with an inner product and P is Hermitian with respect to that inner product, P is called

an orthogonal projection operator

Example 2.16 Consider the vector space R2 (“the xy-plane”) with its canonical inner product and canonical

basis |0〉 , |1〉. Write down the matrix representation, with respect to the canonical basis, of

(i) The projection along the y-axis onto the x-axis.

(ii) The projection along the line x+ y = 0 onto the x-axis

You can visualise the examples in terms of shining light along the y-axis for (i) and along the line x+ y = 0

for (ii). Working out the projection operator is equivalent to determining the shadow cast on the x-axis.

Which of the projections is (are) orthogonal?

In order to determine any linear map, it is enough to determine its action on a basis. In the first example

we have

P |0〉 = |0〉 , P |1〉 = 0.

Hence the matrix representing P is

P =

(
1 0

0 0

)
.

In the second example we have

P |0〉 = |0〉 , P |1〉 = |0〉

leading to the matrix representation

P =

(
1 1

0 0

)
.

It is clear geometrically that the first projection operator is orthogonal and the second is not. This is also
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reflected in the matrix representation: the first projection is represented by a Hermitian matrix, but the

matrix representing the second projection is not Hermitian. �
Generally, given an m-dimensional subspace W of an inner product space V , we can construct an orthog-

onal project operator onto W by picking an orthonormal basis {|b1〉 , . . . |bm〉} of W . We claim

Lemma 2.6 The operator PW defined via

PW =

m∑
i=1

|bi〉 〈bi| . (2.71)

is an orthogonal projection operator

Proof In order to check that PW is a projection we compute

P 2
W =

m∑
i=1

|bi〉 〈bi|
m∑
j=1

|bj〉 〈bj |

=

m∑
i,j=1

|bi〉 〈bi |bj〉 〈bj |

=

m∑
i,j=1

δij |bi〉 〈bj |

=

m∑
i

|bi〉 〈bi| = PW (2.72)

The orthogonality

P †W = PW (2.73)

follows from (|bi〉 〈bi|)† = |bi〉 〈bi|, which is a special case of (2.61). �
Note that if P is a projection operator, then so is I − P since (I − P )2 = I − 2P + P = I − P . Similarly,

if P is an orthogonal projection operator, then so is I − P . Geometrically, if P is the orthogonal projection

onto a subspace W , then I − P is the projection onto the orthogonal complement W⊥ defined in (2.3) .

2.5 Eigenvalues and commutators

An important part of solving problems in quantum mechanics involves finding eigenvalues and eigenvectors

of linear operators. Recall that if A : V → V is a linear operator, we call λ ∈ C an eigenvalue of A if there

exists a non-zero vector |v〉 ∈ V such that

A |v〉 = λ |v〉 . (2.74)

Any such vector |v〉 is called an eigenvector of A with eigenvalue λ. More generally, there may be several lin-

early dependent eigenvectors for a given eigenvalue λ. The space of all eigenvectors is called the eigenspace

for the eigenvalue λ and denoted

Eigλ = {|v〉 ∈ V |A |v〉 = λ |v〉}. (2.75)

It is not difficult to check that Eigλ is indeed a vector space (do it!)

The eigenvalues of A are most easily determined by solving the characteristic equation

det(A− λI) = 0. (2.76)

This is a polynomial equation in λ of degree n = dimV . By the fundamental theorem of algebra such an

equation has at least one solution (“root”) in the complex numbers, and this fact considerably simplifies the

eigenvalue problem in complex vector spaces compared to real vector spaces. It follows that every operator

in a complex vector spaces has at least one eigenvalue. For some operators one can find an entire basis of

V consisting of eigenvectors. Such operators are called diagonalisable. Remarkably, the Hermitian and

unitary operators which are important in quantum mechanics are always diagonalisable. The key reason for

their diagonalisability lies in the following
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Lemma 2.7 Suppose |v〉 ∈ V is an eigenvector of the Hermitian operator A with eigenvalue λ. Then A

maps the orthogonal complement of [|v〉] into itself, i.e. if |w〉 ⊥ |v〉 then also A |w〉 ⊥ |v〉.

Proof Suppose 〈 v |w〉 = 0. Then 〈v|A |w〉 = 〈w|A |v〉 = λ̄〈 v |w〉 = 0. �

Theorem 2.2 Suppose V is a (complex) vector space with inner product. If A : V → V is a Hermitian oper-

ator, all eigenvalues are real and eigenvectors for different eigenvalues are necessarily orthogonal. Moreover,

there exists an orthonormal basis of eigenvectors of A.

Proof To see that any eigenvalue of a Hermitian operator has to be real, suppose λ is an eigenvalue of the

Hermitian operator A, with associated eigenvector |v〉, which we assume to be normalised. Then

〈v|A |v〉 = λ. (2.77)

On the other hand

〈v|A |v〉 = 〈v|A† |v〉 = 〈v|A |v〉 = λ̄. (2.78)

Comparing (2.77) with (2.78) we conclude that

λ̄ = λ (2.79)

so that λ is real. Now suppose that |v1〉 and |v2〉 are eigenvectors associated to distinct eigenvalues λ1 and λ2.

Then 〈v1|A |v2〉 = λ2〈 v1 |v2〉 but also, by Hermiticity, 〈v1|A |v2〉 = λ1〈 v1 |v2〉. Hence (λ1 − λ2)〈 v1 |v2〉 = 0.

Since λ1 6= λ2 this implies 〈 v1 |v2〉 = 0.

In order to prove the existence of an orthonormal basis we proceed by induction over the dimension of V .

If the dimension is 1 there is nothing to prove. Suppose we have proved the theorem for vector spaces of

dimension n−1, and let V be a vector space of dimension n. A is a Hermitian operator in V and has at least

one eigenvalue with eigenspace W . Pick one eigenvector |v〉 and consider the orthogonal complement [|v〉]⊥.

It has dimension n− 1 and by Lemma 2.7 is mapped into itself by A. Hence the restriction of A to [|v〉]⊥ is

a Hermitian operator in a vector space of dimension n− 1. By the induction assumption it is diagonalisable

and has an orthonormal basis {|v1〉 , . . . , |vn−1〉} of eigenvectors. Then B = {|v〉 , |v1〉 , . . . , |vn−1〉} is an

orthonormal basis of eigenvectors for A.

�
We can rephrase the results of this theorem by collecting all eigenvectors which have the same eigenvalue

into eigenspaces, thus obtaining the following

Corollary 2.2 Suppose V is a n-dimensional (complex) vector space with inner product. and A : V → V is

a Hermitian operator with m ≤ n distinct eigenvalues λ1, . . . , λm. Then there is a unique decomposition of

V into mutually orthogonal eigenspaces of V , i.e.

V = Eigλ1
⊕ . . .⊕ Eigλm (2.80)

Example 2.17 A Hermitian operator A : C2 → C2 has the matrix representation

A =

(
0 1

1 0

)
(2.81)

with respect to the canonical basis {|0〉 , |1〉}. Find the eigenvalues λ1 and λ2 and corresponding orthonormal

eigenvectors |v1〉 , |v2〉 of A. Give the matrix representation A′ of A relative to the basis {|v1〉 , |v2〉} and find

the 2× 2 matrix M so that

A′ = M−1AM (2.82)

The characteristic equation

det(A− λ) = 0⇔ λ2 − 1 = 0

has solutions λ1 = 1 and λ2 = −1. To find an eigenvector

(
x

y

)
for the eigenvalue −1 we need to solve

y = x, x = y,
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yielding the (normalised) eigenvector

|v1〉 =
1√
2

(
1

1

)
.

Similarly one finds the eigenvector for the eigenvalue λ2 = −1 to be

|v2〉 =
1√
2

(
1

−1

)
.

Thus, the matrix representation of A relative to the basis {|v1〉 , |v2〉} is

A′ =

(
1 0

0 −1

)
.

We read off the transformation matrix M from the expansion

|v1〉 =
1√
2

(|0〉+ |1〉), |v2〉 =
1√
2

(|0〉 − |1〉)

according to (2.21) and find

M =
1√
2

(
1 1

1 −1

)
.

it is now easy to verify that (2.82) holds. �

Theorem 2.3 Suppose V is a (complex) vector space with inner product. If U : V → V is a unitary

operator, there exists an orthonormal basis of eigenvectors of U . Moreover, all eigenvalues λ of U have

modulus 1, i.e. can be written in the form eiα for some α ∈ [0, 2π). Eigenvectors corresponding to different

eigenvalues are necessarily orthogonal.

We will not prove this result here, since the proof is analogous to the that of the corresponding statement

for Hermitian operators. We only show that any eigenvalue of a unitary operator has to have modulus 1.

Suppose λ is an eigenvalue of the unitary operator U , with associated normalised eigenvector |v〉. Then

〈v|U |v〉 = λ. (2.83)

On the other hand

〈v|U |v〉 = 〈v|U† |v〉 = 〈v|U−1 |v〉 =
1

λ̄
. (2.84)

Comparing (2.83) with (2.84) we conclude that

λ̄λ = 1 (2.85)

so that |λ| = 1. �

Example 2.18 Find the eigenvalues and normalised eigenvectors of the unitary matrix

A =

(
cos γ sin γ

− sin γ cos γ

)
(2.86)

The method is as for Example 2.17. This time we find eigenvalues λ1 = eiγ and λ2 = e−iγ with eigenvectors

|v1〉 =
1√
2

(
1

i

)
|v1〉 =

1√
2

(
1

−i

)
.

�

Example 2.19 Show that any eigenvalue of a projection operator is either 0 or 1.

Suppose λ is an eigenvalues of a projection operator P i.e., there exists a non-zero |v〉 so that

P |v〉 = λ |v〉

Applying P again to both sides of the equation and using P 2 = P we find

λ |v〉 = λ2 |v〉
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Since |v〉 is non-zero by assumption we have λ = λ2 which is solved by λ = 0 and λ = 1. �
In quantum mechanics it is often necessary to consider several operators and to find a basis of eigenvectors

for both. It is not always possible to find such a basis, even if each of the operators is diagonalisable.

However, there is a simple test for simultaneous diagonalisation. In order to state it succinctly, we define

Definition 2.8 (Commutator) The commutator of two operators A,B : V → V is defined as

[A,B] = AB −BA (2.87)

Theorem 2.4 Let A,B be two Hermitian or unitary operators in a vector space V . Then A and B can be

diagonalised simultaneously if and only if their commutator vanishes i.e. if [A,B] = 0.

Proof In the proof we assume for definiteness that A and B are Hermitian. The proof for unitary operators

is analogous.

Suppose there is a basis with respect to which both A and B are both diagonal, say

A =


λ1 0 . . . 0

0 λ2 . . . 0
...

0 0 . . . λn

 , B =


µ1 0 . . . 0

0 µ2 . . . 0
...

0 0 . . . µn

 , (2.88)

then clearly AB = BA, so the commutator of A and B vanishes.

Now suppose that the commutator [A,B] is zero. The operator A, being Hermitian, can be diagonalised,

producing the decomposition of V into m ≤ n eigenspaces given in Corollary 2.2:

V = Eigλ1
⊕ . . .⊕ Eigλm (2.89)

Now pick one of the eigenvalues λi and let |v〉 be in the eigenspace Eigλi . Then

A(B |v〉) = BA |v〉 = λi(B |v〉)

so that B |v〉 ∈ Eigλi for all |v〉 ∈ Eigλi . Hence we can restrict B to Eigλi and obtain a Hermitian operator

B|Eigλi
: Eigλi → Eigλi .

Since this operator is Hermitian, there exists an orthonormal basis Bi of eigenvectors which are eigenvectors

of A by construction. Repeating this process for every eigenvalue λi of A we obtain the basis

m⋃
i=1

Bi (2.90)

consisting of simultaneous eigenvectors of A and B. �
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Quantum Mechanics

3.1 General remarks: the postulates of quantum mechanics

In this section we state the basic postulates of quantum mechanics and illustrate them with simple examples.

The postulates summarise how physics is mathematically described in quantum mechanics. Like all good

theories of physics, quantum mechanics allows one to make predictions about the outcomes of physical

experiments. However, unlike the laws of classical physics, which predict outcomes with certainty, quantum

mechanics only singles out the possible outcomes and predicts the probabilities with which they happen.

The quantum mechanical postulates emerged as a succinct summary of the quantum mechanical rules

in the second half of the 1920’s. In contrast to other famous physical laws, for example Newton’s laws in

classical mechanics, they were not historically written down in definitive form by one person. Instead they

emerged from research activity lasting several years and involving many physicists. As a result there is not

one definitive version of the postulates. Different books give slightly different versions - even the number

and numbering of the postulates is not standardised.

Inner product spaces play a key role in quantum mechanics, and for many applications of quantum me-

chanics it is essential to consider infinite-dimensional vector spaces. We do not need infinite dimensional

vector spaces in this text, but nonetheless use notation and names which are customary in the infinite di-

mensional context. An example of such terminology is the word “linear operator” for linear maps. Another,

very important term is “Hilbert space” to describe an inner product space which is complete with respect

to the norm derived from the inner product. In finite dimensions all inner product spaces are complete, i.e.

Hilbert spaces and inner product spaces are the same thing in finite dimensions.

In this text all Hilbert spaces are assumed to be finite-dimensional.

3.2 States

The first postulate says how we describe the state of a physical system mathematically in quantum mechanics.

Postulate 1: State space

Associated to every isolated physical system is a complex vector space V with inner product (Hilbert space)

called the state space of the system. At any given time the physical state of the system is completely described

by a state vector, which is a vector |v〉 in V with norm 1.

Example 3.1 The vector |v〉 = i√
2
(− |0〉 + |1〉) describes a state of the system with Hilbert space C2. We

say that it is a superposition of the state vectors |0〉 and |1〉, and the coefficients − i√
2

and i√
2

are sometimes

called amplitudes.

Note that, while the state of the system is completely characterised by giving a state vector, the postulate

leaves open the possibility that different unit vectors may describe the same state. In fact we shall see that in

calculations of physical quantities it does not matter if we use the state vector |v〉 or |v′〉 = eiα |v〉, α ∈ [0, 2π).

The state vectors |v〉 and |v′〉 may thus be regarded as equivalent descriptions of the same physical state.

There is a mathematical formulation (using “projective Hilbert space”) which takes this equivalence into

account, but it is a little more complicated to handle, and we will not use it in this text. Strictly speaking we

should therefore distinguish between a state of a system and the state vector used to describe this. However,

20
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since the phrase “the state vector describing the state ...” is much longer than “the state ...” we shall often

use the latter as a shorthand.

3.3 Observables and measurement

The second postulate deals with possible outcomes of measurements and specifies how to compute their

probabilities.

Postulate 2: Observables and measurements

The physically observable quantities of a physical system, also called the observables, are mathematically

described by Hermitian operators acting on the state space V of the system. The possible outcomes of

measurements of an observable A are given by the eigenvalues λ1, . . . λm of A. If the system is in the state

with state vector |ψ〉 at the time of the measurement, the probability of obtaining the outcome λi is

pψ(λi) = 〈ψ|Pi |ψ〉 , (3.1)

where Pi is the orthogonal projection operator on the eigenspace of λi. Given that this outcome occurred, the

state of the system immediately after the measurement is described by∣∣∣ψ̃〉 =
Pi |ψ〉√
pψ(λi)

. (3.2)

(This is sometimes called the collapse of the wavefunction)

We need to check that the prescriptions given in Postulate 2 make sense:

(i) Do the the numbers (3.1) lie between 0 and 1 and add up to 1, so that they can indeed be interpreted

as probabilities?

(ii) Is (3.2) really a state vector, i.e. does it have norm 1?

We postpone the discussion of both these question until a little later in this section. In order to build up

an understanding of the second postulate we first apply it in the following example.

Example 3.2 Consider a system with Hilbert space V = C3, equipped with the canonical inner product.

The system is in the state described by |ψ〉 =

1

0

0

 when the observable

A =

1 1 0

1 1 0

0 0 2

 (3.3)

is measured. Show that the possible outcomes of the measurement are 0 and 2 and compute the probability

of each. For each of the possible outcomes, give the state of the system immediately after the measurement.

From the characteristic equation det(A− λI) = 0 we find

(1− λ)2(2− λ)− (2− λ) = 0⇔ (2− λ)(λ2 − 2λ) = 0

which has solutions λ1 = 0 and λ2 = 2. The normalised eigenvector with eigenvalue λ1 = 0 is

|b1,1〉 =
1√
2

 1

−1

0

 (3.4)

but the eigenvalue λ2 = 2 has a two dimensional eigenspace with orthonormal basis given by

|b2,1〉 =
1√
2

1

1

0

 , |b2,2〉 =

0

0

1

 . (3.5)

Hence the projectors onto the eigenspaces are

P1 = |b1,1〉 〈b1,1| and P2 = |b2,1〉 〈b2,1|+ |b2,2〉 〈b2,2| . (3.6)
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The probability of measuring λ1 = 0 is

pψ(0) = 〈ψ|P1 |ψ〉 = 〈ψ |b1,1〉 〈b1,1 |ψ〉 = |〈b1,1 |ψ〉 |2 =
1

2
(3.7)

and the probability of measuring λ2 = 2 is

pψ(2) = 〈ψ|P2 |ψ〉 = 〈ψ |b2,1〉 〈b2,1 |ψ〉+ 〈ψ |b2,2〉 〈b2,2 |ψ〉 = |〈b2,1 |ψ〉 |2 + |〈b2,2 |ψ〉 |2 =
1

2
(3.8)

If the measurement produces the result λ1 = 0, the state after the measurement is

∣∣∣ψ̃〉 =
P1 |ψ〉√
pψ(λ1)

=
√

2× 〈b1,1 |ψ〉 |b1,1〉 =
1√
2

 1

−1

0

 (3.9)

If the measurement produces the result λ2 = 2, the state after the measurement is

∣∣∣ψ̃〉 =
P2 |ψ〉√
pψ(λ1)

=
√

2× (〈b2,1 |ψ〉 |b2,1〉+ 〈b2,2 |ψ〉 |b2,2〉) =
1√
2

1

1

0

 . (3.10)

�
Note that the projection operators only play an intermediate role in the calculation. They are useful in

stating the measurement postulate, but in specific calculations we can go straight from the calculation of the

eigenvalues and eigenfunctions to the evaluation of probabilities and final states. In particular, note that the

state of the system after the measurement of the non-degenerate eigenvalue λ1 = 0 is the eigenstate |b1,1〉
associated to that eigenvalue. This fact generalises to a useful rule:

Lemma 3.1 If a measurement outcome is an eigenvalue λ with one-dimensional eigenspace spanned by the

normalised eigenvector |v〉, the state of the system after the measurement is given by |v〉.

Proof Under the assumptions of the lemma, the projector onto the eigenspace of λ is P = |v〉 〈v|. Although

the initial state |ψ〉 of the system is not specified, we deduce from the fact λ was measured that the probability

pψ(λ) 6= 0 and therefore that 〈v |ψ〉 6= 0. It follows from (3.2) that the state after the measurement is∣∣∣ψ̃〉 =
〈v |ψ〉
|〈v |ψ〉 |

|v〉 ,

which, in general, differs from |v〉 only by a phase and therefore describes the same state. �

Example 3.3 (“Measurement of a state”) Consider the single qubit system with Hilbert space C2.

Consider the orthogonal projection operators associated to the canonical basis states

P = |0〉 〈0| , Q = |1〉 〈1| (3.11)

If the system is in the state |ψ〉 = 1
2 (
√

3 |0〉 + |1〉), what is the probability of obtaining the eigenvalue 1 in

a measurement of P . What is the probability of obtaining the eigenvalue 0? What is the probability of

obtaining the eigenvalue 0 in a measurement of Q?

The projection operator P has the eigenstate |0〉 with eigenvalue 1 and the eigenstate |1〉 with eigenvalue

0. For Q the situation is the reverse: |0〉 is eigenstate with eigenvalue 0 and |1〉 is eigenstate with eigenvalue

1. Hence the probability of measuring 1 in a measurement of P is |〈ψ |0〉 |2 = 3
4 . The probability of

measuring 0 in a measurement of P is |〈ψ |1〉 |2 = 1
4 . The probability of measuring 0 in a measurement of Q

is |〈ψ |0〉 |2 = 3
4 . �

The example shows that measuring projection operators |ϕ〉 〈ϕ| associated to states |ϕ〉 amounts to asking

for the probability of the system to be in the state |ϕ〉. It is therefore common practice in discussions of

quantum mechanical systems to replace the long question “What is the probability of obtaining the eigenvalue

1 in a measurement of the projection operator |ϕ〉 〈ϕ| given that the system is in the state |ψ〉?” with the

shorter question “what is the probability of finding the system in the state |ϕ〉, given that it is in the state

|ψ〉? ”. As we have seen, the answer to that question is

|〈ϕ |ψ〉 |2 (3.12)
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The complex number 〈ϕ |ψ〉 is often called the overlap of the states |ϕ〉 and |ψ〉. Note that the probability

(3.12) can be non-zero even when the system’s state |ψ〉 is different from |ϕ〉. It is zero if and only if |ϕ〉 and

|ψ〉 are orthogonal.

