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SUMMARY

This paper provides an assessment of high-level parallel programming models for multi-core programming
by implementing two versions of the n-body problem. We compare three different parallel programming
models based on parallel Haskell, differing in the ways how potential parallelism is identified and managed.
We assess the performance of each implementation, discuss the sequential and parallel tuning steps leading
to the final versions, and draw general conclusions on the suitability of high-level parallel programming
models for multi-core programming. We achieve speed-ups of up to 7.2 for the all-pairs algorithm and up to
6.5 for the Barnes-Hut algorithm on an 8-core machine.
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1. INTRODUCTION

Modern multi-core architectures make the computational power of parallel hardware available
to domain experts, who want to implement compute-intensive applications. However, most
established parallel programming technology makes it challenging for non-specialists in parallel
programming to exploit this potential. In contrast, high-level parallel programming models simplify
the challenging tasks of parallel programming by offering powerful abstractions and by hiding the
low level details of synchronisation and coordination from the programmer [30]. Writing parallel
programs using these models usually involves only small changes to the sequential algorithm and
therefore does not obscure the core computation. This comes, of course, at the expense of additional
runtime overhead. Despite being high-level, the programming model should be detailed enough to
allow for targeted performance tuning, enabling the domain expert to use algorithmic knowledge to
improve the utilisation of multi- and many-cores.

Several high-level language models are built on the purely functional, non-strict programming
language Haskell. While all of them are significantly more abstract than explicit, thread-based
orchestration as in C+MPI, they vary in their support and flexibility. Completely implicit models
of parallelism try to hide all aspects of parallelism from the programmer and rely on compilation
and runtime system technology for parallelisation. Semi-explicit models of parallelism only require
the programmer to identify and mark worthwhile parallelism. All aspects of synchronisation
and communication are handled automatically by the runtime system, the compiler or library
code. Explicit models of parallelism expose the notion of independent threads to the application
programmer and provide means of explicit synchronisation.

This paper considers three current variants of parallel Haskell including: the semi-explicit
GpH [35, 51, 34], which provides basic primitives for introducing parallelism and controlling the
order and degree of evaluation; the semi-explicit Eden [32], which identifies parallelism through
the notion of processes and is implemented for distributed-memory architectures; and the explicit
Par monad [36], which provides a new programming model for explicit, deterministic parallel
programming in Haskell.
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2 P. TOTOO AND H-W. LOIDL

To compare these models we implement the n-body problem which represents an important class
of problems in many areas of science including molecular dynamics and astrophysics. It is the
core of a real application and representative for a wide range of applications. As a baseline for
comparison, we first implement the naive all-pairs algorithm exploiting obvious data-parallelism
and tune its parallel performance. Then we implement the more complex but efficient Barnes-Hut
algorithm which presents more challenge in getting good parallel performance.

The parallel implementations are based on a proven methodology we have developed for
languages with semi-explicit parallelism on the basis of several symbolic computations in the
past [31]. Notably, it makes use of a rich set of pre-defined parallel patterns, or skeletons [11],
that encode optimised, parallel patterns of computation as higher order functions.

The work in this paper contributes to the wider effort put together by participants in the SICSA
Multicore Challenge workshop∗ where parallel implementations of the naive algorithm in a variety
of languages were presented. The results varied from language to language. Our aim is to look into
implementations using different parallel models in Haskell and evaluate which one is best suited
for this particular problem. The comparison takes into account the usability of the models and the
required tunings to get the optimal parallel implementation.

The structure of the paper is as follows: Section 2 looks at the n-body problem description and
the two methods we select to solve the problem. Section 3 covers the three parallel programming
models, their implementations, and functions, both low-level and user-level. Sections 4 and 5 look
at the sequential and parallel implementations respectively. The performance of each model is
discussed in Section 6. We cover related work in the area in Section 7 before concluding in Section 8.