We have yet to prove that the probabilities defined in (3.1) can consistently be interpreted as probabilities.

To show this we need the following lemma, which will be useful in other applications as well.

Lemma 3.2 V is a Hilbert space and A a Hermitian operator in V with eigenvalues λi, i = 1, . . . ,m and

eigenspaces Eigλi . Let Pi be the orthogonal projector onto Eigλi . Then

(i) The orthogonality relations

PiPj = δijPi (3.13)

hold.

(ii) The completeness relations

m∑
i=1

Pi = I (3.14)

hold.

(iii) Spectral decomposition of A: we can write A in terms of the orthogonal projection operators Pi
onto the eigenspaces Eigλi as

A =

m∑
i=1

λiPi (3.15)

Proof

(i) If i = j, the claim reduces to P 2
i = Pi, which is the defining property of any projection operator. If

i 6= j we need to show that PiPj = 0. To show this, consider arbitrary states |ϕ〉 , |ψ〉 ∈ V . Then, by the

definition of the projection operators Pi, Pi |ψ〉 ∈Eigλi . Since Eigλi and Eigλj are orthogonal for i 6= j, we

conclude

0 = (Pi |ϕ〉 , Pj |ψ〉) = 〈ϕ|PiPj |ψ〉 .

However, if the matrix element 〈ϕ|PiPj |ψ〉 vanishes for all |ϕ〉 , |ψ〉 ∈ V , then we have the operator identity

PiPj = 0.

(ii) Suppose the dimension of Eigλi is ki and Bi = {|bi,1〉 , . . . , |bi,ki〉} is an orthonormal basis of Eigλi so

that B = ∪mi=1B
i is an orthonormal basis of eigenvectors of A. Then

Pi =

ki∑
l=1

|bi,l〉 〈bi,l| (3.16)

and hence

m∑
i=1

Pi =

m∑
i=1

ki∑
l=1

|bi,l〉 〈bi,l| = I (3.17)

by the general formula (2.50) for the identity in terms of an orthonormal basis.

(iii) To show the equality of operators (3.15) we show their equality when acting on a basis of V . Using

Pi |bj,l〉 = δij |bj,l〉 , l = 1, . . . , kj (3.18)

we have

m∑
i=1

λiPi |bj,l〉 = λj |bj,l〉 (3.19)

which agrees with the action of A on |bk,j〉, as was to be shown. �
Before we study examples we note :
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Corollary 3.1 With the assumptions of the previous theorem, the following identity holds:

(

m∑
i=1

λiPi)
n =

m∑
i=1

λni Pi. (3.20)

Proof We prove the corollary by induction. Clearly the claim holds for n = 1. Suppose it holds for n− 1 i.e.

(

m∑
i=1

λiPi)
n−1 =

m∑
i=1

λn−1
i Pi (3.21)

Using this identity, and applying (3.13) and (3.14) we compute

(

m∑
i=1

λiPi)
n = (

m∑
i=1

λiPi)(

m∑
j=1

λiPi)
n−1

= (

m∑
i=1

λiPi)(

m∑
j=1

λn−1
j Pj)

=

m∑
i,j=1

λiλ
n−1
j PiPj

=

m∑
i=1

λni Pi, (3.22)

as claimed. �

Example 3.4 Consider again the Hermitian operator studied in example 2.17, whose matrix representation

relative to the canonical basis of C2 is

A =

(
0 1

1 0

)
. (3.23)

Using the results of 2.17 write A in the form (3.15).

The eigenspaces for the eigenvalues λ1 = 1 and λ2 = −1 are both one dimensional, and the projectors

onto these eigenspaces can be written in terms of the eigenvectors found in example 2.17:

P1 = |v1〉 〈v1| , P2 = |v2〉 〈v2|

Hence (3.15) takes the form

A = |v1〉 〈v1| − |v2〉 〈v2| .

It is instructive to check that this reproduces the matrix (3.23) when we insert the coordinates of the

eigenvectors |v1〉 and |v2〉 relative to the canonical basis

P1 =
1

2

(
1

1

)(
1 1

)
=

1

2

(
1 1

1 1

)
and

P2 =
1

2

(
1

−1

)(
1 −1

)
=

1

2

(
1 −1

−1 1

)
so that

P1 − P2 =

(
0 1

1 0

)
as required. �

We now come to the promised proof that the quantities pψ(λi) defined in Postulate 2 can consistently be

interpreted as probabilities.

Lemma 3.3 The probabilities defined in (3.1) satisfy

(i) 0 ≤ pψ(λi) ≤ 1
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(ii)

m∑
i=1

pψ(λi) = 1

Proof

(i) Starting from the definition pψ(λi) = 〈ψ|Pi |ψ〉 we use the projection property P 2
i = Pi and the

Hermiticity of Pi to write

pψ(λi) = (|ψ〉 , P 2
i |ψ〉) = (Pi |ψ〉 , Pi |ψ〉) = |Pi |ψ〉 |2 (3.24)

showing that pψ(λi) is real and positive. To see that it is less than one note

(〈ψ|Pi |ψ〉)2 ≤ | |ψ〉 |2|Pi |ψ〉 |2

by the Cauchy-Schwarz inequality. Since | |ψ〉 | = 1 we deduce

pψ(λi)
2 ≤ pψ(λi)

or

pψ(λi) ≤ 1

(ii) Inserting the definition (3.1) and using the identity (3.14) we have

m∑
i=1

pψ(λi) = 〈ψ|
m∑
i=1

Pi |ψ〉 = 〈ψ| I |ψ〉 = 1.

�

Corollary 3.2 The ket (3.2) is a state vector, i.e. has norm 1.

Proof This follows from the calculation (3.24), which shows that the norm of Pi |ψ〉 is
√
pψ(λi), so that

Pi |ψ〉 /
√
pψ(λi) has norm 1 �

The Postulate 2 discussed in this subsection selects the possible outcomes of measurements of an observable

A of a physical system and, given a state |ψ〉 of the system, assigns probabilities to each of these outcomes.

Given such data we can compute the expectation value and standard deviation for repeated measurements of

the observable A, assuming that the system is always prepared in the same state |ψ〉 before the measurement.

Using the usual definition of expectation value as the average of the possible outcomes, weighted with their

probabilities we have

Eψ(A) =

m∑
i=1

λipψ(λi)

=

m∑
i=1

λi 〈ψ|Pi |ψ〉

= 〈ψ|
m∑
i=1

λiPi |ψ〉

= 〈ψ|A |ψ〉 . (3.25)

Motivated by this calculation we define:

Definition 3.1 (Expectation value and standard deviation) Consider a system with Hilbert space V .

The quantum mechancial expectation value of an observable A in the state |ψ〉 is defined as

Eψ(A) = 〈ψ|A |ψ〉 . (3.26)

The standard deviation of A is defined via

∆ψ(A) =
√
Eψ(A2)− (Eψ(A))2 (3.27)
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Note that

Eψ
(
(A− Eψ(A)I)2

)
= Eψ

(
(A2 − 2Eψ(A)A+ (Eψ(A))2 I

)
= Eψ(A2)− (Eψ(A))2

so that the standard deviation is also given by

∆ψ(A) =
√
Eψ ((A− Eψ(A)I)2) (3.28)

Example 3.5 Suppose that |ψ〉 is an eigenstate of the observable A with eigenvalue λ. Show that then

∆ψ(A) = 0.

If A |ψ〉 = λ |ψ〉 we have 〈ψ|A |ψ〉 = λ and 〈ψ|A2 |ψ〉 = λ2. Hence

∆2
ψ(A) = Eψ(A2)− (Eψ(A))2 = 0.

�
Physical interpretation: The expectation value and standard deviation of an observable play a crucial

role in linking the formalism of quantum mechanics with experiment. The expectation value 〈ψ|A |ψ〉 of

an observable is the prediction quantum mechanics makes for the average over the results of a repeated

measurement of the observable A, assuming that the system is the state ψ at the time of the measurements.

The standard deviation ∆ψ(A) is the prediction quantum mechanics makes for the standard deviation of

the experimental measurements. Note the contrast with classical physics, where an ideal experimental

confirmation of a theory would produce the predicted result every time, with vanishing standard deviation.

A non-vanishing standard deviation in experimental results is interpreted as a consequence of random errors

and inaccurate measurements. In quantum mechanics even an experiment free of errors and inaccuracies is

predicted to produce results with a non-vanishing standard deviation, except when the state of the system

happens to be an eigenstate of the observable to be measured.

Although we have motivated the definitions of expectation value and standard deviation by the analogy

with classical probability theory, we will find some important differences between quantum mechanical ex-

pectation values and expectation values in classical probability theory in later sections, particularly in the

discussion of Bell inequalities.

Example 3.6 Compute the expectation value and standard deviation of the observable A in the state |ψ〉
of example 3.2

〈ψ|A |ψ〉 = (1, 0, 0)

1 1 0

1 1 0

0 0 2

1

0

0

 = 1.

Since

A2 =

2 2 0

2 2 0

0 0 4


we have

〈ψ|A2 |ψ〉 = (1, 0, 0)

2 2 0

2 2 0

0 0 4

1

0

0

 = 2

and therefore

∆ψ(A) =
√

2− 1 = 1. (3.29)

3.4 Time evolution

An important part of any physical model is mathematical description of how the system changes in time. In

Newtonian mechanics this is achieved by Newton’s second law, which states that the rate of change of the

momentum of a particle is proportional to the force exerted on it. Newton’s law does not specify the force
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but it postulates that there always is a force responsible for a change in momentum. The time evolution

postulate in quantum mechanics is similar in this respect. It restricts the way in which the state of a quantum

mechanical system changes with time.

Postulate 3: Time evolution is unitary

The time evolution of a closed system is described by a unitary transformation. If the state of the system is

|ψ〉 at time t and |ψ′〉 at time t′ then there is a unitary operator U so that

|ψ′〉 = U |ψ〉 (3.30)

Before studying an example we note an important property of time evolution

Lemma 3.4 Quantum mechanical time evolution preserves the norm of a state. In particular, in the ter-

minology of Postulate 1, it maps a state vector into a state vector

Proof The preservation of the norm follows directly from the unitarity of U :

|U |ψ〉 |2 = (U |ψ〉 , U |ψ〉) = (U†U |ψ〉 , |ψ〉) = (|ψ〉 , |ψ〉) = | |ψ〉 |2.

According to Postulate 1, state vectors are vectors of norm one. Since U preserves the norm, it maps state

vectors to state vectors. �

Example 3.7 Suppose a single qubit system with Hilbert space V = C2 is in the state |0〉 at time t = 0

seconds. The time evolution operator from time t = 0 seconds to time t = 1 second has the matrix

representation

U =
1

2

(
i
√

3 −1

1 −i
√

3

)
(3.31)

relative to the canonical basis. Check that U is unitary and find the state of the system at time t = 1 second.

If a measurement in the canonical basis is carried out what is the probability of finding the system in the

state |0〉 at time t = 1 seconds? What is the probability of finding in the state |1〉?

Checking unitary amounts to checking if Ū tU = I. This is a straightforward matrix calculation. According

to the time evolution postulate, the state of the system at time t = 1 seconds is

|ψ′〉 =
1

2

(
i
√

3 −1

1 −i
√

3

)(
1

0

)
=

1

2

(
i
√

3

1

)
=
i
√

3

2
|0〉+

1

2
|1〉 (3.32)

According to the discussion preceding (3.12) the probability of finding the system in the state |0〉 at time

t = 1 seconds is therefore |〈ψ′ |0〉 |2 = 3
4 and the probability of finding it in the state |1〉 at time t = 1 seconds

is |〈ψ′ |1〉 |2 = 1
4 . �

The time evolution postulate of quantum mechanics is often stated in terms of a differential equation for

the state vector. We give this alternative version here, and then show that it implies our earlier version of

the time evolution postulate.

Postulate 3’: Schrödinger equation

The time evolution of a closed system with associated Hilbert space V is governed by a differential equation

for state vectors, called the Schrödinger equation. It takes the form

i~
d

dt
|ψ〉 = H |ψ〉 , (3.33)

where H : V → V is a Hermitian operator, called the Hamiltonian and 2π~ ≈ 6.626× 10−34 kg m2/sec is

a constant called Planck’s constant. In general, H also depends on the time variable t.

It is instructive to consider the “trivial” case where V = C, so the time-dependent state vector is just a

map ψ : R → C, and a Hermitian operator H is a Hermitian 1×1 matrix, i.e. a real number. Then the

Schrödinger equation becomes

dψ

dt
= − iH

~
ψ, (3.34)
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which is a first-order linear differential equation. The unique solution satisfying the initial condition ψ(0) =

ψ0 is

ψ(t) = e−
i
~ tHψ0. (3.35)

Thus we see that the state at time t is obtained from the state at time t = 0 by multiplication with the

phase exp
(
− i

~ tH
)

- which is a unitary operator C→ C, as required by Postulate 3.

In order to generalise the derivation of Postulate 3 from Postulate 3’ to Hilbert spaces of arbitrary (finite)

dimension, we need to study the exponentiation of Hermitian operators. We begin with the more general

notion of a function of a Hermitian operator. The basic idea is to use the spectral decomposition given in

(3.15):

Definition 3.2 Let A : V → V be a Hermitian operator in the Hilbert space V , and suppose the spectral

decomposition of A is

A =

m∑
i=1

λiPi (3.36)

For a given function f : R→ R we define the Hermitian operator f(A) via

f(A) =

m∑
i=1

f(λi)Pi (3.37)

The evaluation of the operator f(A) is cumbersome if we have to find the spectral decomposition of A

first. We can avoid this if the function f is analytic i.e. has a convergent power series in some neighbourhood

of 0.

f(λ) =

∞∑
n=0

anλ
n, (3.38)

for real numbers an. In that case we use the result (3.20) to compute

f(A) =

m∑
i=1

f(λi)Pi

=

∞∑
n=0

an

m∑
i=1

λni Pi

=

∞∑
n=0

an(

m∑
i=1

λiPi)
n

=

∞∑
n=0

anA
n. (3.39)

Thus we see that we can compute f(A) by formally inserting the operator A into the power series for f .

The following example shows that such power series of operators can sometimes be evaluated explicitly.

Example 3.8 If H =

(
0 1

1 0

)
compute the matrix exp(itH) for t ∈ R.

We need to compute

exp(itH) =

∞∑
n=0

(it)n

n!
(H)n. (3.40)

Noting that

H2 =

(
1 0

0 1

)
= I

and

H3 =

(
0 1

1 0

)
= H
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etc. we have

exp(itH) =
∑
n even

(it)n

n!
I +

∑
n odd

(it)n

n!
H.

But ∑
n even

(it)n

n!
= 1− t2

2
+
t4

4!
. . . = cos(t)

and ∑
n odd

(it)n

n!
= it− i t

3

3!
+ i

t5

5!
. . . = i sin(t)

and therefore

exp(itH) = cos(t)I + i sin(t)H =

(
cos t i sin t

i sin t cos t

)
. (3.41)

�
In the example we could evaluate the power series explicitly and thereby show that it converges. For a

general operator A and a general analytic function f , the convergence of the power series for f(A) needs to

be checked. In general, the series will only have a finite radius of convergence. However, it follows from the

convergence of the power series

exp(x) =

∞∑
n=0

xn

n!

for all x that the operator exp(A) has a convergent power series for any operator A. We collect some

properties of the exponential of a matrix in the following lemmas.

Lemma 3.5 Let H be a Hermitian operator in a Hilbert space V . Then the power series for exp(itH)

converges for all t ∈ R. Moreover,

d

dt
exp(itH) = iH exp(itH) = i exp(itH)H. (3.42)

Proof The power series (3.40) for exp(itH) is absolutely and uniformly convergent and can therefore be

differentiated term by term. Thus we find

d

dt
exp(itH) =

∞∑
n=0

in
(it)n−1

n!
(H)n

= iH

∞∑
n=1

(it)n−1

(n− 1)!
(H)n−1

= iH exp(itH) (3.43)

From the power series it is obvious that H commutes with exp(itH), so we also have

d

dt
exp(itH) = i exp(itH)H.

�

Lemma 3.6 If A and B are diagonalisable operators in a Hilbert space V with vanishing commutator

[A,B] = 0 then

exp(A+B) = exp(A) exp(B) (3.44)

Proof According to the theorem 2.4 there exists a basis of V such that both A and B are diagonal with

respect to that basis. Thus we can give spectral decompositions

A =

m∑
i=1

λiPi B =

m∑
i=1

µiPi (3.45)
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with the same complete set of orthogonal projectors Pi. Hence

A+B =

m∑
i=1

(λi + µi)Pi (3.46)

and

exp(A+B) =

m∑
i=1

eλi+µiPi =

m∑
i=1

eλieµiPi. (3.47)

But by the same calculation as we carried out in the proof of (3.20) we find

exp(A) exp(B) = (

m∑
i=1

eλiPi)(

m∑
j=1

eµjPj)

=

m∑
i=1

eλieµiPi. (3.48)

�
We use the two preceding lemmas to relate the two versions of the time evolution postulate.

Theorem 3.1 (Schrödinger time evolution is unitary) If the Hamiltonian H : V → V is independent

of t, the unique solution of the Schrödinger equation (3.33) satisfying the initial condition |ψ(t = 0)〉 = |ψ0〉
is given by

|ψ(t)〉 = U(t) |ψ0〉 (3.49)

where

U(t) = exp

(
−i t

~
H

)
. (3.50)

Moreover U(t) is unitary and can play of the role of time evolution operator.

Proof Using the theorem 3.5 and the chain rule to differentiate (3.49) we find

d

dt
|ψ(t)〉 = − i

~
H exp

(
−i t

~
H

)
|ψ0〉 = − i

~
H |ψ(t)〉

so that

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉

and the Schrödinger equation is indeed satisfied. Moreover U(0) = 1 so |ψ(t)〉 = |ψ0〉 as required. To show

that U(t) is unitary for all t ∈ R. we first deduce from from the power series expression for U(t) that

U†(t) = exp

(
i
t

~
H

)
(3.51)

since H is Hermitian, i.e. H† = H. Since H commutes with −H we can apply lemma 3.6 to conclude

U†U(t) = exp

(
i
t

~
H − i t

~
H

)
= exp(0) = I, (3.52)

thus establishing the unitarity of U(t). �

Example 3.9 Consider the Hilbert space V = C2 with its canonical inner product and the Hamiltonian

with matrix representation

H = b

(
1 0

0 −1

)
(3.53)

relative to the canonical basis.

(i) Find the time evolution operator and use it to solve the Schrödinger equation with initial condition

|ψ(t = 0)〉 = 1√
2
(|0〉+ |1〉).
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(ii) What is the probability of finding the system in the orthogonal state |ϕ〉 = 1√
2
(|0〉 − |1〉) at time t?

(iii) Compute the expectation value at time t of the observable

A =

(
0 1

1 0

)
.

(i) Since the matrix representing the Hamiltonian is diagonal the time evolution operator is

U(t) = exp

(
− it
~
H

)
=

(
e−

itb
~ 0

0 e
itb
~

)
(3.54)

Hence the state of the system at time t is

|ψ(t)〉 = U(t)
1√
2

(
1

1

)
=

1√
2

(
e−

itb
~

e
itb
~

)

=
1√
2
e−

itb
~ |0〉+

1√
2
e
itb
~ |1〉 . (3.55)

(ii) The probability of finding the system in the state |ϕ〉 is

| 〈ϕ|ψ(t)〉 |2 =
1

2
|e− itb~ − e itb~ |2 = sin2

(
tb

~

)
. (3.56)

Note that the probability oscillates between 0 and 1.

(iii) To compute the expectation value of the observable A at time t we note

A |ψ(t)〉 =
1√
2
e−

itb
~ |1〉+

1√
2
e
itb
~ |0〉

and hence

〈ψ(t)|A |ψ(t)〉 =

(
1√
2
e−

itb
~ |0〉+

1√
2
e
itb
~ |1〉 , 1√

2
e−

itb
~ |1〉+

1√
2
e
itb
~ |0〉

)
=

1

2
(e

2itb
~ + e

−2itb
~ ) = cos

(
2tb

~

)
. (3.57)

�
Generally, in order to compute the expectation value of an observable in the state |ψ(t)〉 = U(t) |ψ(0)〉 we

need to evaluate

〈ψ(t)|A |ψ(t)〉 = (ψ(t), Aψ(t)) = (U(t)ψ(0), AUψ(0)) =
(
ψ(0), U†AUψ(0)

)
(3.58)

Writing the last expression in bra-ket notation and using the unitarity of U we have the equality

〈ψ(t)|A |ψ(t)〉 = 〈ψ(0)|U−1(t)AU(t) |ψ(0)〉 . (3.59)

This shows that the expectation value of the (time-independent) observable A in the time dependent state

|ψ(t)〉 is the same as the expectation value of the time-dependent observable

A(t) = U−1(t)AU(t) (3.60)

in the time-independent state |ψ(0)〉. The point of view where the observables obey the time evolution law

(3.60) and the states are time-independent is called the Heisenberg picture of quantum mechancis. The

point of view where states evolve according to the fundamental equation (3.30) is called the Schrödinger

picture. We will mostly stick to the Schrödinger picture in this text.

3.5 The Heisenberg uncertainty relation

Heisenberg’s uncertainty relation is one of the best known results in quantum mechanics. It sets an upper

limit on the accuracy with which non-commuting observables can be measured. More precisely, for a given

state of a system it gives a lower bound on the product of the standard deviations of two observables in terms

of the expectation value of their commutator. We already saw in the example 3.5 that the standard deviation
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of an observable A in a state |ψ〉 vanishes if the state |ψ〉 is an eigenstate of A. On the other hand, we know

from theorem 2.4 that, given two observables, there is a basis of simultaneous eigenvectors if and only if the

observables commute. It therefore not surprising that the commutator of two observables controls the extent

to which the standard deviation of both can be minimised. Mathematically, the uncertainty relation is not

a very surprising or difficult result.

The fame of the uncertainty relation (also: uncertainty principle) is related to the role it played in the

discussion about the physical interpretation of quantum mechanics. It clearly points out a fundamental

difference between quantum mechanics and classical physics, where any two quantities can, in principle,

be measured to arbitrary accuracy. It is named after its discoverer, Werner Heisenberg, who, among the

inventors of quantum mechanics, is one of the most colourful and certainly the most controversial. Heisenberg

belonged to the young generation of physicists who created quantum mechanics from the “old” quantum

theory of Einstein, Planck and Bohr. He was awarded the Nobel Prize in 1932, at the mere age of 31. During

the second world war he lead the unsuccessful German nuclear bomb project. His role there remains the

source of much historical controversy. After the war, he played an important role in rebuilding German

physics as the head of the Max-Planck-Institute of Physics in Göttingen (which later moved to Munich). If

you want to read up about Heisenberg and his life, you could have a look at the Wikipedia article about

Heisenberg, or read the wonderful play “Copenhagen” by Michael Frayn.

Theorem 3.2 (Heisenberg uncertainty relation) Let A and B be two Hermitian operators in a Hilbert

space V . Then, for any state |ψ〉 ∈ V , the product of the standard deviations of A and B is bounded below

by half the modulus of the expectation value of the commutator [A,B]; in symbols

∆ψ(A)∆ψ(B) ≥ 1

2
| 〈ψ| [A,B] |ψ〉 | (3.61)

Proof Define the (|ψ〉-dependent) operators

C = A− Eψ(A)I, D = B − Eψ(B)I (3.62)

so that, according to (3.28)

∆ψ(A) =
√
〈ψ|C2 |ψ〉, ∆ψ(B) =

√
〈ψ|D2 |ψ〉. (3.63)

Now apply the Cauchy-Schwarz inequality to the expectation value of the product CD, using the Hermiticity

of C and D:

| 〈ψ|CD |ψ〉 | ≤ |C |ψ〉 ||D |ψ〉 | =
√
〈ψ|C2 |ψ〉

√
〈ψ|D2 |ψ〉 (3.64)

Noting that

〈ψ| [C,D] |ψ〉 = 〈ψ|CD |ψ〉 − 〈ψ|DC |ψ〉
= 〈ψ|CD |ψ〉 − 〈ψ| (CD)† |ψ〉
= 〈ψ|CD |ψ〉 − 〈ψ|CD |ψ〉
= 2iIm(〈ψ|CD |ψ〉) (3.65)

and that for any complex number w = a+ ib we have |w| =
√
a2 + b2 ≥ |b| = |Im(w)| we deduce

1

2
| 〈ψ| [C,D] |ψ〉 | ≤ | 〈ψ|CD |ψ〉 | (3.66)

so that, together with (3.64) we have

1

2
| 〈ψ| [C,D] |ψ〉 | ≤

√
〈ψ|C2 |ψ〉

√
〈ψ|D2 |ψ〉 (3.67)

Now we note that [A,B] = [C,D] so that (3.67) is equivalent to the claimed inequality (3.61). �

Example 3.10 Use the definition of the Pauli matrices in (2.70) to show that [σ1, σ2] = 2iσ3. Hence

evaluate both sides of the Heisenberg uncertainty relation (3.61) for A = σ1, B = σ2 and for a general state

|ψ〉 = α |0〉+ β |1〉 in C2 (i.e. α, β ∈ C and |α|2 + |β|2 = 1). Find the condition on α and β for the equality

to hold in (3.61).
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Checking the commutation relation [σ1, σ2] = 2iσ3 is a simple matrix calculation. Now note that σ2
1 = σ2

2 = I

so that

∆2
ψ(σ1) = 〈ψ |ψ〉 − (〈ψ|σ1 |ψ〉)2 = |α|2 + |β|2 − (ᾱβ + β̄α)2 = 1− (ᾱβ + β̄α)2 (3.68)

and

∆2
ψ(σ2) = 〈ψ |ψ〉 − (〈ψ|σ2 |ψ〉)2 = |α|2 + |β|2 + (ᾱβ − β̄α)2 = 1 + (ᾱβ − β̄α)2 (3.69)

On the other hand

〈ψ|σ3 |ψ〉 = |α|2 − |β|2. (3.70)

Now define the real numbers

x = ᾱβ + β̄α = 2Re(ᾱβ)

y = −i(ᾱβ − β̄α) = 2Im(ᾱβ)

z = |α|2 − |β|2 (3.71)

and note that

x2 + y2 + z2 = (ᾱβ + β̄α)2 − (ᾱβ − β̄α)2 + (|α|2 − |β|2)2

= (|α|2 + |β|2)2 = 1 (3.72)

Therefore

∆2
ψ(σ1)∆2

ψ(σ2) = (1− x2)(1− y2)

= 1− x2 − y2 + x2y2 = z2 + x2y2 (3.73)

Since z = 〈ψ|σ3 |ψ〉 = 1
2i 〈ψ| [σ1, σ2] |ψ〉 we have

∆2
ψ(σ1)∆2

ψ(σ2) =
1

4
| 〈ψ| [σ1, σ2] |ψ〉 |2 + x2y2 (3.74)

so that the equality

∆2
ψ(σ1)∆2

ψ(σ2) =
1

4
| 〈ψ| [σ1, σ2] |ψ〉 |2 (3.75)

holds iff x = 0 or y = 0. Comparing with (3.71) we conclude that this is equivalent to Re(ᾱβ) = 0 or

Im(ᾱβ) = 0 �
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Spin 1/2

4.1 General remarks

We have often used the Hilbert space V = C2 in example calculations in this text. Historically, the use of

this Hilbert space in physics goes back to 1924 when Wolfgang Pauli introduced what he called a ”two-valued

quantum degree of freedom” associated with the electron in the outermost shell of an atom. Pauli introduced

these degrees of freedom to account for certain properties of atomic spectra, and for the behaviour of atoms in

magnetic fields. It was subsequently pointed out by Uhlenbeck and Goudsmit that Pauli’s degrees of freedom

could be interpreted as describing a self-rotation or “spin” of the electron. Pauli formalised the theory of

spin in 1927, introducing the Hilbert space V = C2 for his ”two-valued quantum degree of freedom” and

also giving Hermitian operators which describe the spin of the particles. As we shall explain, the spin of a

particle with Hilbert space C2 is ~
2 . Today we know that all experimentally observed elementary particles

(electrons, muons, quarks etc.) have spin ~
2 . It is common to drop the ~ and talk about “spin 1/2” particles.

In quantum computing the Hilbert space V = C2 is the state space of a single qubit. This is the funda-

mental constituent of any quantum computer, just like a bit is the fundamental constituent of any classical

computer. However, whereas there is little one can say about a single bit, a surprising amount of theory is

necessary fully to understand a single qubit.

Mathematically, the Hilbert space V = C2 is the simplest space in which to illustrate the postulates of

quantum mechanics. As we shall see, we can explicitly describe all Hermitian and all unitary operators acting

in this space, thus giving us a complete picture of all observables and all possible time evolution operators.

Moreover, we can interpret every state in C2 as an eigenstate of a physically interesting observable, thus

giving us a physical interpretation of every state.

4.2 Spin operators

We begin by recalling the definition of the Pauli matrices in (2.70)

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
and noting the multiplication table

σ2
1 = σ2

2 = σ2
3 = I

σ1σ2 = −σ2σ1 = iσ3

σ2σ3 = −σ3σ2 = iσ1

σ3σ1 = −σ1σ3 = iσ2 (4.1)

The multiplication table (4.1) can be summarised succinctly using the epsilon symbol, defined as follows

εabc =


1 if a, b, c are a cyclical permutation of 1,2,3

−1 if a, b, c are an anti-cyclical permutation of 1,2,3

0 otherwise

(4.2)

34



4.3 Hermitian operators in C2 35

Thus, for example, ε121 = 0 and ε213 = −1. The required multiplication law takes the form

σaσb = δabI + i

3∑
c=1

εabcσc (4.3)

Definition 4.1 (Spin operators) The Hermitian operators

S1 =
~
2
σ1, S2 =

~
2
σ2, S3 =

~
2
σ3 (4.4)

are called the spin operators.

The characteristic mathematical property of spin operators is expressed in the following

Theorem 4.1 (Commutation relations of spin operators)

[Sa, Sb] =

3∑
c=1

i~εabcSc. (4.5)

Proof This follows directly from the rule (4.3). For example

S1S2 − S2S1 =
~2

4
(σ1σ2 − σ2σ1) =

2i~2

4
σ3 = i~S3 (4.6)

etc. �
When the Hilbert space C2 describes the spin degrees of freedom of a particle, the Hermitian operators

S1,S2 and S3 represent the particle’s spin about the 1, 2 and 3 axis. Here spin simply means angular momen-

tum about an axis through the particle’s centre of mass. As anticipated in the introductory remarks above,

spin is therefore a measure of “self-rotation” of the particle. It is obvious from the matrix representation

S3 = ~
(

1
2 0

0 − 1
2

)
(4.7)

that the spin operator S3 has eigenvalues ±~
2 . According to the quantum theory of spin these are the only

possible outcomes in a measurement of spin along the 3-axis. Further below we shall give a simple argument

why the eigenvalues of S1 and S2 are also ±~
2 (you are welcome to check this by a direct calculation). This

fact is the reason for associating the internal Hilbert space C2 with “spin ~/2”. It is worth comparing the

quantum mechanical notion of spin with the description of spin in classical physics. When a top is spinning

about a fixed axis with an angular momentum j, classical mechanics (and our intuition) predicts that the

projection of the angular momentum onto another axis can take any value in the interval [−j, j] ⊂ R.

According to quantum mechanics the measurement of the spin of a spin s = 1/2 particle along any axis only

every produces the result −~
2 or ~

2 - never any of the real numbers between those values. More generally, the

allowed values for the total spin in quantum mechanics are s = n~
2 where n is an integer, and the allowed

values for spin along any axis are −n~2 ,−
n~
2 + ~, . . . , n~2 − ~,−n~2 . Atomic and subatomic particles display

precisely this kind of behaviour. Their spin is quantised, and the difference between any two allowed values

of spin is an integer multiple of ~. In this sense, ~ is the “quantum of spin”.

4.3 Hermitian operators in C2

The spin operators are examples of Hermitian operators in C2, and the identity operator is another obvious

example. The next Lemma shows that all other Hermitian operators in C2 can be expressed as a linear

combination of the identity matrix and the Pauli matrices.

Lemma 4.1 Any Hermitian 2× 2 matrix can be written as

A = a0I + a1σ1 + a2σ2 + a3σ3, (4.8)

where a0, a1, a2 and a3 are real numbers.
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Proof First we check that the matrix (4.8) is indeed Hermitian. However, this follows from the fact that

identity matrix I and the Pauli matrices σ1, σ2 and σ3 are all Hermitian, so that

(a0I + a1σ1 + a2σ2 + a3σ3)† = a0I
† + a1σ

†
1 + a2σ

†
2 + a3σ

†
3

= a0I + a1σ1 + a2σ2 + a3σ3. (4.9)

Alternatively, we can check the Hermiticity by writing out the matrix

A =

(
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)
. (4.10)

Next we show that any Hermitian matrix can be written in the form (4.10). Thus consider a general 2× 2

matrix with complex entries

A =

(
a11 a12

a21 a22

)
. (4.11)

The requirement of Hermticity imposes the condition(
a11 a12

a21 a22

)
=

(
ā11 ā21

ā12 ā22

)
. (4.12)

which implies that a11 and a22 are real and a12 and a21 each other’s complex conjugate. Defining a1 and a2

to be the real and imaginary part of a21 and a0 = 1
2 (a11 + a22) as well as a3 = 1

2 (a11 − a22) we recover the

representation (4.10) �
Often we collect the real numbers a1, a2, a3 into one vector a = (a1, a2, a3) in R3 and similarly collect the

three Pauli matrices into a “vector of matrices”

σ = (σ1, σ2, σ3). (4.13)

Then we use the abbreviation

a·σ = a1σ1 + a2σ2 + a3σ3. (4.14)

As an illustration of the notation we study the following

Example 4.1 Use the identity (4.3) to show that, for any vectors p, q ∈ R3,

(p·σ)(q ·σ) = p·q I + i(p× q)·σ (4.15)

You can check the identity by writing out p ·σ = p1σ1 + p2σ2 + p3σ3 and q ·σ = q1σ1 + q2σ2 + q3σ3 and

carrying out the multiplication term by term, using the rule (4.3). �

4.4 Unitary operators in C2

In order to construct a parametrisation of all unitary operators in C2 we need the following

Lemma 4.2 With the notation (4.14) we have, for a unit vector n ∈ R3,

exp(iφn·σ) = cosφ I + i sinφn·σ. (4.16)

Proof This follows by the same calculation that we carried out in example 3.8. The key fact is that n ·σ,

like the operator H in 3.8 squares to I, as follows from (4.15) by setting p = q = n. Thus

exp(iφn·σ) =
∑
k even

(iφ)k

k!
I +

∑
k odd

(iφ)k

k!
n·σ

= cosφ I + i sinφ n·σ, (4.17)

as was to be shown. �
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Theorem 4.2 (Rotations) Suppose n and m are vectors in R3 of unit length, i.e. n2 = m2 = 1. Then

exp

(
− i

2
αn·σ

)
m·σ exp

(
i

2
αn·σ

)
= k·σ, (4.18)

where

k = (n·m)n+ cosα (m− (n·m)n) + sinα (n×m). (4.19)

Proof Using the formula (4.16) on the left hand side (LHS), we need to evaluate

LHS = (cos
α

2
− i sin

α

2
n·σ)m·σ(cos

α

2
+ i sin

α

2
n·σ) (4.20)

Now multiplying out using (4.15) we find

LHS = (cos
α

2
m·σ − i sin

α

2
n·mI + sin

α

2
(n×m)·σ)(cos

α

2
+ i sin

α

2
n·σ)

= cos2 α

2
m·σ − i sin

α

2
cos

α

2
n·mI + sin

α

2
cos

α

2
(n×m)·σ

+ i sin
α

2
cos

α

2
n·mI − sin

α

2
cos

α

2
(m× n)·σ

+ sin2 α

2
(n·m)(n·σ)− sin2 α

2
((n×m)× n)·σ, (4.21)

where we used (n×m)·n = 0 in the last step. Now use the identiy

(n×m)× n = m− (n·m)n

and collect terms to find

LHS = (cos2 α

2
− sin2 α

2
)m·σ + 2 sin

α

2
cos

α

2
(n×m)·σ + 2 sin2 α

2
(n·m)(n·σ)

Finally use the trigonometric identities

cos2 α

2
− sin2 α

2
= cosα,

2 sin
α

2
cos

α

2
= sinα

2 sin2 α

2
= 1− cosα (4.22)

to rewrite the result as

LHS = cosα(m·σ) + sinα(n×m)·σ + (1− cosα)(n·m)(n·σ). (4.23)

Re-arranging the terms now yields the RHS of (4.18), thus proving the claim. �
The formula (4.19) has an important geometrical interpretation: The vector k in (4.19) is obtained from

the vector m applying a rotation by an angle α about the axis n. The sense of the rotation is determined

by the right-hand rule: point the thumb of your right hand in the direction of the axis; your fingers then

point in the direction of the rotation. To illustrate this rule, we consider

Example 4.2 Let

Rn[α](m) = (n·m)n+ cosα (m− (n·m)n) + sinα n×m (4.24)

and consider the canonical basis of R3

e1 =

1

0

0

 , e2 =

0

1

0

 , e3 =

0

0

1

 .

Compute

Re3
[π/4]e1, Re2

[−π/2](e1), and Re1
[π/2]e2.
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Applying the formula (4.24), or thinking geometrically about the effect of rotating the vector e1 by π/4 (i.e.

45 degrees) about the axis e3 we find

Re3
[π/4]e1 =

1√
2
e1 +

1√
2
e2. (4.25)

Similarly, rotating e1 by −90 degrees about e2 gives

Re2 [−π/2](e1) = e3. (4.26)

and rotating e2 about e1 by 90 degrees we obtain

Re1
[π/2]e2 = e3. (4.27)

�
As an immediate consequence we prove our earlier claim about the eigenvalues of the spin operators S1

and S2.

Example 4.3 Show that the spin operators S1, S2 and S3 can be conjugate into each other i.e. that there

exist unitary matrices Uij , i, j = 1, 2, 3 so that

Si = U−1
ij SjUij ,

and deduce that S1, S2 and S3 all have eigenvalues ±~
2

Combining the result (4.26) from the previous example with the theorem 4.2 we deduce,

exp

(
iπ

4
σ2

)
σ1 exp

(
− iπ

4
σ2

)
= σ3 ⇒ exp

(
iπ

4
σ2

)
S1 exp

(
− iπ

4
σ2

)
= S3 (4.28)

showing that S3 is the diagonal form of S1. Similarly, result (4.27) of the previous example implies

exp

(
− iπ

4
σ1

)
σ2 exp

(
iπ

4
σ1

)
= σ3 ⇒ exp

(
− iπ

4
σ1

)
S2 exp

(
iπ

4
σ1

)
= S3 (4.29)

showing how to diagonalise S2, and that the diagonal form of S2 is S3. Hence, S1, S2 and S3 all have

eigenvalues ±~
2 . �

Corollary 4.1 Let θ ∈ [0, π] and φ ∈ [0, 2π) be angles parametrising unit vectors in R3 according to

k(θ, φ) =

sin θ cosφ

sin θ sinφ

cos θ

 (4.30)

Then

e−
i
2φσ3e−

i
2 θσ2σ3e

i
2 θσ2e

i
2φσ3 = k(θ, φ)·σ. (4.31)

Proof This follows by consecutive applications of theorem (4.2). First we compute

e−
i
2 θσ2σ3e

i
2 θσ2 = cos θ σ3 + sin θ σ1

as well as

e−
i
2φσ3σ3e

i
2φσ3 = σ3, and e−

i
2φσ3σ1e

i
2φσ3 = cosφσ1 + sinφσ2.

Combining, we deduce

e−
i
2φσ3e−

i
2 θσ2σ3e

i
2 θσ2e

i
2φσ3 = sin θ cosφσ1 + sin θ sinφσ2 + cos θ σ3, (4.32)

which was to be shown. �
We end this subsection by giving a parametrisation of a general unitary operator in C2. It can be shown

with the results proved in this subsection that our parametrisation captures all unitary operators. The proof

is a little technical and therefore omitted (but feel free to give your own proof!)

Remark 4.1 Any unitary 2× 2 matrix can be written as

U = eiβ exp(iµk·σ) (4.33)

for angles β, µ ∈ [0, 2π) and a unit vector k ∈ R3.
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4.5 Spin states

The spin operators S1, S2 and S3 are the Hermitian operators corresponding to spin along the 1-, 2- and

3-axis. More generally we consider the operator

k·S = k1S1 + k2S2 + k3S3, (4.34)

where k = (k1, k2, k3) is a unit vector in R3. The operator (4.34) is the Hermitian operator corresponding

to spin along the axis k. According to the Corollary 4.1 k·σ is conjugate to σ3 and therefore has eigenvalues

±1; hence k ·S has eigenvalues ±~
2 . In this section we find the general form of the eigenstates of k ·S.

Furthermore, we show that, conversely, every state in C2 is in fact the eigenstate of k ·S with eigenvalue
~
2 for some unit vector k ∈ R3. This allows us to interpret an arbitrary state in C2 as the “spin up” state

relative to some axis k. In order to simplify the formula we consider the Pauli matrices σ1, σ2 and σ3 instead

of the corresponding spin operators here; to obtain the corresponding formulae for the spin operators you

simply need to rescale by ~
2 at the appropriate places.

Lemma 4.3 (Spin eigenstates) The states

|(θ, φ)+〉 = e−
i
2φσ3e−

i
2 θσ2 |0〉 (4.35)

and

|(θ, φ)−〉 = e−
i
2φσ3e−

i
2 θσ2 |1〉 (4.36)

are eigenstates of the Hermitian operator k(θ, φ)·σ with eigenvalues respectively 1 and −1.

Proof Using the parametrisation (4.31) of the Hermitian operator k(θ, φ)·σ we find

k(θ, φ)·σ|(θ, φ)+〉 = e−
i
2φσ3e−

i
2 θσ2σ3e

i
2 θσ2e

i
2φσ3e−

i
2φσ3e−

i
2 θσ3 |0〉

= e−
i
2φσ3e−

i
2 θσ2 |0〉 = |(θ, φ)+〉 (4.37)

where we used σ3 |0〉 = |0〉 . By an entirely analogous calculation, using σ3 |1〉 = − |1〉, we deduce

k(θ, φ)·σ|(θ, φ)−〉 = −|(θ, φ)−〉 (4.38)

�

Example 4.4 Find the components of the C2 vectors |(θ, φ)±〉

We expand

e−
i
2 θσ2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
σ2 =

(
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) )
and

e−
i
2φσ3 =

(
e−

i
2φ 0

0 e
i
2φ

)
.

Carrying out the matrix mutliplication we find

|(θ, φ)+〉 = e−
i
2φσ3e−

i
2 θσ2

(
1

0

)
=

(
e−

i
2φ cos

(
θ
2

)
e
i
2φ sin

(
θ
2

) ) (4.39)

and

|(θ, φ)−〉 = e−
i
2φσ3e−

i
2 θσ2

(
0

1

)
=

(
−e− i

2φ sin
(
θ
2

)
e
i
2φ cos

(
θ
2

) ) . (4.40)

�

Corollary 4.2 Every vector |ψ〉 ∈ C2 is eigenvector of k·σ with eigenvalue 1 for some unit vector k ∈ R3.



40 Spin 1/2

Given the state |ψ〉 =

(
α

β

)
∈ C2, let us assume first that α 6= 0. Then consider the complex number β/α.

It has a unique parametrisation of the form

β

α
= tan

(
θ

2

)
eiφ, (4.41)

where θ ∈ [0, π) and φ ∈ [0, 2π). Then the state |ψ〉 must be of the form

|ψ〉 = w

(
e−

i
2φ cos

(
θ
2

)
e
i
2φ sin

(
θ
2

) )
for some complex number w and therefore proportional to (4.39). Hence it is an eigenstate of k(θ, φ)·σ with

eigenvalue 1, where k(θ, φ) given by (4.30). If α = 0 then

|ψ〉 =

(
0

β

)
, (4.42)

and this state is an eigenstate of −σ3 with eigenvalue 1, i.e. an eigenstate of k·σ if k = (0, 0,−1). �

4.6 The Stern-Gerlach experiment

In the Stern-Gerlach experiment a beam of silver atoms (which are electrically neutral and have spin 1/2)

is sent through an inhomogeneous magnetic field. Each atom has a spin magnetic moment which interacts

with the magnetic field. In quantum mechanics, the magnetic moment M = (M1,M2,M3) is a vector of

Hermitian operators, proportional to the spin vector S:

Ma = κSa, a = 1, 2, 3, (4.43)

where κ is a proportionality constant which depends on various physical quantities like the mass. Now

let k be a unit vector which points from the north to the south pole of the magnet used in the Stern-

Gerlach experiment. Then the inhomogeneous magnetic field causes the atom to be deflected either in the

direction of k (“up”) or in the opposite direction (“down”). A more detailed analysis shows that it effectively

performs a measurement of the operator k ·M . Up to a constant of proportionality, this is the operator

k · σ which we have studied in detail in this section. As we have seen, the eigenvalues of k ·σ are +1 and

−1; these eigenvalues correspond to the outcomes “deflected up” or “deflected down” in the Stern-Gerlach

experiment. If we parametrise k as in (4.30), the eigenstate with eigenvalue 1 is |(θ, φ)+〉 and the eigenstate

with eigenvalue −1 is |(θ, φ)−〉. The atoms which are deflected up are therefore in the state |(θ, φ)+〉 and

the atoms which are deflected down are in the state |(θ, φ)−〉.

incoming atoms

−

+(θ,φ)

(θ,φ)

.σk  

Fig. 4.1. Schematic representation of the Stern-Gerlach experiment

The Stern-Gerlach experiment was performed in Frankfurt in 1922 by Otto Stern and Walther Gerlach

with silver atoms. It played an important role in the genesis of quantum mechanics because it could not

be explained with the laws of classical physics. A classical analysis of the experiment would go as follows.

The electrically neutral but ”spinning” atoms enter an inhomogneous magnetic field with their spin in some

unknown direction. For some atoms, the spin is approximately aligned with the direction k from north to
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south pole, for others spin and k point in opposite directions, for most the angle between the spin and the

k takes some intermediate value. The force experienced by the atoms depends on this angle. It is such

that atoms whose spin points in the direction of k (“up”) should be deflected upwards and atoms whose

spin points in the opposite direction of k ( “down”) should be deflected downwards; atoms whose spin is at

right angles to k should not to be deflected at all. For intermediate angles we expect moderate deflections.

However, in the Stern-Gerlach experiment, we witness that all atoms are deflected either up or down by the

same amount. Quantum mechanics accounts for this, as we have seen. It allows only two outcomes of the

experiment since the observable k·M being measured has precisely two eigenvalues.

Example 4.5 (Cascaded Stern-Gerlach experiments) A beam of electrically neutral spin 1/2 atoms

is sent through a Stern-Gerlach apparatus with magnetic field direction k1 =

0

1

0

. Subsequently the

atoms which were deflected in the direction of k1 are sent through a Stern-Gerlach apparatus with magnetic

field direction k2 =

0

0

1

. What is the probability of an atom being deflected “downwards” in the second

apparatus, given that the initial state is |ψ〉 = |0〉?

The first Stern-Gerlach apparatus measures the operator k1 ·σ = σ2 In the parametrisation (4.30) this

corresponds to the angles θ = π
2 and φ = π

2 . According to (4.39), the eigenstate with eigenvalue +1 is

therefore ∣∣∣(π
2
,
π

2
)+
〉

=
1

2

(
1− i
1 + i

)
. (4.44)

Thus, according to Postulate 2, the probability of measuring the eigenvalue 1 is

〈0
∣∣∣(π

2
,
π

2
)+
〉
〈(π

2
,
π

2
)+ |0〉 =

1

4
(1− i)(1 + i) =

1

2
(4.45)

and the state after the measurement is
∣∣(π2 , π2 )+

〉
. In the second Stern-Gerlach experiment, the operator

k2 ·σ = σ3 is measured. The outcome “downwards” corresponds to the eigenvalue −1 being measured, for

which the eigenstate is |1〉. Given that the atom was in the state
∣∣(π2 , π2 )+

〉
at the time of the measurement,

the probability of this outcome is

〈(π
2
,
π

2
)+ |1〉 〈1

∣∣∣(π
2
,
π

2
)+
〉

=
1

4
(1 + i)(1− i) =

1

2
, (4.46)

and the state of the atom after the measurement is |1〉. Hence the probability of measuring 1 in the first and

−1 in the second Stern-Gerlach experiment is 1
2 ×

1
2 = 1

4 . �
Note that in the example the state |1〉 after the second measurement is orthogonal to the initial state |0〉.

If we had sent the atom only through the second Stern-Gerlach apparatus, the probability of measuring −1

would have been 〈0 |1〉 〈1 |0〉 = 0.
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The density operator

5.1 Ensembles of states

In this section we are going to generalise the notions of “state” and “expectation value”, and formulate

more general versions of the postulates of quantum mechanics. The drawback of the description of the

measurement process in 3.3 is that it requires a precise knowledge of the state |ψ〉 of the system before

the measurement. However, since it is eigenvalues of Hermitian operators and not the states which are the

outcomes of measurements, we can only prepare the system in a given state |ψ〉 if that state is uniquely

characterised by being the eigenstate of one or several Hermitian operators. This is the case when |ψ〉 is the

unique (up to phase) eigenstate corresponding to the eigenvalue λ of a Hermitian operator A, or when |ψ〉
is the unique (up to phase) eigenstate corresponding to eigenvalues λ, µ, . . . of several commuting Hermitian

operators A,B . . .. If, on the other hand, a Hermitian operator A has an eigenvalue λ with a two- (or higher)

dimensional eigenspace, the measurement outcome λ by itself does not tell us the state of the system. We

encountered this situation in discussing the example 3.2, where the observable A had a two-dimensional

eigenspace for the eigenvalue λ2 = 2 spanned by |b2,1〉 , |b2,2〉. If we had measured the eigenvalue λ2 = 2 of

the observable A without knowledge of the state of the system before the measurement we would only know

that the state of the system after the measurement is |b2,1〉 or |b2,2〉 or indeed any superposition of these

two states. If we were to perform a further measurement of a different observable, we would not be able to

use Postulate 2 to calculate probabilities and the state after the measurement since we do not know which

initial state |ψ〉 to use.

The usual way of parametrising ignorance in science is to ascribe probabilities to the various possibilities.

Consider a generalisation of the example, where we have a collection of states |ψk〉, k = 1, . . . ,K. These are

necessarily normalised so that 〈ψk |ψk〉 = 1 for k = 1, . . . ,K (otherwise we would not call them states) but

not assumed to be orthogonal to each other, or even linearly independent.

Suppose we know that the system is in one of the states |ψk〉, but we do not know which. Instead we have

probabilities pk, k = 1, . . . ,K, for each of the states |ψk〉. The set

E = {(pk, |ψk〉)}k=1,...,K (5.1)

is called an ensemble of states. Given an ensemble of states we reformulate Postulate 2 about the

measurement of an observable A as follows.

Suppose the observable has the spectral decomposition

A =

m∑
i=1

λiPi. (5.2)

in terms of orthogonal projection operators Pi and eigenvalues λi, i = 1, . . . ,m. The possible outcomes in

a measurement of A are the eigenvalues λ1, . . . , λm. If the state of the system is described by the ensemble

(5.1) then we know that

Probability of system being in state |ψk〉 = pk (5.3)

and

Probability of measuring λi given that system is in state |ψk〉 = pψk(λi). (5.4)

42
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Hence, using the standard “and” and “or” rules of classical probability, the probability of measuring the

eigenvalue λi is

pE(λi) =

K∑
k=1

pkpψk(λi), (5.5)

Using the formula (3.1) for pψk(λi) we have the equivalent expression

pE(λi) =

K∑
k=1

pk 〈ψk|Pi |ψk〉 . (5.6)

In computing expectation values of the observable A we average the expectation values for each of the states

in the ensemble:

EE(A) =

K∑
k=1

pk 〈ψk|A |ψk〉 . (5.7)

What is the ensemble after the measurement? Applying the projection rule (3.2) to each of the states |ψn〉
of the ensemble, the ensemble after the measurement contains the states Pi |ψk〉, k = 1, . . . ,K. Again using

standard probability theory for conditional probabilities

Probability of system being in state |ψk〉 given that λi has been measured

=
Probability of system being in state |ψk〉 and measuring λi

Probability of measuring λi

=
pkpψk(λi)

pE(λi)
(5.8)

Hence the ensemble after the measurement is

Ẽ =

{(
pkpψk(λi)

pE(λi)
,

1√
pψk(λi)

Pi |ψk〉

)}
k=1,...,K

(5.9)

Extending the measurement postulate by using the notion of an ensemble addresses our original concern. If

we only know that the state of a system is in some K-dimensional subspace W of the full Hilbert space V , we

might pick an orthonormal basis |ψk〉 of W and, based on our total ignorance, assign equal probabilities pk =
1
K to each of the basis states |ψk〉. Using the rules (5.5), (5.9) and (5.7) we can then analyse measurements

and compute expectation values

Example 5.1 Consider the Hilbert space C2 and the observable

A =

(
1 1

1 1

)
. (5.10)

In order to see the difference between a superposition and an ensemble, consider the state

|ψ〉 = α |0〉+ β |1〉 ,

where α and β are complex numbers satisfying |α|2 + |β|2 = 1, and the ensemble

E = {(|α|2, |0〉), (|β|2, |1〉)}

For both |ψ〉 and E , compute the probability of measuring the eigenvalue 2 of the observable A, and give the

state, respectively the ensemble, after the measurement. Also compute the expectation value of A for both

the state |ψ〉 and the ensemble E .

The eigenvector for the eigenvalue 2 of A is |v〉 = 1√
2
(|0〉 + |1〉). The probability of measuring this

eigenvalue, given that the system is in the state |ψ〉, is

pψ(2) = 〈ψ |v〉 〈v |ψ〉 =
1

2
(|α|2 + αβ̄ + ᾱβ + |β|2) =

1

2
|α+ β|2,
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and the state after the measurement is

1√
pψ(2)

|v〉 〈v |ψ〉 =
α+ β

|α+ β|
|v〉 ,

i.e. up to the phase eiδ := (α + β)/|α + β| the state after the measurement is the eigenstate |v〉 for the

eigenvalue 2. For the expectation value we find

Eψ(A) = |α|2 + αβ̄ + ᾱβ + |β|2 = |α+ β|2.

In order to analyse the measurement from the point of view of the ensemble E we need the probability of

measuring the eigenvalue 2 given that the system was in the state |0〉

p0(2) = 〈0 |v〉 〈v |0〉 =
1

2

and the probability of measuring the eigenvalue 2 given that the system was in the state |1〉

p1(2) = 〈1 |v〉 〈v |1〉 =
1

2
.

Hence the probability of measuring 2 if the system is described by the ensemble E is

pE(2) = |α|2p0(2) + |β|2p1(2) =
1

2
(|α|2 + |β|2) =

1

2
.

To find the ensemble after the measurement we note that

1√
p0(2)

|v〉 〈v| 0〉 = |v〉 , 1√
p1(2)

|v〉 〈v| 1〉 = |v〉

and therefore the ensemble after the measurement is

E ′ = {(|α|2, |v〉), (|β|2, |v〉)}; (5.11)

Since the state |v〉 appears twice, with a total probability |α|2 + |β|2 = 1, the state of the system after the

measurement is |v〉. Finally, the expectation value is

EE(A) = |α|2 + |β|2 = 1. �

The example shows that calculations with ensembles can be cumbersome, in particular the determination

of the ensemble after the measurement. The example also highlights a subtlety in the notion of a state which

we discussed after stating Postulate 1 in Chapter 3. The vectors |v〉 and eiδ |v〉, where δ is an arbitrary real

number, are eigenvectors of A with the same eigenvalue 2 and they are both normalised to unit length. In

quantum mechanics we can identify |v〉 and eiδ |v〉, i.e. we can consider them to be the same state. We have

not done that in our formulation of Postulate 1 mainly for pedagogical reasons. However, we shall see that

the new formulation of the postulates in this chapter takes care of this problem. Our new notion of states

will not distinguish between |v〉 and eiδ |v〉.
The key idea for the new formulation of the postulates is to associate to each normalised vector ψ the

projection operator

Pψ = |ψ〉 〈ψ| . (5.12)

Clearly, the projection operator is the same for |ψ〉 and eiδ |ψ〉, since the phase drops out in (5.12).

In manipulating the traces in the remainder of this chapter, we will make frequent use of the following

generalisation of the cyclicity property of the trace shown in (2.29)

Lemma 5.1 Let V,W be two vector spaces and A : V →W and B : W → V linear maps. Then

tr(AB) = tr(BA) (5.13)

In particular, for |ψ〉 , |φ〉 ∈ V ,

tr(|ψ〉 〈φ|) = 〈φ |ψ〉 . (5.14)

We note an important application:
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Corollary 5.1 For any Hermitian operator A acting in the Hilbert space V and any state |ψ〉 ∈ V

〈ψ|A |ψ〉 = tr(PψA). (5.15)

Proof Using (5.13) and (5.14) we have

tr(PψA) = tr(|ψ〉 〈ψ|A) = tr(A |ψ〉 〈ψ|) = 〈ψ|A |ψ〉 . (5.16)

�
Using this corollary, we write the probability pψ(λi) as

pψ(λi) = tr(PψPi) (5.17)

and the expectation value Eψ(A) as

Eψ(A) = tr(PψA) (5.18)

Thus, if we associate the operator

ρE =

K∑
k=1

pk |ψk〉 〈ψk| (5.19)

to the ensemble E in (5.1), we can write the probability (5.5) as

pE(λi) = tr(ρEPi) (5.20)

and the expectation value (5.7) as

EE(A) = tr(ρEA). (5.21)

Operators like (5.19) are called density operators. We give a careful definition of such operators below, and

will rephrase our quantum mechanical postulates in terms of them. In order to formulate all of the quantum

mechanical postulates in terms of density operators we need the following

Lemma 5.2 If 〈ψ| is the bra corresponding to the ket |ψ〉 in a Hilbert space V and A is an operator V → V

then the bra corresponding to the ket A |ψ〉 is 〈ψ|A†.

Proof If you are happy with the extension of the definition of † to bra’s and ket’s in(2.63) and (2.64) you

will like the following one-line calculation of the bra corrsponding to A |ψ〉:

(A |ψ〉)† = |ψ〉†A† = 〈ψ|A†. (5.22)

A proof starting from first principles goes as follows. Recall that, by definition, the bra 〈ψ| is the map

〈ψ| : V → V, |ϕ〉 7→ 〈ψ |ϕ〉 = (|ψ〉 , |ϕ〉) (5.23)

Thus the bra associated to A |ψ〉 is the map

|ϕ〉 7→ (A |ψ〉 , ϕ) = (|ψ〉 , A† |ϕ〉) (5.24)

which is the composition of the maps

|ϕ〉 7→ A† |ϕ〉 7→ (|ψ〉 , A† |ϕ〉), (5.25)

and this is precisely the definition of 〈ψ|A†. �
It follows in particular that if P is an orthogonal (i.e. Hermitian) projection operator then the bra

corresponding to P |ψ〉 is 〈ψ|P . Hence the density operator constructed from the ensemble (5.9) after the

measurement is

ρẼ =

K∑
k=1

pk
pE(λi)

Pi |ψk〉 〈ψk|Pi (5.26)

Note that the dependence on pψk(λi) drops out. Recalling the formula (5.20) we can write the density
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operator after the measurement very elegantly in terms of the density operator before the measurement and

the projection operator Pi:

ρẼ =
PiρEPi

tr(ρEPi)
. (5.27)

Finally we note that the time evolution postulate can also be formulated very simply in terms of the density

operator. If the time evolution of the states |ψk〉 in the ensemble E from time t to time t′ is given by the

unitary operator U , so that the states at t′ are given by

|ψ′k〉 = U |ψk〉 (5.28)

then the corresponding density operator evolves to

ρE′ =

K∑
k=1

Upk |ψk〉 〈ψk|U† = UρEU
−1, (5.29)

where we used the unitarity of U .

Before we re-write the postulates of quantum mechanics in terms of density operators, we give a general

definition. The definition is motivated by two properties of the density operators we have considered so far.

Definition 5.1 (Density operator) A density operator in a Hilbert space V is any Hermitian operator

ρ : V → V satisfying the conditions

(i) (Trace condition) tr(ρ) = 1

(ii) (Positivity) ρ is a positive operator, i.e. for any state |ψ〉 ∈ V , 〈ψ| ρ |ψ〉 ≥ 0.

It is not difficult to check that the density operator ρE (5.19) associated to the ensemble E (5.1) satisfies

the conditions. Using (5.14), we have

tr(ρE) =

K∑
k=1

pk tr (|ψk〉 〈ψk|) =

K∑
k=1

pk〈ψk |ψk〉 =

K∑
k=1

pk = 1 (5.30)

by the requirement that probabilities add up to 1. Furthermore, for any state |ψ〉

〈ψ| ρE |ψ〉 =

K∑
k=1

pk〈ψ |ψk〉 〈ψ |ψk〉 =

K∑
k=1

pk|〈ψ |ψk〉 |2 ≥ 0 (5.31)

since each term in the sum is non-negative.

Perhaps more surprisingly, the reverse is also true:

Theorem 5.1 Let ρ be a density operator, i.e. an operator acting in a Hilbert space V and satisfying the

conditions in the definition 5.1. Then there exists a so-called ensemble of orthonormal states

{|ψk〉)}k=1,...,K

with K ≤ n =dimV so that

ρ =

K∑
k=1

pk |ψk〉 〈ψk| (5.32)

Proof By assumption, ρ is Hermitian and therefore has a spectral decomposition

ρ =

n∑
i=1

λi |bi〉 〈bi| (5.33)

in terms of an orthonormal basis |b1〉 , . . . , |bn〉 of V . By the positivity of ρ

〈bi| ρ |bi〉 = λi ≥ 0 (5.34)

for all i = 1, . . . , n. Computing the trace we also find

tr(ρ) =

n∑
i=1

λi = 1. (5.35)
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However, if a sum of positive numbers is 1, each of the positive numbers must lie between 0 and 1. We

can therefore interpret them as probabilities. After dropping the basis elements |bi〉 for which λi = 0 and

renaming the remaining eigenvalues λk → pk and the remaining states |bk〉 → |ψk〉 we obtain the required

ensemble. �
It follows from the calculations in the above proof that a Hermitian operator is positive iff all its eigenvalues

are ≥ 0. This is often the most efficient way of checking the positivity of an operator

5.2 The postulates of quantum mechanics in terms of density operators

Motivated by our calculations with the density operator ρE we now reformulate the postulates of quantum

mechanics.

Postulate 1’: State space

Associated to every isolated physical system is a complex vector space V with inner product (Hilbert space)

called the state space of the system. At any given time the physical state of the system is completely described

by a density operator, which is Hermitian operator V → V satisfying the conditions in the definition 5.1.

The density operators made from a single ket |ψ〉 - our old notion of “state” - still play a special role and

are called pure states. They can be characterised as follows.

Definition 5.2 We say that a density operator ρ defines a pure state if it has precisely one non-zero

eigenvalue (which must then be equal to 1). Otherwise, the density operator is said to characterise a mixed

state

Lemma 5.3 (Criterion for pure states Every density operator ρ satisfies

tr
(
ρ2
)
≤ 1 (5.36)

The equality tr
(
ρ2
)

= 1 holds if and only if ρ describes a pure state.

Proof Using the spectral decomposition

ρ =

K∑
k=1

pk |ψk〉 〈ψk| (5.37)

and (3.20) we compute

ρ2 =
K∑
k=1

p2
k |ψk〉 〈ψk| . (5.38)

Since 0 ≤ pk ≤ 1 we have p2
k ≤ pk. Hence

tr
(
ρ2
)

=

K∑
k=1

p2
k ≤

K∑
k=1

pk = 1. (5.39)

The equality p2
k = pk holds iff pk is either 1 or 0. However, since

∑K
k=1 pk = 1 this can only happen if

precisely one of the pk is 1 and the others are 0 i.e. if ρ describes a pure state. Hence the equality tr
(
ρ2
)

= 1

holds iff ρ describes a pure state. �

Example 5.2 For each of the following operators in C2 check if they are density operators, and decide if

they describe pure or mixed states. If they describe a pure state, find a ket |ψ〉 so that ρ = |ψ〉 〈ψ|.

(i) ρ =
1

4

(
1 1

1 3

)
(ii) ρ =

1

2

(
1 1

1 1

)
(5.40)

Of the conditions for density operators, the Hermiticity and trace condition trρ = 1 are easily checked for

both operators. The quickest way to check positivity for a 2×2 matrix ρ is to ascertain if both the eigenvalues

are ≥ 0. Since the trace equals the sum of the eigenvalues, and the determinant equals their product (see

example 2.6), this is tantamount to checking if both the trace and the determinant are ≥ 0. The trace is 1

for both, and the determinant is 1
8 for (i), and 0 for (ii). Hence both of the operators are density operators.

To decide if they describe pure or mixed states, we compute the trace of their square.
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(i) ρ2 has diagonal entries 2
16 and 10

16 (don’t bother working out all entries!) so tr
(
ρ2
)

= 12
16 < 1 and ρ is

a mixed state.

(ii) ρ2 = ρ in this case, so tr
(
ρ2
)

= 1 and the state is pure. The ket |b1〉 = 1√
2
(|0〉 − |1〉) is eigenvector

with eigenvalue 0 and the ket |b2〉 = 1√
2
(|0〉+ |1〉) is eigenvector with eigenvalue 1. Hence

ρ = |b2〉 〈b2|

is the required representation of ρ. �

Example 5.3 Show that the most general density operator in C2 is of the form

ρ =
1

2
(I + r ·σ), (5.41)

where r is a vector in R3 of length at most 1.

Density operators are Hermitian, and we saw in Chapter 4 that any Hermitian operator can be written as

ρ =
1

2
(r0I + r1σ1 + r2σ2 + r3σ3) (5.42)

in terms of real numbers r0, r1, r2, r3, see equation (4.8). The condition tr(ρ) = 1 for density operators

implies

tr(ρ) = r0 = 1⇒ r0 = 1.

To show positivity, we need to check if the determinant is ≥ 0. Writing out ρ we have

ρ =
1

2

(
1 + r3 r1 − ir2

r1 + ir2 1− r3

)
so that

detρ =
1

4
(1− r ·r).

Thus detρ ≥ 0⇔ r ·r ≤ 1. �
Postulate 2’: Observables and measurements

The physically observable quantities of a physical system, also called the observables, are mathematically

described by Hermitian operators acting on the state space V of the system. The possible outcomes of

measurements of an observable A are given by the eigenvalues λ1, . . . λm of A. If the system is in a state

with density operator ρ at the time of the measurement, the probability of obtaining the outcome λi is

pρ(λi) = tr(ρPi), (5.43)

where Pi is the orthogonal projection operator onto the eigenspace of λi. Given that this outcome occurred,

the state of the system immediately after the measurement has the density operator

ρ̃ =
PiρPi

tr(ρPi)
. (5.44)

We compute expectation values of an observable A in a state with density operator ρ according to the rule

Eρ(A) = tr(ρA) (5.45)

and standard deviations according to

∆2
ρ(A) = tr

(
ρA2

)
− (tr(ρA))2. (5.46)

Example 5.4 In a system with Hilbert space V = C3 the observable A with matrix

A =

1 1 0

1 1 0

0 0 2


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relative to the canonical basis is measured when the system is in the state with density operator ρ. The

matrix representing ρ relative to the canonical basis is

ρ =

 1
2 0 0

0 1
4 0

0 0 1
4


What is the probability of measuring the eigenvalue 2 in a measurement of A? If the eigenvalue 2 is measured,

what is the density operator of the system after the measurement? Find the expectation value and standard

deviation of A in the state described by ρ.

The observable A was studied in detail in Example 3.2. There we saw that it has eigenvalues λ1 = 0 and

λ2 = 2, and gave the projectors onto both eigenspaces. Since the observable A and the density operator ρ

are given in terms of its matrix relative to the canonical basis, it is easiest to do the entire calculation with

matrices. The matrix representation for P2 is

P2 =

 1
2

1
2 0

1
2

1
2 0

0 0 1

 . (5.47)

Then

ρP2 =

 1
4

1
4 0

1
8

1
8 0

0 0 1
4

 . (5.48)

Hence the probability of measuring λ2 = 2 is

pρ(λ2) = tr(ρP2) =
1

4
+

1

8
+

1

4
=

5

8
(5.49)

and the state after the measurement has the density matrix

ρ̃ =
8

5
P2ρP2 =

8

5

 3
16

3
16 0

3
16

3
16 0

0 0 1
4

 =

 3
10

3
10 0

3
10

3
10 0

0 0 2
5

 . (5.50)

Finally the expectation value of A is

Eρ(A) = tr(ρA) =
5

4
, (5.51)

where we used the fact that A = 2P2 and the result (5.49). Since A2 = 2A we have

∆2
ρ = Eρ(A

2)− (Eρ(A))2 =
5

2
− 25

16
=

15

16
. (5.52)

�
Postulate 3”: Time evolution is unitary

The time evolution of a closed system is described by a unitary transformation. If the state of the system

is given by the density operator ρ at time t and by the density operator ρ′ at time t′ then there is a unitary

operator U so that

ρ′ = UρU†. (5.53)

Example 5.5 The system with Hilbert space C2 is in the state with density operator

ρ =

(
1
4 0

0 3
4

)
at time t = 0 seconds. The time evolution operator from time t = 0 seconds to t = 1 second is

U =

(
0 1

1 0

)
.
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Find the density operator of the system at time t = 1 second. If the observable

A =

(
1 0

0 −1

)
is measured at time t = 1 second, what is the probability of obtaining the eigenvalue −1?

The density operator at time t = 1 second is

ρ′ = UρU† =

(
0 1

1 0

)(
1
4 0

0 3
4

)(
0 1

1 0

)
=

(
3
4 0

0 1
4

)
. (5.54)

The eigenstate with eigenvalue −1 of the observable A is |1〉 =

(
0

1

)
so that the projector onto this eigenspace

has the matrix representation

P =

(
0

1

)(
0 1

)
=

(
0 0

0 1

)
. (5.55)

Therefore the probability of measuring −1 is at time t = 1 second is

pρ′ = tr(ρ′P ) =
1

4
. (5.56)

�
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Composite systems

6.1 Tensor products

6.1.1 Basic definitions, notation

Given two vector spaces V and W one can construct a new vector space out of them in two ways. One is

called the direct sum and the other the tensor product. In quantum mechanics, the composition of vector

spaces via the tensor product plays an important role.

Definition 6.1 (Tensor product) Consider two complex vector spaces V and W . The tensor product of

V and W is a complex vector space consisting of all linear combinations of elements of the form |v〉 ⊗ |w〉,
where |v〉 ∈ V and |w〉 ∈W . It satisfies the following properties

(i) α(|v〉 ⊗ |w〉) = (α |v〉)⊗ |w〉 = |v〉 ⊗ (α |w〉) for all α ∈ C, |v〉 ∈ V, |w〉 ∈W .

(ii) (|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉 for all |v1〉 , |v2〉 ∈ V, |w〉 ∈W .

(iii) |v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉 for all |v〉 ∈ V, |w1〉 , |w2〉 ∈W .

Note that rules (i)–(ii) in the definition are natural rules for a product: Rule 1 is similar to the rule

αAB = (αA)B = A(αB) for matrices A,B and a complex number α. Rules 2 and 3 are “distributive laws”

which also hold for addition and multiplication of ordinary numbers. Note however, that the product ⊗,

unlike the product of ordinary numbers, is not commutative

|v〉 ⊗ |w〉 6= |w〉 ⊗ |v〉 . (6.1)

The following lemma, which we will not prove, summarises important properties of the tensor product.

Lemma 6.1 (Bases of tensor products) Let V and W be vector spaces dimensions m and n with bases

D = {|d1〉 , . . . , |dm〉} and E = {|e1〉 , . . . , |em〉}. Then the tensor product V ⊗W has dimension m× n and

the set

P = {|di〉 ⊗ |ej〉}i=1,...,m, j=1,...,n (6.2)

is a basis of V ⊗W

When working with tensor products we often adopt a simplified notation, writing |v〉 |w〉 or even |vw〉 for

|v〉 ⊗ |w〉. The latter notation is particularly convenient for tensor products of the basic qubit vector space

C2.

Example 6.1 Write out the basis of tensor product C2 ⊗ C2 constructed from the canonical basis of C2.

Also give the dimension and a basis for the triple tensor product C2 ⊗ C2 ⊗ C2.

Writing out all possible products of |0〉 and |1〉 we obtain

P = {|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉}

or, in simplified notation,

P = {|00〉 , |01〉 , |10〉 , |11〉}. (6.3)

Note that there is a natural ordering of the basis elements by interpreting the labels 00, 01, 10, 11 as binary

numbers.

51
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The triple tensor product C2⊗C2⊗C2 can be thought of as the tensor product of C2⊗C2 with C2. Thus

the product basis is

P = {|00〉 ⊗ |0〉 , |01〉 ⊗ |0〉 , |10〉 ⊗ |0〉 , |11〉 ⊗ |0〉 , |00〉 ⊗ |1〉 , |01〉 ⊗ |1〉 , |10〉 ⊗ |1〉 , |11〉 ⊗ |1〉}

or, in simplified notation,

P = {|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉}, (6.4)

again ordered by interpreting the three digits as a binary representation of the numbers 0, . . . , 7. �
It is very important for the applications of tensor products in quantum computing that there are elements

in a tensor product space V ⊗W which cannot be written as the tensor product |v〉 ⊗ |w〉 for |v〉 ∈ V and

|w〉 ∈W .

Definition 6.2 (Product states and and entangled states) Let V,W be vector spaces. A state in

|ψ〉 ∈ V ⊗W is called a product or factorisable state if it can be written as

|ψ〉 = |v〉 ⊗ |w〉 (6.5)

for |v〉 ∈ V and |w〉 ∈W . States which are not product states are called entangled states

Example 6.2 Consider V = W = C2. Show that the state |ϕ〉 = 1√
2
(|01〉+ |10〉) is entangled and that the

state |ψ〉 = 1
2 (|00〉+ |01〉+ |10〉+ |11〉) is a product state.

Suppose we could find |v〉 = v0 |0〉 + v1 |1〉 and |w〉 = w0 |0〉 + w1 |1〉 so that |ϕ〉 = |v〉 ⊗ |w〉. Then we

would have the equality

1√
2

(|01〉+ |10〉) = v0w0 |00〉+ v0w1 |01〉+ v1w0 |10〉+ v1w1 |11〉 .

Comparing coefficients we deduce

v0w0 = 0, v0w1 =
1√
2
, v1w0 =

1√
2
, v1w1 = 0.

These equations cannot be satisfied simultaneously. Suppose there was a solution. Then take the product

of the second and the third to deduce v0w1v1w0 = 1
2 ; on the other hand taking the product of the first and

the fourth we deduce v0w1v1w0 = 0, which is a contradiction. In order to write |ψ〉 as a product state we

need to find v0, v1, w0, w1 so that

|ψ〉 = v0w0 |00〉+ v0w1 |01〉+ v1w0 |10〉+ v1w1 |11〉 .

Comparing with the expression for |ψ〉 we find

|ψ〉 =
1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉).

�

6.1.2 Inner products

If both the space V and W are equipped with an inner product, the tensor product space V ⊗W inherits

an inner product as follows. If |v1〉 , |v2〉 ∈ V and |w1〉 , |w2〉 ∈W then define

(|v〉 ⊗ |w〉 , |v′〉 ⊗ |w′〉) = (|v〉 , |v′〉)(|w〉 , |w′〉) = 〈v, |v′〉 〈w, |w′〉 (6.6)

In order to compute the inner product of linear combinations

|ϕ〉 =
∑
i

αi |vi〉 ⊗ |wi〉 , |ψ〉 =
∑
j

βj
∣∣v′j〉⊗ ∣∣w′j〉 ,

we extend the above definition linearly in the second argument and conjugate-linearly in the first:

〈ϕ |ψ〉 =
∑
i,j

ᾱiβj〈vi,
∣∣v′j〉 〈wi, ∣∣w′j〉 . (6.7)
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Example 6.3 Consider the two kets |ϕ〉 = |00〉+ |11〉 and |ψ〉 = i
3 (|00〉+ |01〉+ |10〉). Compute their norms

and their inner product.

〈ϕ |ϕ〉 = 1 + 1 = 2, so | |ϕ〉 | =
√

2. 〈ψ |ψ〉 = 3
9 , so | |ψ〉 | = 1√

3
. Finally 〈ϕ |ψ〉 = i

3 . �

6.1.3 Linear operators

Suppose A : V1 → V2 is a linear operator from the vector space V1 to the vector space V2 and B : W1 →W2

is a linear operator from the vector space W1 to the vector space W2. Then we define a linear operator

A⊗B : V1 ⊗W1 → V2 ⊗W2 (6.8)

by the rule

A⊗B(|v〉 ⊗ |w〉) = A(|v〉)⊗B(|w〉) (6.9)

and the requirement of linearity i.e.

A⊗B(α |v〉 ⊗ |w〉+ β |v′〉 ⊗ |w′〉) = αA(|v〉)⊗B(|w〉) + βA(|v′〉)⊗B(|w′〉) (6.10)

Example 6.4 Linear operators A,B : C2 → C2 are defined via

A |0〉 =
1√
2

(|0〉+ |1〉), A |1〉 =
1√
2

(|1〉 − |0〉)

and

B |0〉 = |1〉 , B |1〉 = |0〉 .

Find the images of A⊗B when acting on the ket |ϕ〉 = |00〉+ |11〉.

A⊗B |ϕ〉 =
1√
2

(|0〉+ |1〉)⊗ |1〉+
1√
2

(|1〉 − |0〉)⊗ |0〉 =
1√
2

(|01〉+ |11〉+ |10〉 − |00〉)

�
The matrix representation of an operator of the form A⊗B is defined as for any linear operator. It takes a

particularly simple form in the tensor product basis (6.2). Let us for simplicity consider the situation where

V1 = V2 and W1 = W2 i.e. A : V → V and B : W →W . Recall that the matrix representations of A and B

relative to the bases D and E are defined via

A(|di〉) =

m∑
k=1

Aki |dk〉 , B(|ej〉) =

n∑
l=1

Blj |el〉 (6.11)

Then, acting on the elements of the basis (6.2) of V ⊗W we find

A⊗B |di〉 ⊗ |ej〉 = A(|di〉)⊗B(|ej〉)

= (

m∑
k=1

Aki |dk〉)⊗ (

n∑
l=1

Blj |el〉)

=

m∑
k=1

n∑
l=1

AkiBlj |dk〉 ⊗ |el〉). (6.12)

This defines the matrix representation of A ⊗ B relative to the product basis B (6.2). Although it looks

complicated, it has a simple interpretation in terms of the matrix representations of A and B relative to the

bases D and E (given before (6.2)). To see this consider the special case V = W = C2 and recall the basis

given in (6.3) and the ordering described there. Suppose the linear maps A and B have the following actions
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on the basis elements |0〉 and |1〉 of C2:

A |0〉 = A00 |0〉+A10 |1〉
A |1〉 = A01 |0〉+A11 |1〉
B |0〉 = B00 |0〉+B10 |1〉
B |1〉 = B01 |0〉+B11 |1〉

(6.13)

so that the matrix representations relative to the canonical basis are

A =

(
A00 A01

A10 A11

)
B =

(
B00 B01

B10 B11

)
. (6.14)

The 4× 4-matrix representing A⊗B relative to the canonical basis {|00〉 , |01〉 , |10〉 , |11〉} is then

A⊗B =


A00B00 A00B01 A01B00 A01B01

A00B10 A00B11 A01B10 A01B11

A10B00 A10B01 A11B00 A11B01

A10B10 A10B11 A11B10 A11B11

 . (6.15)

We obtain this matrix by writing down the matrix A and multiplying every matrix element of A with a copy

of the matrix B:

A⊗B =

(
A00B A01B

A10B A11B

)
. (6.16)

Example 6.5 If

A =

(
1 2

−1 i

)
and

B =

(
3 4

5 6

)
find A⊗B and B ⊗A

Following the above rule, we find

A⊗B =


3 4 6 8

5 6 10 12

−3 −4 3i 4i

−5 −6 5i 6i


and

B ⊗A =


3 6 4 8

−3 3i −4 4i

5 10 6 12

−5 5i −6 6i


In particular A⊗B 6= B ⊗A. �

Consider now a general linear map

C : V ⊗W → V ⊗W.

Its matrix representation relative to the product basis {|di〉 ⊗ |ej〉}i=1,...,m,j=1...,n is defined via

C |dk〉 ⊗ |el〉 =

m∑
i=1

n∑
j=1

Cikjl |di〉 ⊗ |ej〉 . (6.17)
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In the case of V = W being two dimensional we obtain the matrix

C =


C1111 C1112 C1211 C1212

C1121 C1122 C1221 C1222

C2111 C2112 C2211 C2212

C2121 C2122 C2221 C2222

 . (6.18)

Such matrices need not be of the product form A ⊗ B - there are “entangled” matrices which cannot be

factorised, just like there are entangled states in V ⊗W .

As for any pair of linear maps, we can compose two linear maps C,D : V ⊗W → V ⊗W . The matrix of

the product CD is

(CD)ikjl =

m∑
p=1

n∑
q=1

CipjqDpkql. (6.19)

Finally we define the trace as for any matrix.

tr(C) =

m∑
i=1

n∑
j=1

Ciijj (6.20)

If C is of the form A⊗B we have the useful formula

tr(A⊗B) = tr(A) tr(B). (6.21)

This follows directly from the definition

tr(A⊗B) =

m∑
i=1

n∑
j=1

AiiBjj =

m∑
i=1

Aii

n∑
j=1

Bjj = tr(A) tr(B). (6.22)

In addition, we can use the structure of the tensor product V ⊗W to define partial traces.

Definition 6.3 Let C : V ⊗ W → V ⊗ W be a linear map with matrix representation Cikjl relative to

the tensor product basis {|di〉 ⊗ |ej〉}i=1,...,m,j=1...,n. Then the partial trace of C over V is the linear map

CW = trV (C) : W →W with matrix elements

CWjl =

m∑
i=1

Ciijl (6.23)

relative to the basis {|ej〉}j=1,...,n of W . Similarly the partial trace of C over W is the linear map CV =

trW (C) : V → V with matrix elements

CVik =

n∑
j=1

Cikjj (6.24)

relative to the basis {|di〉}i=1,...,m of V .

The following lemma is very useful for computing partial traces of tensor products.

Lemma 6.2 For any linear map of the product form A⊗B : V ⊗W → V ⊗W

(A⊗B)V = tr(B)A (A⊗B)W = tr(A)B. (6.25)

Proof Using the bases D and E of V and W defined in (6.2) to define the matrix representations of A and

B we have

(A⊗B)Vik =

n∑
j=1

AikBjj = tr(B)Aik.

Since (A ⊗ B)V and tr(B)A have the same matrix representation with respect the basis D of V , they are

equal as linear maps. Similarly

(A⊗B)Wjl =

m∑
i=1

AiiBjl = tr(A)Bjl,

showing that (A⊗B)W and tr(A)B are the same linear map. �
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Example 6.6 (i) For the matricesA andB from Example 6.5 compute tr(A), tr(B), tr(A⊗B) and tr(B ⊗A),

and check the formula (6.21).

(ii) Consider the operator C : V ⊗W → V ⊗W , where V = W = C2, with matrix representation

C =


i 1 2 −1

1 −i 1 0

−i 0 −i i

i −1 i 1


relative to the canonical basis {|00〉 , |01〉 , |10〉 , |11〉} of C2⊗C2. Compute its partial trace CW with respect

to the first component V of the tensor product and its partial trace CV with respect to the second component

W of the tensor product. Also compute its full trace. Check that trV (CV ) = trW (CW ) = trV⊗W (C)

(i) We find tr(A) = 1+ i, tr(B) = 9. Also tr(A⊗B) = 3+6+3i+6i = 9+9i = tr(B ⊗A) = tr(A) tr(B).

(ii) We find

CW =

(
i 1

1 −i

)
+

(
−i i

i 1

)
=

(
0 1 + i

1 + i 1− i

)
and

CV =

(
i− i 2− 0

−i− 1 −i+ 1

)
=

(
0 2

−1− i 1− i

)
so that trW (CW ) = 1− i = trV (CV ) = trV⊗W (C) �

Lemma 6.3 Consider two Hilbert spaces V and W and the tensor product V ⊗W equipped with its canonical

inner product. Given two linear operators A : V → V and B : W →W with adjoints A† and B†, the adjoint

of the tensor product of A and B is

(A⊗B)† = A† ⊗B†. (6.26)

Proof Let |v1〉 , |v2〉 ∈ V and |w1〉 , |w2〉 ∈W . Then

(|v1〉 ⊗ |w1〉 , A⊗B |v2〉 ⊗ |w2〉) = (|v1〉 , A |w1〉)(|v2〉 , B |w2〉)
= (A† |v1〉 , |w1〉)(B† |v2〉 , |w2〉)
= (A† ⊗B† |v1〉 ⊗ |w1〉 , |v2〉 ⊗ |w2〉) (6.27)

Since this holds for all product states |v1〉 ⊗ |w1〉 , |v2〉 ⊗ |w2〉 ∈ V ⊗W , and since the product states span

V ⊗W , we deduce that the adjoint of A⊗B is A† ⊗B†. �

Example 6.7 Suppose A : V → V and B : W →W are Hermitian operators. Since A and B are Hermitian

there exists a basis of eigenvectors{|di〉}i=1,...m of A for V and a basis of eigenvectors {|ej〉}j=1,...n of B for

W . Denote the corresponding eigenvalues by λi and µj i.e.

A |di〉 = λi |di〉 B |ej〉 = µj |ej〉 . (6.28)

Show that {|di〉 ⊗ |ej〉}i=1,...m,j=1,...n is a basis of eigenvectors of A⊗B for V ⊗W

Since

A⊗B |di〉 ⊗ |ej〉 = A |di〉 ⊗B |ej〉 = λiµj |di〉 ⊗ |ej〉

the vectors {|di〉 ⊗ |ej〉} are eigenvectors with eigenvalues λiµj . They form a basis of V ⊗W by Lemma 6.1.

�

6.2 Quantum mechanics of composite systems

Postulate 4: Composite systems

The state space of a composite physical system is the tensor product of the state spaces of the component

systems. If we have N systems with label i = 1, . . . , N , then if the i-the system is prepared in the pure state

|ψi〉, the state of the total system is the pure state |ψ1〉 ⊗ . . . |ψN 〉.



6.2 Quantum mechanics of composite systems 57

In order to investigate the properties of composite systems we apply postulate 2 (observables and mea-

surement) and postulate 3 (time evolution) to tensor product spaces.

Example 6.8 (Measurement in composite systems)

Consider the system made by composing two systems with Hilbert space C2. Suppose the system is in the

state

|ψ〉 =
1√
2

(|00〉+ |11〉) (6.29)

when the observable A = σ1 ⊗ σ3 is measured. Show that A has eigenvalues ±1 and find the probability

of measuring the eigenvalue 1. Find the state after the measurement and the expectation value of A in the

state |ψ〉.

We know from Chapter 4 that σ3 has eigenvalues 1 and −1 with eigenvectors |0〉 and |1〉, and that σ1 has

eigenvalues 1 and −1 with eigenvectors 1√
2
(|0〉+ |1〉) and 1√

2
(|0〉 − |1〉). Hence

|v〉 =
1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(|00〉+ |10〉),

|w〉 =
1√
2

(|0〉 − |1〉)⊗ |1〉 =
1√
2

(|01〉 − |11〉) (6.30)

are eigenstates of σ1 ⊗ σ3 for the eigenvalue 1. The projector onto the eigenspace spanned by |v〉 and |w〉 is

P1 = |v〉 〈v|+ |w〉 〈w|

and therefore the probability of measuring the outcome 1, given that the system is in the state |ψ〉, is

pψ(1) = |〈ψ |v〉 |2 + |〈ψ |w〉 |2 =
1

4
+

1

4
=

1

2

The state after the measurement is

1√
pψ(1)

P1 |ψ〉 =
√

2

(
1

2
√

2
(|00〉+ |10〉)− 1

2
√

2
(|01〉 − |11〉)

)
=

1

2
(|00〉+ |10〉 − |01〉+ |11〉). (6.31)

The expectation value of A is

〈ψ|A |ψ〉 =
1√
2

(〈00|+ 〈11|)(|10〉 − |01〉) = 0 (6.32)

�

Example 6.9 (Partial measurement) Consider again the system made by composing two systems with

Hilbert space C2, and suppose the system is in the state

|ϕ〉 =
1√
3

(|00〉+ |01〉+ |10〉). (6.33)

Give a precise mathematical formulation and then an answer for the question “what is the probability that

the first qubit is in the state |0〉?”.

In order to answer this question in the formalism of quantum mechanics we need to give an operator such

that one of its eigenspaces consists of all states of the form |0〉 ⊗ |ψ〉, where |ψ〉 is an arbitrary state of the

second qubit. The operator

P = |0〉 〈0| ⊗ I (6.34)

is a projection operator since P 2 = |0〉 〈0 |0〉 〈0| ⊗ I = P . According to Example 6.7 its eigenspace for

eigenvalue 1 consists of all states of the form |0〉⊗ |v〉, were |v〉 is an arbitrary state in C2 and its eigenspace

for eigenvalue 0 consists of all states of the form |1〉 ⊗ |v〉, were |v〉 is again an arbitrary state in C2. Hence
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we formulate the question “what is the probability that the first qubit is in the state |0〉?” as “what is the

probability of measuring the eigenvalue 1 of the operator P?”. The answer is

pϕ(P = 1) = 〈ϕ|P |ϕ〉 =
1

3
(〈00|+ 〈01|+ 〈10|)(|00〉+ |01〉) =

2

3

�
In studying composite systems we often need to address questions which only concern one of the subsystems

that make up the system, as illustrated by the previous example. There is a systematic way of answering

such questions which works as follows. Consider a system with Hilbert space V ⊗W and the observable

A : V → V of the subsystem with Hilbert space V . We would like to compute the possible outcomes,

probabilities and expectation values in measurements of A, but we only have density operator of the total

system ρ : V ⊗W → V ⊗W . In order to compute expectation values of A we “embed” the observable A into

the total system and compute with Ã = A⊗ I. This is what we did in the example above. However, using

the bases D and E of V and W as before, and working with the matrix representations of A and ρ we have

trV⊗W (ρÃ) =

m∑
i,p=1

n∑
j,q=1

ρipjqApiδqj

=

m∑
i,p=1

n∑
j

ρipjjApi

= trV (ρVA). (6.35)

In other words, the quantum mechanical predictions for measurements of observables of the subsystem V

determined are by the partial trace ρV of ρ.

Definition 6.4 (Reduced density operator) Let ρ be a density operator for the composite system with

Hilbert space V ⊗W . Then the reduced density operators for the subsystems V and W are given by the

partial traces ρV and ρW of ρ as defined in Definition 6.3.

Example 6.10 (Expectation values) The density operator of the two-qubit system with Hilbert space

C2 ⊗ C2 is given by

ρ =
1

4
(I + σ1)⊗ (I + σ2).

Find the expectation values of the observables

C = σ3 ⊗ σ3 + σ1 ⊗ I

and

D = σ2 ⊗ I.

Also find the reduced density operator for the first qubit and compute the expectation value of σ2 in the

first qubit.

Since

ρC =
1

4
(σ3 − iσ2)⊗ (σ3 + iσ1) +

1

4
(σ1 + I)⊗ (I + σ2)

we have

tr(ρC) =
1

4
tr(I) tr(I) = 1,

where we used that all Pauli matrices are traceless. Similarly

tr(ρD) =
1

4
tr ((σ2 + iσ3)⊗ (I + σ2)) = 0

The partial trace of ρ over the second qubit gives

ρV =
1

2
(I + σ1)
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and hence

tr
(
ρV σ2

)
=

1

2
tr(σ2 + iσ3) = 0,

which agrees with tr(ρD), as it should. �

Example 6.11 (Time evolution in composite systems) The time evolution of a state |ψ(t)〉 in C2⊗C2

is given by the Schrödinger equation

i~
d

dt
|ψ〉 = H |ψ〉 (6.36)

where the Hamiltonian H is given by

H = σ1 ⊗ σ3. (6.37)

Find the time evolution operator. If the state of the system at time t = 0 is |ψ0〉 = |11〉 find the state of the

system at time t.

Since H satisfies H2 = I ⊗ I we can compute the time evolution operator as in(3.40):

U(t) = exp

(
−i t

~
H

)
= cos

(
t

~

)
I ⊗ I − i sin

(
t

~

)
σ1 ⊗ σ3.

Hence the state at time t is

|ψ(t)〉 = cos

(
t

~

)
I ⊗ I |11〉 − i sin

(
t

~

)
σ1 ⊗ σ3 |11〉 = cos

(
t

~

)
|11〉+ i sin

(
t

~

)
|01〉 .

�

6.3 Schmidt decomposition and purification

We have seen that states in tensor product spaces V ⊗W are either product states or entangled. In this section

we give an algorithm for determining if a state is a product state or entangled, and introduce a measure

for the degree of “entangledness” of entangled states. We begin with a technical lemma. It generalises the

representation of a Hermitian matrix A = UDU−1 in terms of a real, diagonal matrix D and a unitary

matrix U .

Lemma 6.4 (Singular value decomposition) Let S be a complex n×n matrix. Then there exist unitary

n× n matrices U and Ũ and a diagonal matrix D with real, non-negative diagonal entries such that

S = UDŨ. (6.38)

The eigenvalues of D (but not their ordering) are uniquely determined by S.

We omit the proof, which is a little technical but not difficult - see e.g. Nielsen and Chuang, Quantum

Computation and quantum Information, page 78 ff.

Theorem 6.1 (Schmidt decomposition) Suppose V and W are Hilbert spaces of dimension n and |ψ〉 ∈
V ⊗W has norm 1. Then there exist orthonormal bases {|v1〉 , . . . , |vn〉} and {|w1〉 , . . . , |wn〉} of V and,

respectively, W such that

|ψ〉 =

n∑
k=1

λk |vk〉 ⊗ |wk〉 , (6.39)

where the coefficients λi are non-negative real numbers satisfying

n∑
k=1

λ2
k = 1. (6.40)
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Proof Let D = {|d1〉 , . . . , |dn〉} and E = {|e1〉 , . . . , |en〉} be bases of V and W . Then a given state |ψ〉 can

be expanded

|ψ〉 =

n∑
i,j=1

Sij |di〉 ⊗ |ej〉 , (6.41)

with complex numbers Sij , i, j = 1, . . . , n. Now decompose the complex n × n matrix S according to the

singular value decomposition (6.38) so that

Sij =

n∑
k,l=1

UikDklŨlj

for unitary matrices U and Ũ and a positive, diagonal matrix D. Writing the matrix elements of D as

Dkl = δklλk

for non-negative numbers λk the expansion (6.41) becomes

|ψ〉 =

n∑
i,j,k=1

λkUik |di〉 ⊗ Ũkj |ej〉 . (6.42)

Now define the Schmidt basis

|vk〉 =

n∑
i=1

Uik |di〉 , |wk〉 =

n∑
j=1

Ũkj |ej〉 . (6.43)

It follows from the unitarity of U and Ũ that

〈vk |vl〉 =

n∑
i=1

ŪikUil = δkl

and

〈wk |wl〉 =

n∑
j=1

¯̃UkjŨlj = δkl,

so that (6.42) gives the promised expansion (6.39) in terms of orthonormal states and non-negative numbers

λk. The condition (6.40) follows from the normalisation of |ψ〉:

1 = 〈ψ |ψ〉 =

n∑
k,l=1

λkλl〈vl |vk〉 〈wl |wk〉 =

n∑
k=1

λ2
k. (6.44)

�

Definition 6.5 (Schmidt coefficients and Schmidt number) The real numbers in the decomposition

(6.39) are called the Schmidt coefficients of the state |ψ〉. The number of non-zero Schmidt coefficients is

called the Schmidt number of the state |ψ〉.

Lemma 6.5 The Schmidt number and the Schmidt coefficients of a state |ψ〉 in the tensor product V ⊗W
are well-defined. Moreover, a pure state |ψ〉 of a composite system is a product state if and only if its Schmidt

number is 1

Proof If we had expanded the state |ψ〉 in different bases D′ and E′ of V and W we would have obtained a

matrix S′ which is related to the matrix S in (6.41) via

S′ = TSR

where T and R are unitary matrices. We thus obtain a singular value decomposition of

S′ = U ′DŨ ′

where U ′ = TU and Ũ ′ = ŨR, but D is unchanged. According to Lemma 6.4 the eigenvalues of D in any
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singular value decomposition are the same. In particular, the number of non-zero eigenvalues in any Schmidt

decomposition of a given state |ψ〉 is therefore the same.

If |ψ〉 is a product state then the formula

|ψ〉 = |v〉 ⊗ |w〉 (6.45)

is a Schmidt decomposition of |ψ〉 with one Schmidt coefficient equal to 1 and the others 0. The Schmidt

number of the state is therefore 1. Conversely, if we know that the Schmidt number of a given state is 1

we deduce from (6.40) that the only non-zero Schmidt coefficient is 1, and that the Schmidt decomposition

takes the form (6.45).

When V = W and the matrix S with matrix elements Sij defined via the equation (6.41) is Hermitian,

we can find the Schmidt decomposition by diagonalising S. Suppose we have

S = UDU−1

where U is unitary and D is diagonal. Provided that the eigenvalues of D are non-negative, we obtain a

Schmidt basis (6.43) via

|vk〉 =

n∑
i=1

Uik |di〉 , |wk〉 =

n∑
j=1

Ūjk |ej〉 . (6.46)

where we used that U−1 = Ū t for unitary matrices. If some of the eigenvalues λk of D are negative, we

multiply the corrsponding basis vectors wk by −1.

Example 6.12 Compute the Schmidt number of the state

|ψ〉 =
1

4
(|00〉 −

√
3 |01〉 −

√
3 |10〉+ 3 |11〉). (6.47)

Reading off the matrix S in the expansion

|ψ〉 = S00 |00〉+ S01 |01〉+ S10 |10〉+ S11 |11〉 (6.48)

we find

S =
1

4

(
1 −

√
3

−
√

3 3

)
.

Since S is Hermitian, we find its singular value decomposition by diagonalising it. The eigenvalues are 1

and 0, and therefore the Schmidt number is 1. The eigenvector for the eigenvalue 1 is 1
2 (|0〉 −

√
3 |1〉) and

therefore the state factorises

|ψ〉 =
1

2
(|0〉 −

√
3 |1〉)⊗ 1

2
(|0〉 −

√
3 |1〉).

�
The main application of the Schmidt decomposition is the following theorem, which links the notion of

factorisable states in a composite system with that of pure states in the constituent systems.

Theorem 6.2 The state |ψ〉 in the composite system with Hilbert space V ⊗ W is a factorisable state if

and only if the reduced density matrices ρV and ρW obtained form the density operator ρ = |ψ〉 〈ψ| are pure

states.

Note that, because of the formulation “if and only if”, the theorem also says that the state |ψ〉 in the

composite system is entangled if and only if the reduced density matrices ρV and ρW obtained form ρ =

|ψ〉 〈ψ| are mixed states.

Proof Starting from the Schmidt decomposition of the state |ψ〉

|ψ〉 =

n∑
k=1

λk |vk〉 ⊗ |wk〉 ,

the density operator is

ρ = |ψ〉 〈ψ| =
n∑

l,k=1

λkλl(|vk〉 〈vl|)⊗ (|wk〉 〈wl|).
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Hence

ρV = trW (ρ) =

n∑
i=1

n∑
l,k=1

λkλl(|vk〉 〈vl|)⊗ (〈wi |wk〉 〈wl |wi〉) =

n∑
i=1

λ2
i |vi〉 〈vi|

and

ρW = trV (ρ) =

n∑
i=1

n∑
l,k=1

λkλl(〈vi |vk〉 〈vl |vi〉)⊗ (|wk〉 〈wl|) =

n∑
i=1

λ2
i |wi〉 〈wi| ,

where we used the orthonormality conditions

〈vi |vk〉 = δik, 〈wl |wi〉 = δli.

Thus the reduced density operators describe pure states if and only one of the λi is 1 and all the others 0.

This holds if and only if the state |ψ〉 is a product state. �

Example 6.13 Consider the so-called Bell states in C2 ⊗ C2:∣∣Φ−〉 =
1√
2

(|00〉 − |11〉),
∣∣Ψ−〉 =

1√
2

(|01〉 − |10〉).

Give their Schmidt decomposition and compute their reduced density operators for the first and second

qubit.

The state |Φ−〉 is almost in the form required for Schmidt decomposition, except for the minus sign in

front of |11〉. Factoring −1 = i× i we write∣∣Φ−〉 =
1√
2
|0〉 ⊗ |0〉+

1√
2

(i |1〉)⊗ (i |1〉).

Thus with |v1〉 = |w1〉 = |0〉 and |v2〉 = |w2〉 = i |1〉 we have a decomposition of the type (6.39) with Schmidt

coefficients 1√
2

and 1√
2
. The reduced density operator for both qubits is

ρVΦ− = ρWΦ− =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1|

(note that the i drops out in the density operator!) so that the matrix representation with respect to the

canonical basis is

ρVΦ− = ρWΦ− =
1

2

(
1 0

0 1

)
.

To find the Schmidt decomposition of the state |Ψ+〉 we write it as∣∣Ψ−〉 =
1√
2
|0〉 ⊗ |1〉+

1√
2

(i |1〉)⊗ (i |0〉) (6.49)

Thus with |v1〉 = |0〉 and |v2〉 = i |1〉 but |w1〉 = |1〉 and |w2〉 = i |0〉 we have a decomposition of the type

(6.39) and the Schmidt coefficients are again 1√
2

and 1√
2
. The reduced density operators are

ρVΨ− =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| = 1

2
I

and

ρWΨ− =
1

2
|1〉 〈1|+ 1

2
|0〉 〈0| = 1

2
I,

where factors of i have again cancelled out. �
Both Bell states studied in the example have 2=dim(C2) Schmidt coefficients so that their Schmidt number

takes its largest possible value. Moreover, the Schmidt coefficients are all the same. Hence both states are

“maximally different” from a product state, whose Schmidt coefficients would be 1 and 0, The Bell states

are therefore also called “maximally entangled”. The example shows that the reduced density operators

constructed from pure but maximally entangled states are “maximally mixed”: since the density operator

is proportional to the identity, all states are assigned the same probability in the ensemble interpretation of

the density operator. We will return to this point in the Sect. 6.4.
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We have seen that reduced density operators obtained from entangled states in tensor product are mixed

states in each of the constituent spaces. It is possible to reverse this process i.e. to start with a density

operator in a system with Hilbert space V and to give a pure (but entangled) state in a tensor product

V ⊗W such that the reduced density operator gives the original state. This process is called purification,

and the Hilbert space W used for the defining the composite system is called the auxiliary space.

Definition 6.6 (Purification) Suppose ρ is a density operator in the system with Hilbert space V . A

pure state |ψ〉 in the tensor product V ⊗W , where W is called the auxiliary Hilbert space, is called the

purification of ρ if

ρ = ρVψ , where ρ = |ψ〉 〈ψ| . (6.50)

Example 6.14 Show that the state in C2 with density matrix

ρ =

(
1
2

1
4

1
4

1
2

)
relative to the canonical basis of C2 is a mixed state and find the purification of it in the Hilbert space

C2 ⊗ C2.

Since

tr
(
ρ2
)

=
10

16
< 1

the state is mixed. In order to find a purification, we diagonlise ρ. It has eigenvalues λ1 = 3
4 and λ2 = 1

4

with normalised eigenstates |v1〉 = 1√
2
(|0〉+ |1〉) and |v2〉 = 1√

2
(|0〉 − |1〉). Hence

ρ =
3

4
|v1〉 〈v1|+

1

4
|v2〉 〈v2|

and the purification is given by ρψ where

|ψ〉 =
√
λ1 |v1〉 ⊗ |v1〉+

√
λ2 |v2〉 ⊗ |v2〉 =

√
3

2
|v1〉 ⊗ |v1〉+

1

2
|v2〉 ⊗ |v2〉 .

�

6.4 The EPR (thought) experiment

The EPR thought experiment demonstrates that the result of a measurement performed on one part of a

quantum system can have an instantaneous effect on the result of a measurement performed on another

part, regardless of the distance separating the two parts. This appears to violate Einstein’s theory of special

relativity, which states that information cannot be transmitted faster than the speed of light. ”EPR”

abbreviates the surnames of Albert Einstein, Boris Podolsky, and Nathan Rosen, who introduced the thought

experiment in a 1935 paper to argue that quantum mechanics is not a complete physical theory. The version

of the thought experiment we will discuss here is due to David Bohm.

The EPR thought experiment is often referred to as a paradox (not by the authors!). It is a paradox in the

following sense: if one takes quantum mechanics and adds some seemingly reasonable conditions (referred

to as ”locality”, ”realism”, and ”completeness”), then one obtains a contradiction. However, quantum

mechanics by itself does not appear to be internally inconsistent, nor does it contradict relativity. As a

result of further theoretical and experimental developments since the original EPR paper, most physicists

today regard the EPR paradox as an illustration of how quantum mechanics violates classical intuition, and

not as an indication that quantum mechanics is fundamentally flawed.

In Bohm’s version of the EPR thought experiments, a system of two spin 1/2 particles with Hilbert space

C2 ⊗ C2 is prepared in the state

|Ψ−〉 =
1√
2

(|01〉 − |10〉) . (6.51)

An important property of this state is that measurements of the particles’ spins along any axis are correlated.

If one particle is found to be in the “spin up” state along any axis k, the other must be in the “spin down”
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state. Before we enter the discussion of the experiment, we make this statement mathematically precise, and

prove it.

Lemma 6.6 Let k be a unit vector in R3, and recall that ~
2k·σ is the spin operator along the axis k. Then

the state |Ψ−〉 satisfies

(k·σ ⊗ I + I ⊗ k·σ)|Ψ−〉 = 0. (6.52)

Proof We first note that

σ3 ⊗ I(|01〉 − |10〉) = |01〉+ |10〉 (6.53)

and

I ⊗ σ3(|01〉 − |10〉) = − |01〉 − |10〉 (6.54)

so that

(σ3 ⊗ I + I ⊗ σ3)|Ψ−〉 = 0. (6.55)

Hence the claim holds for k = (0, 0, 1)t. Now recall from Eq. (4.31) that the operator for the spin along an

arbitrary axis

k(θ, φ) =

sin θ cosφ

sin θ sinφ

cos θ

 , (6.56)

with θ ∈ [0, θ) and φ ∈ [0, 2π) is proportional to

k·σ = U(θ, φ)σ3U
−1(θ, φ), (6.57)

where the unitary operator U(θ, φ) is

U(θ, φ) = e−
i
2φσ3e−

i
2 θσ2 . (6.58)

However, for any unitary operator

U =

(
α β

γ δ

)
(6.59)

we have

U ⊗ U |01〉 =

(
α

γ

)
⊗
(
β

δ

)
= αβ |00〉+ αδ |01〉+ γβ |10〉+ γδ |11〉 (6.60)

and

U ⊗ U |10〉 =

(
β

δ

)
⊗
(
α

γ

)
= αβ |00〉+ βγ |01〉+ δα |10〉+ γδ |11〉 (6.61)

so that

U ⊗ U(|01〉 − |10〉) = (αδ − γβ)(|01〉 − |10〉) = det(U)(|01〉 − |10〉). (6.62)

we therefore have

(σ3 ⊗ I + I ⊗ σ3)|Ψ−〉 = 0

⇒ U ⊗ U(σ3 ⊗ I + I ⊗ σ3)
(
U−1 ⊗ U−1

)
(U ⊗ U) |Ψ−〉 = 0

⇒ (k·σ ⊗ I + I ⊗ k·σ)det(U)|Ψ−〉 = 0

⇒ (k·σ ⊗ I + I ⊗ k·σ)|Ψ−〉 = 0, (6.63)

where we used that det(U) cannot be zero since unitary operators are invertible. �
Remark: For any unitary matrix

1 = det(UU−1) = det(UU†) = det(U)det(U†) = det(U)det(U) (6.64)

so that det(U) has unit modulus and can be written as det(U) = eiε for some real ε. However, as explained
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in the paragraph preceding Eq. (5.12), we do not consider kets differing by a phase eiε as different states in

quantum mechanics. Hence the state |Ψ−〉 is actually invariant under transformations of the form U ⊗ U

U ⊗ U
∣∣Ψ−〉 =

∣∣Ψ−〉 up to a phase. (6.65)

�
In the EPR thought experiment, two spin 1/2 particles are prepared in the state |Ψ−〉 and then separated.

The particles’s spins are subsequently measured by two observers, traditionally called Alice and Bob, see

Fig. 6.1. Both Alice and Bob only perform measurements on “their” particle, i.e. Alice measures observables

3
σ

3
σ −ψ

BobAlice

Fig. 6.1. Schematic representation of Bohm’s version of the EPR thought experiment

of the form A⊗ I and Bob measures observables of the kind I ⊗B. We saw in the previous section that we

can calculate all quantum mechanical predictions for measurements for such observables from the reduced

density matrices. Thus starting with the density operator

ρ =
∣∣Ψ−〉 〈Ψ−∣∣ (6.66)

we compute the reduced density operator for the first qubit (Alice’s) by tracing over the second (Bob’s).

Using our earlier calculation in Example 6.13 we have the following matrix representation with respect to

the canonical basis:

ρA = ρB =
1

2
I (6.67)

(A for Alice and B for Bob). Now suppose that Alice measures the spin along the 3-axis of her particle, using,

for example, a Stern-Gerlach apparatus. In the language of quantum mechanics, she performs a measurement

of the operator ~
2σ3 ⊗ I. According to Chapter 4 the only possible outcomes of the measurement are ±~

2 ,

corresponding to the spin pointing up or down. Suppose Alice finds the outcome “spin up” i.e. ~
2 . The

projection operator onto this eigenspace is

P = |0〉 〈0| ⊗ I (6.68)

and therefore the probability of the outcome “spin up” is

pΨ−

(
~
2

)
=
〈
Ψ−
∣∣P ∣∣Ψ−〉 =

1√
2

〈
Ψ−
∣∣ 01〉 =

1

2

and the state after the measurement is

|Ψ〉 =
√

2P
∣∣Ψ−〉 = |01〉 . (6.69)

This is a product state, and the reduced density operators for both Alice and Bob after Alice’s measurement

are pure states:

ρ̃A = |0〉 〈0| , ρ̃B = |1〉 〈1| . (6.70)

Alice’s state has changed

ρA =
1

2
I 7→ ρ̃A = |0〉 〈0| (6.71)

as a result of her measurement in accordance with Postulate 2. However, Bob’s state has also changed

ρB =
1

2
I 7→ ρ̃B = |1〉 〈1| (6.72)
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as a result of Alice’s measurement. If we arrange for Alice and Bob to be well-separated at the time of Alice’s

measurement this result seems to imply that an event (Alice’s measurement) can have an instantaneous effect

in an arbitrarily far removed location (Bob). However, according to the special theory of relativity, there

is a maximal speed with which information can be transmitted between two observers, namely the speed of

light. Special relativity rules out “action at a distance” and therefore appears to be inconsistent with the

quantum mechanical account of Bob’s measurement and its effect on Alice’s particle. Einstein, Podolsky

and Rosen concluded that the quantum mechanical description of the situation in terms of the state |Ψ−〉
is therefore incomplete. Recall that the knowledge of |Ψ−〉 allows us to deduce that the spins of the two

particles must be equal and opposite, but does not tell us anything about the direction of the spins. After

Alice’s measurement, the spin of Alice’s particle is known to be in the 3-direction and, due to the correlation

imposed by the state |Ψ−〉, the spin of Bob’s particle has to point in the opposite direction. The result of

this argument is that at least one of three statements must be true:

(i) The particles must be exchanging information instantaneously i.e. faster than light;

(ii) There are hidden variables, so the results of both Alice’s and Bob’s experiments are pre-ordained;

(iii) Quantum theory is not exactly true in these rather special experiments.

The first possibility may be described as the renunciation of the principle of locality, whereby signals

cannot be passed from one particle to another faster than the speed of light. This suggestion was anathema

to Einstein. EPR therefore concluded that if quantum theory was correct, i.e. if one ruled out possibility (3),

then (2) must be true. In Einstein’s terms, quantum theory was not complete but needed to be supplemented

by hidden variables.

6.5 Bell’s inequality

The particle physicist John Bell (1928-1990) derived a testable prediction from the assumption of local hidden

variables, which has become known as Bell’s inequaltity. There are now several Bell inequalities, and we

will consider one which is closely linked to our version of the EPR thought experiment. We will show that

the quantum mechanical analysis of the EPR experiment shows that Bell’s inequality should be violated,

whereas the inequality should hold in any theory with local hidden variables. The different predictions can

be and have been put to experimental tests. All such tests confirm the violation of Bell inequalities, precisely

as predicted by quantum mechanics.

The key idea is to allow Alice and Bob to conduct several measurements of spin along different axes, and

to study the correlations between their findings. Consider spin operators

Q = q ·σ ⊗ I, R = r ·σ ⊗ I, S = I ⊗ s·σ, and T = I ⊗ t·σ. (6.73)

associated to unit vectors q, r, s and t in R3. Two pairs of spin 1/2 particles are prepared in the state

|Ψ−〉 and separated. When Alice receives her particles, she picks two directions q and r at random and

performs measurements of Q and R. When Bob receives his particles he picks two directions s and t at

random and measures S and T , see Fig. 6.2. The experiment is so arranged that Alice and Bob perform their

Alice Bob

ψ−
S ,  TQ ,  R

Fig. 6.2. Schematic representation of the experimental set-up for Bell’s inequality

measurements at the same time so that no measurement which Alice performs can disturb Bob’ measurement

and vice-versa. The possible outcomes of each of the measurements are 1 or −1.

The assumption of local hidden variables is tantamount to the following two mathematical assumptions
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(i) There is a probability space Λ and the observed outcomes by both Alice and Bob result by random

sampling of the (“hidden”) variable λ ∈ Λ.

(ii) The values observed by Alice or Bob are functions of the local detector settings and the hidden variable

only. Thus the value of the spin observed by Alice with detector set to measure spin along the axis q

is A(q, λ). Similarly, the value observed by Bob with detector set to measure spin along the axis s is

B(s, λ).

It is implicit in assumption 1. above that the hidden variable space Λ has a probability measure ρ(λ)dλ

(satisfying
∫

Λ
ρ(λ)dλ = 1). The expectation of a random variable X on Λ with respect to λ is written as

E(X) =

∫
Λ

X(λ)ρ(λ)dλ.

With the abbreviations

q(λ) = A(q, λ), r(λ) = A(r, λ)

s(λ) = B(s, λ), t(λ) = B(t, λ) (6.74)

we can compute the expectation values of Alice and Bob’s measurements according to

E(q) =

∫
Λ

q(λ)ρ(λ)dλ, (6.75)

etc. and we can compute expectation values of products of Alice’s and Bob’s measurement results according

to

E(qs) =

∫
Λ

q(λ)s(λ)ρ(λ)dλ =

∫
Λ

A(q, λ)B(s, λ)ρ(λ)dλ, (6.76)

with corresponding formulae of E(rs), E(rt) and E(qt).

Now consider a fixed λ ∈ Λ. Since q(λ), r(λ) = ±1 we must have either (r(λ) + q(λ))s(λ) = 0 (in which

case r(λ)− q(λ) = ±2) or (r(λ)− q(λ))t(λ) = 0 (in which case r(λ) + q(λ) = ±2). In either case

qs+ rs+ rt− qt = (q + r)s+ (r − q)t = ±2, (6.77)

where all functions are evaluated at λ. Hence

E(qs+ rs+ rt− qt) ≤ E(2) = 2. (6.78)

Thus that we arrive a the Bell inequality

E(qs) + E(rs) + E(rt)− E(qt) ≤ 2. (6.79)

This particular version of a Bell inequality is called CHSH inequality, after its discoverers Clauser, Horne,

Shimony and Holt.

We now show that the Bell inequality can be violated by quantum mechanical expectation values. Choose

Q = σ3 ⊗ I , R = σ1 ⊗ I,

S = −I ⊗ 1√
2

(σ1 + σ3) , T = I ⊗ 1√
2

(σ3 − σ1). (6.80)

Then

QS = − 1√
2
σ3 ⊗ (σ1 + σ3)

RS = − 1√
2
σ1 ⊗ (σ1 + σ3)

RT =
1√
2
σ1 ⊗ (σ3 − σ1)

QT =
1√
2
σ3 ⊗ (σ3 − σ1). (6.81)

It is straightforward to check that〈
Ψ−
∣∣σ3 ⊗ σ3

∣∣Ψ−〉 =
〈
Ψ−
∣∣σ1 ⊗ σ1

∣∣Ψ−〉 = −1 (6.82)
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and 〈
Ψ−
∣∣σ1 ⊗ σ3

∣∣Ψ−〉 =
〈
Ψ−
∣∣σ3 ⊗ σ1

∣∣Ψ−〉 = 0. (6.83)

It follows that

EΨ−(QS) =
1√
2
, EΨ−(RS) =

1√
2
, EΨ−(RT ) =

1√
2
, EΨ−(QT ) = − 1√

2
(6.84)

so that

EΨ−(QS) + EΨ−(RS) + EΨ−(RT )− EΨ−(QT ) = 2
√

2 > 2. (6.85)

The calculation shows:

Theorem 6.3 (Bell’s theorem) No theory which uses local hidden variables can reproduce the predictions

of quantum mechanics for all experiments.

Furthermore, as mentioned in the introductory remarks, experiments show that the Bell inequality is

indeed violated in precisely the way which quantum mechanics predicts, thus ruling out local hidden variable

theories and corroborating quantum mechanics.
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Quantum circuits and quantum
algorithms

7.1 Classical versus quantum circuits

A classical circuit is made up of wires, which carry information, and gates, which perform simple com-

putational tasks. It takes k input bits (i.e. a binary number with k digits) and produces l output bits.

Mathematically, a classical circuit is therefore a function

f : {0, 1}k → {0, 1}l. (7.1)

Each gate is itself a map of this type. The wires indicate how the maps for each gate are to be composed to

give the map for the entire circuit. The simplest non-trivial example of a gate (and hence of a circuit) is the

Fig. 7.1. The NOT gate

NOT gate, graphically represented as shown in Fig. 7.1 and corresponding to the map

n : {0, 1} → {0, 1}, n(x) = x⊕ 1, (7.2)

where ⊕ denotes addition modulo 2, i.e.

0⊕ 1 = 1, 1⊕ 1 = 0, (7.3)

so that n(0) = 1 and n(1) = 0. If we interpret 1 as “true” and 0 as “false”, the NOT gate negates, turning

“true” into “false” and vice-versa.

Fig. 7.2. The AND gate

Other elementary examples are the AND gate, shown in Fig. 7.2. It corresponds to the map

a : {0, 1}2 → {0, 1}, a(x, y) = xy. (7.4)

Again interpreting 0 as “false” and 1 as “true”, the AND gate takes “true” and “true” into “true”, but gives

the output “false” when either of the inputs is false. We can compose the AND and NOT gates to construct

the circuit for NAND, shown in Fig. 7.3 We obtain the mathematical function describing this circuit by

composing the functions for AND and NOT, obtaining

na : {0, 1}2 → {0, 1}, n(x, y) = xy ⊕ 1. (7.5)

69



70 Quantum circuits and quantum algorithms

Fig. 7.3. The NAND circuit

Quantum circuits take qubits as input and produce qubits as output. We introduce the notation

k⊗
C2 = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

k times

(7.6)

for the k-fold tensor product of the single qubit Hilbert space C2 with itself. Then quantum circuits are

mathematically presented by maps

F :

k⊗
C2 →

k⊗
C2. (7.7)

Note that, unlike in classical circuits, the number of input qubits is equal to the number of output qubits.

The basic reason for this lies in the nature of the two fundamental quantum mechanical processes, time

evolution and measurement, on which quantum computing rests. As we have seen, for pure states both are

mathematically represented by maps of the type (7.7), preserving the number of qubits. Time evolution of

a k-qubit system is given by a unitary map

U :

k⊗
C2 →

k⊗
C2, (7.8)

and measurement is implemented by projection and rescaling

P :

k⊗
C2 →

k⊗
C2, |ψ〉 7→ 1√

〈ψ|P |ψ〉
P |ψ〉 . (7.9)

(Note that, because of the division by
√
〈ψ|P |ψ〉 this map is not linear). The gates used in quantum

computing makes use of these two types of operations and are correspondingly called unitary gates and

measurement gates.

7.2 Unitary quantum gates

The simplest unitary quantum gates perform an operation on one qubit only i.e. they are unitary operators

U : C2 → C2. (7.10)

We studied all such operators in detail in Chapter 4, so we only introduce some additional nomenclature

U

Fig. 7.4. Circuit diagram for the unitary operator U

here. The circuit diagram for the unitary operator U is shown in Fig. 7.4. In particular there are gates

correspoding to the three Pauli matrices. There is a special diagram for the Pauli gate σ1 since it is a

quantum analogue of the classical NOT gate, see Fig 7.5. We can write its action on the canonical basis

states as

σ1 : |x〉 7→ |x⊕ 1〉 (7.11)
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σ1

Fig. 7.5. Two representations of the quantum gate σ1

where x ∈ {0, 1} and ⊕ is the addition modulo 2 as before. The gate represented by the operator with

matrix representation

H =
1√
2

(
1 1

1 −1

)
(7.12)

relative to the canonical basis is called the Hadamard gate. Other simple gates which play a role in

quantum computing are the phase gate S with matrix representation

S =

(
1 0

0 i

)
(7.13)

and the so-called π/8 gate T with matrix representation

T =

(
1 0

0 eiπ/4

)
. (7.14)

One can show that any unitary single qubit gate can be approximated arbitrarily well by compositions of

the Hadamard and T -gate. See Nielsen and Chuang, page 195ff for a discussion.

More interesting and useful gates involving two qubits are gates for controlled operations. The first

qubit plays the role of the controller, the other that of the target. If the control qubit is in the state |0〉, the

target qubit is left unchanged. If the control qubit is in the state |1〉, a prescribed unitary transformation U

is performed on the target qubit. We depict the gate as shown in Fig. 7.6. An important example is U = σ1.

U

Fig. 7.6. The gate for the controlled U operation

The resulting gate is called the CNOT gate, depicted in Fig. 7.7.It has the following action on the canonical

basis of C2 ⊗ C2:

|00〉 7→ |00〉 , |01〉 7→ |01〉
|10〉 7→ |11〉 , |11〉 7→ |10〉 (7.15)

so that it is represented by the matrix 
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (7.16)

Composing the Hadamard gate on the control qubit with the CNOT gate we obtain our first interesting

quantum circuit, shown in Fig. 7.8. We work out its effect on the canonical basis states by composing the
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Fig. 7.7. The gate for the controlled NOT operation

operations

|00〉 7→ 1√
2

(|00〉+ |10〉) 7→ 1√
2

(|00〉+ |11〉)

|01〉 7→ 1√
2

(|01〉+ |11〉) 7→ 1√
2

(|01〉+ |10〉)

|10〉 7→ 1√
2

(|00〉 − |10〉) 7→ 1√
2

(|00〉 − |11〉)

|11〉 7→ 1√
2

(|01〉 − |11〉) 7→ 1√
2

(|01〉 − |10〉) (7.17)

so that the images of |00〉 , |01〉 , |10〉 , |11〉 are the entangled Bell states, conventionally denoted |Φ+〉 , |Ψ+〉 , |Φ−〉
and, respectively, |Ψ−〉.

H

Fig. 7.8. Quantum circuit to create Bell states

7.3 Measurement: the circuit for quantum teleportation

Measurement gates are depicted as shown inf Fig 7.9, with the outcome of the measurement (a real number)

denoted m. We now combine the unitary gates of the previous section with measurement gates to understand

m

Fig. 7.9. Graphical representation of a measurement gate

something non-trivial and surprising: quantum teleportation. The task is to send a quantum state in C2 to

a recipient by only transmitting classical information without knowing the state. This can be achieved by

using one of the Bell states constructed in the previous section, and three qubits. Of these, the first two

belong to the sender (Alice) and the third to the recipient (Bob). Suppose that Alice and Bob generated the
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Bell state |Φ+〉 sometime in the past and then each took one qubit when they separated, Alice the first and

Bob the second. The state to be teletransported is

|ψ〉 = α |0〉+ β |1〉 , (7.18)

where α and β are unknown complex numbers satisfying |α|2 + |β|2 = 1. The state

|ψ〉 ⊗
∣∣Φ+

〉
=

1√
2

[α(|000〉+ |011〉) + β(|100〉+ |111〉)] (7.19)

is then input into the quantum circuit shown in Fig. 7.10. Alice sends her two qubits through a CNOT gate,

σm2
1 σ3 

m1 

m2

H
m1 

ψ

ψ

Φ
+

Fig. 7.10. Quantum circuit for teleporting a qubit

resulting in the state

1√
2

[α(|000〉+ |011〉) + β(|110〉+ |101〉)]. (7.20)

She then sends the first qubit through a Hadamard gate, leading to

1

2
[α(|000〉+ |100〉+ |011〉+ |111〉) + β(|010〉 − |110〉+ |001〉 − |101〉)]. (7.21)

which can be written as

1

2
[|00〉 (α |0〉+ β |1〉) + |01〉 (α |1〉+ β |0〉)

+ |10〉 (α |0〉 − β |1〉) + |11〉 (α |1〉 − β |0〉)]. (7.22)

Now Alice performs measurements on her two qubits. She measures the observable |1〉 〈1| on the first and

then on the second on her qubit, i.e she measures the commuting observables

|1〉 〈1| ⊗ I ⊗ I and I ⊗ |1〉 〈1| ⊗ I. (7.23)

The possible outcomes of the measurements are (m1,m2) = (0, 0), (0, 1), (1, 0), (1, 1) and correspondingly the

state of her two qubits after the measurements are |00〉 , |01〉 , |10〉 , |11〉. If her qubits are in the state |00〉
she can tell Bob (by classical means - e.g. a phone call) that his state is now |ψ〉 i.e. she has successfully

teleported her state. If her qubits are in the state |01〉, i.e. m2 = 1, then Bob can recover the state |ψ〉 by

passing his state through a σ1-gate, which maps

(α |1〉+ β |0〉) 7→ (α |0〉+ β |1〉) = |ψ〉 (7.24)

If Alice found the state |10〉, i.e. m1 = 1, then Bob can recover the state |ψ〉 by passing his state through a

σ3-gate:

(α |0〉 − β |1〉) 7→ (α |0〉+ β |1〉) = |ψ〉 . (7.25)
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Finally, if Alice found the state |11〉 she can tell Bob to recover the state |ψ〉 by passing his state through a

σ1-gate and then a σ3 gate:

(α |1〉 − β |0〉) 7→ (α |0〉 − β |1〉) 7→ (α |0〉+ β |1〉) = |ψ〉 . (7.26)

Thus, in general Bob can recover the state |ψ〉 by applying the transformations σm1
3 σm2

1 .

7.4 The Deutsch algorithm

In this final section we consider a quantum algorithm which “integrates” a function

f : {0, 1} → {0, 1} (7.27)

in a single evaluation of f . Classical computers would need to evaluate the function at both arguments 0

and 1 and then add the results. The algorithm we are about to discuss, called Deutsch algorithm after its

inventor David Deutsch, therefore illustrates how quantum algorithms can outperform classical algorithms.

fU

Fig. 7.11. Quantum circuit implementing the unitrary transformation Uf

To construct the circuit, we first note that the linear operator Uf : C2 ⊗ C2 → C2 ⊗ C2 defined by its

action on the canonical basis

Uf : |x, y〉 7→ |x, y ⊕ f(x)〉 (7.28)

is unitary. This can be checked explicitly by going through the four possibilities

f(0) = 0, f(1) = 0, f(0) = 0, f(1) = 1, f(0) = 1, f(1) = 0, f(0) = 1, f(1) = 1. (7.29)

H

H

H

fU

Fig. 7.12. Quantum circuit implementing Deutsch’s algorithm

Let us assume that we have a two-qubit gate that implements this transformation, diagrammatically

shown in Fig. 7.11. The circuit diagram for the Deutsch algorithm is obtained by composing this gate with

Hadamard gates, see Fig. 7.12. Suppose we input the state |01〉 into this circuit. The state after passing

through the two Hadamard gates is

|ψ1〉 =
1

2
(|0〉+ |1〉)⊗ (|0〉 − |1〉). (7.30)

Now note that applying Uf to the state |x〉⊗ (|0〉− |1〉) gives |x〉⊗ (|0〉− |1〉) if f(x) = 0 and |x〉⊗ (|1〉− |0〉)
if f(x) = 1. We can write this as

Uf (|x〉 ⊗ (|0〉 − |1〉)) = (−1)f(x) |x〉 ⊗ (|0〉 − |1〉). (7.31)
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Hence, after passing through Uf the state |ψ1〉 is

|ψ2〉 =

{
1
2 (−1)f(0)(|0〉+ |1〉)⊗ (|0〉 − |1〉) if f(0) = f(1)
1
2 (−1)f(0)(|0〉 − |1〉)⊗ (|0〉 − |1〉) if f(0) 6= f(1)

(7.32)

Applying the final Hadamard gate to the first qubit gives

|ψ3〉 =

{
(−1)f(0) |0〉 ⊗ 1√

2
(|0〉 − |1〉) if f(0) = f(1)

(−1)f(0) |1〉 ⊗ 1√
2
(|0〉 − |1〉) if f(0) 6= f(1)

(7.33)

Now note that f(0)⊕ f(1) = 0 if f(0) = f(1) and f(0)⊕ f(1) = 1 if f(0) 6= f(1) to write the final state as

|ψ3〉 = (−1)f(0) |f(0) + f(1)〉 ⊗ 1√
2

(|0〉 − |1〉). (7.34)

Hence by measuring the first qubit we obtain |f(0)⊕f(1)|, the promised “integral” of a function f : {0, 1} →
{0, 1}. This algorithm calculates a global property of the function f by a single evaluation of the function

in one use of the gate Uf .

7.5 Cryptography

7.5.1 Classical cryptography

Cryptography is the art of concealing messages. The process of transforming an ordinary message into a

ciphered one is called encryption while the inverse process of transforming the ciphered message into an

ordinary one is called decryption. We can think of encryption as a function f from a set X of messages

to a set Y of encrypted messages. Decryption then is the inverse function f−1 from Y to X. Often the

form of function f is known, so that the function itself is parameterised by a parameter (number) called the

encryption key. Analogously the decryption function f−1 depends on the decryption key.

Example 7.1 (Caesar cipher) Let the set X be the set of n integers 0, 1, . . . , n− 1 and let Y = X. Take

f(x) = (x+ b) mod n (7.35)

where b is an integer. The corresponding decryption function is

f−1(x) = (x− b) mod n . (7.36)

The number b is the encryption/decryption key and must be kept secret.

Example 7.2 (One-Time-Pad protocol) In this example X is a binary string of length n. The encryp-

tion key is a fixed string k ∈ X. For a message t ∈ X the decripted message is fk(t) = t⊕ k where ⊕ stands

for the bitwise addition modulo 2 (XOR operation). Thus 0⊕ 0 = 0, 0⊕ 1 = 1⊕ 0 = 1, and 1⊕ 1 = 0. The

decryption function turns out to be the same: f−1
k = fk because (t⊕ k)⊕ k = t⊕ (k ⊕ k) = t. For example

let n = 8 and let t = 01001101 and k = 11110001. Then the encrypted message is t⊕ k = 10111100.

Since the key is of the size of the text, no statistical correlations can be observed in the encrypted text. If

the key is truly random, never reused in whole or part, and kept secret, the One-Time-Pad protocol provides

perfect secrecy. Practical implementation of this protocol encounters two problems: there must be a secure

way to provide the key to the sender and the receiver for the transmission of every message and secondly

the key in this protocol must be as large as the text. The transmission of a secret key is a risky process,

and for this reason it is now preferred to use cryptographic systems based on a different principle, the so

called public-key systems. In these systems the encryption key is announced publicly, say via the internet.

At first sight it appears that knowing the encryption function f will allow anyone to decrypt any message

by computing f−1. But for the public-key systems in use determining f−1 from f is so difficult that even

the most powerful computer available would be unable to carry it out within a feasible amount of time.
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Example 7.3 (RSA protocol) Two large prime numbers p and q, which are kept secret, are used to

generate an encryption key and a decryption key. Two numbers N = pq and c are used as an encryption key.

c is any number having no common divisors with the product (p− 1)(q − 1). Messages must be represented

by numbers a < N . The encrypted message b is computed as

b = ac mod N . (7.37)

The receiver of the message, traditionally called Bob, who knows p q, announces publicly the encryption

keys N and c (but not p and q). The sender, called Alice, then sends to Bob the encrypted message b

calculated using (7.37). To decrypt the message Bob first computes d - the inverse of c for mod (p−1)(q−1)

multiplication

dc = 1 mod (p− 1)(q − 1) (7.38)

which exists because c was chosen to be relatively prime with (p− 1)(q − 1). Then he calculates

bd mod N = a . (7.39)

The fact that the result is precisely a, that is, the original message of Alice, is a result from number theory.

For a concrete example take p = 3, q = 7, N = pq = 21, (p−1)(q−1) = 12. The number c = 5 has no common

factor with 12. Its inverse with respect to mod 12 multiplication is d = 5 because 5 × 5 = 12 × 2 + 1 = 1

mod 12. If Alice chooses a = 4 for her message she calculates

ac = 45 = 1024 = 21× 48 + 16 = 16 mod 21 .

Alice then sends Bob the message 16. Bob calculates

bd = 165 = 1048576 = 49932× 21 + 4 = 4 mod 21

thus recovering the original message a = 4.

The RSA protocol is named after its inventors: Rivest, Shamir and Adleman. Invented in 1977 RSA is

currently used in many applications, including telephones, smart cards, and secure internet communications.

Its security is based on the difficulty of factorizing a very large number N into primes. Using the best current

algorithms (and classical computers), the time needed to factor a number N into primes grows with N as

∼ exp
[
1.9(lnN)1/3(ln lnN)2/3

]
.

The current record is 176 digits, and it takes several months for a PC cluster to factorize such a number.

7.5.2 Quantum cryptography

Quantum cryptography provides algorithms for secure transmission of the encryption/decryption keys called

quantum key exchange protocols. The first quantum key exchange protocol was introduced by Bennett and

Brassard in 1984, and hence the name BB84. Before we describe it in detail let us see which features of the

quantum world are appealing to cryptographers. They are facing three problems:

(i) Transmission security. Alice (the sender) and Bob (the receiver) would like to be sure that the

key they are exchanging was not intercepted by a third party, a spy called Eve.

(ii) Intrusion detection. They would like to determine whether Eve is, in fact, eavesdropping.

(iii) Authentication. They want to ensure that Eve is not impersonating Alice and sending false mes-

sages.

Suppose the spy Eve is somewhere along the insecure channel listening for some bits of information. What

can she do if the information is transmitted in classical bits? She can make copies of arbitrary portions of the

encrypted bit stream and store them somewhere to be used for later analysis and investigations. Moreover

she can listen without affecting the bitstream, that is her eavesdropping does not leave traces.

Now, assume that Alice sends qubits, rather than bits. In this case the no-cloning theorem to be presented

shortly ensures that Eve cannot make perfect copies of the qubit stream. Moreover the very act of measuring
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the qubit stream alters it so that Eve leaves traces. This potentially allows Alice and Bob to detect whether

Eve is listening.

Theorem 7.1 (Quantum no-cloning Theorem) It is impossible to duplicate an unknown quantum state

by a unitary operation.

Proof Suppose we want to clone a state |χ1〉 ∈ V . (Of course, if |χ1〉 was known, there would be no problem

because the preparation procedure would be known.) The system on which we wish to ”print” the copy of

|χ1〉 is described by another copy of the Hilbert space V and has an initial state |φ〉. The evolution of the

state vector in the cloning process must be of the form

|χ1〉 ⊗ |φ〉 7→ |χ1〉 ⊗ |χ1〉 .

This evolution is governed by a unitary operator U :

U(|χ1〉 ⊗ |φ〉) = |χ1〉 ⊗ |χ1〉 . (7.40)

The operator U must be independent of |χ1〉 (which is unknown at the beginning of cloning) so that if we

wish to clone another state |χ2〉 we must have

U(|χ2〉 ⊗ |φ〉) = |χ2〉 ⊗ |χ2〉 . (7.41)

Then by unitarity of U we have

(|χ1〉 ⊗ |φ〉 , |χ2〉 ⊗ |φ〉) = (|χ1〉 ⊗ |χ1〉 , |χ2〉 ⊗ |χ2〉) (7.42)

Since 〈φ|φ〉 = 1 this implies that 〈χ1|χ2〉 = (〈χ1|χ2〉)2. This is not generally true for arbitrary states |χ1〉,
|χ2〉. Thus there can be no unitary map U that clones any given state. �

We now present in detail the BB84 quantum key exchange protocol. In this protocol Alice uses two

different orthogonal bases to send her qubits:

The basis + : |0〉, |1〉

The basis × : |±〉 =
1√
2

(|0〉 ± |1〉) (7.43)

The classical bit 0 corresponds to the state |0〉 in the + basis and to |+〉 in the × basis while the classical

bit 1 is encoded as |1〉 in the + basis and as |−〉 in the × basis. Here are the steps of the protocol.

Step 1. Alice flips a coin n times to determine which classical bits to send. She then flips the coin another

n times to determine in which of the two bases to send those bits. She then sends the bits in the chosen bases.

Step 2. As the sequence of qubits reaches Bob, he does not know which basis Alice used to send them, so

to determine the basis by which to measure them he also tosses a coin n times. He then goes on to measure

the qubit in those random bases.

Step 3. Bob and Alice publicly compare which basis they chose at each step. Each time they disagreed,

Alice and Bob scratch out the corresponding bit. Proceeding this way to the end, they are each left with a

subsequence of bits that were sent and received in the same basis. If Eve was not listening this subsequence

should be exactly identical. On average Bob’s choice of basis will agree with Alice’s in 50% of the cases so

that the remaining subsequence on average contains n/2 bits.

But what if Eve is listening? Eve also does not know in which basis Alice sends each qubit, so she must

act like Bob. She will aslo choose between two polarisations randomly. Her basis will agree with Alice’s 50%

of the time. Due to the no-cloning theorem Eve does not have the luxury of making a copy of the original

qubit, so she just sends the qubit after her observation which is now in her basis. For about 50% of the

Alice’s qubits Eve has performed her measurement in the right basis, causing no disturbance. The remaining

50% of the qubits have been measured in the wrong basis and passed on to Bob. The final measurements

by Bob (those done in the same basis as Alice’s) project half of those (mangled) qubits back into the state

originally prepared by Alice because of |〈0|±〉|2 = |〈1|±〉|2 = 1/2. Thus the overall error rate caused by Eve
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is 25%.

Step 4. Bob randomly chooses half of the qubits that remained after step 3 and publicly compares them

with Alice. If they disagree by more than a tiny percentage (that could be attributed to noise), they know

that Eve was listening. In this case they scratch the whole sequence and start anew. Otherwise the remaining

undisclosed bits is the secret key.

A sample run of the protocol, transmitting 12 bits is represented in the table below.

Bit number 1 2 3 4 5 6 7 8 9 10 11 12

Alice’s bits 0 1 1 0 1 1 1 0 1 0 1 0

Alice’s basis + + × + + + × + × × × +

Alice sends |0〉 |1〉 |−〉 |0〉 |1〉 |1〉 |−〉 |0〉 |−〉 |+〉 |−〉 |0〉
Bob’s basis × + × × + × + + × × × +

Bob observes |+〉 |1〉 |−〉 |−〉 |1〉 |+〉 |1〉 |0〉 |−〉 |+〉 |−〉 |0〉
Bob’s bits 0 1 1 1 1 0 1 0 1 0 1 0

Same basis? yes yes yes yes yes yes yes yes

Bits for comparison X X X X

Comparison bits agree? yes yes yes yes

Shared bits 1 1 1 0 1 0 1 0

Secret key 1 1 0 1

In this transmission all bits compared at step 4 were the same. Hence there was no eavesdropping and a

secret key 1101 was successfully transmitted.

As of today the longest distance over which quantum key distribution has been demonstrated using optic

fibre is 148.7 km, achieved by Los Alamos/NIST using the BB84 protocol. Significantly, this distance is long

enough for almost all the spans found in today’s fibre networks. Quantum encryption technology provided

by the Swiss company Id Quantique was used in the Swiss canton (state) of Geneva to transmit ballot results

to the capitol in the national election occurring on Oct. 21, 2007. In 2004, the world’s first bank transfer

using quantum cryptography was carried in Vienna, Austria. An important cheque, which needed absolute

security, was transmitted from the mayor of the city to an Austrian bank. The world’s first computer network

protected by quantum cryptography was implemented in October 2008, at a scientific conference in Vienna.

The network used 200 km of standard fibre optic cable to interconnect six locations across Vienna and the

town of St Poelten located 69 km to the west.