All the Haskell source code and link to paper is available online. †

2. THE PROBLEM

The n-body problem is the problem of predicting the motion of a system of N bodies that interact
with each other gravitationally. In astrophysics, the bodies are galaxies or stars, and the movement
of the bodies are affected by the gravitational force. The computation proceeds over time steps
where the acceleration of each body with respect to the others is calculated and then used to update
the velocity and position in each iteration. We look at two commonly used methods of solving the
problem: the first method is used mainly for simulation consisting of up to a few thousands number
of bodies while the second method is best suited for system of large number of bodies, for example,
interactions between molecules in biological systems.

2.1. All-Pairs Algorithm

The all-pairs method is the traditional brute-force technique in which the pair-wise accelerations
between each body and the remaining are calculated. The body-to-body comparison requires a time
complexity of O(N2) to complete and thus making it convenient for only a small number of bodies. It
is relatively simple to implement in an imperative language using a double nested loop with inplace
update.

In pure Haskell, the absence of destructive update requires a different approach for
implementation. For instance, the use of recursive function to achieve the same effect as a loop.
Alternatively, a nested map function can also be employed to get the same behaviour.

2.2. Barnes-Hut Algorithm

The Barnes-Hut algorithm [2] is a widely used approximation method for the n-body problem. It
is particularly useful for systems consisting of a large number of bodies where an approximate

∗SICSA Multicore Challenge: n-body computation.
http://www.macs.hw.ac.uk/sicsawiki/index.php/Challenge_PhaseII
†Source code and paper link:
http://www.macs.hw.ac.uk/˜dsg/gph/papers/abstracts/sicsamcc12.html
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(a) Physical location of points in 2D space (b) Tree representation

Figure 1. 2D Barnes-Hut simulation: Bodies (or points) are contained in a region (bounding box) which is
sub-divided recursively into smaller sub-regions.

but efficient solution is more feasible than the naive approach. The Barnes-Hut algorithm proceeds
by dividing the region containing the bodies into sub-regions (four for 2D or eight for 3D space)
and representing them as nodes in a tree. This division into sub-regions continues recursively until
each sub-region contains zero or one body. This process accounts to the tree construction stage of
the algorithm, in which the centre of mass and total mass of each region are calculated and stored
in the inner nodes. The second stage involves traversing the tree for each body and computing
the forces against other bodies directly, or approximating bodies that are too far away, which is
determined by threshold, using the region centre of mass. Depending on how dispersed the bodies
in the system are, the tree construction phase will usually lead to not-so-well balanced structure
which makes achieving good parallel performance difficult. In our implementation, we use random
input generation which ensures a fairly balanced tree.

3. TECHNOLOGY

While the problem has been implemented across a wide variety of programming languages covering
many paradigms, using a functional approach raises the level of abstraction by making it easier to
express the problem, for example, through the use of higher-order functions. As a pure functional
language, Haskell is free of many of the inherent problems associated with imperative programming
e.g it disallows side effects which leads to referential transparency, thus making it easier to
parallelise programs.

Haskell supports concurrency by providing a set of primitives to spawn explicit IO threads
that are executed in an interleaved fashion [43]. Concurrent execution of threads in this model is
non-deterministic and can result in race conditions and deadlocks if proper synchronisation is not
implemented. This paper does not deal with concurrency but rather pure parallelism to speed up a
program. However, we will shortly see how the Par monad builds on top of concurrent primitives to
deliver a new deterministic model for parallel computation. In this section, we cover GpH, the Par
monad and Eden as parallel programming models in Haskell.

There are other models for parallel computation in Haskell which we do not use in our
implementations. For instance, Data Parallel Haskell (DPH) provides a model of nested data
parallelism. An implementation of the Barnes-Hut algorithm using DPH, which covers flattening
transformation techniques to improve performance, is given in [25]. This model is particularly
well-suited for irregular parallelism. Another example is Cloud Haskell, which is a distributed
programming model building on the same principle as the highly successful Erlang programming
language.
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4 P. TOTOO AND H-W. LOIDL

3.1. Parallelisation Methodology

We follow guidelines established in [31, Sec 3] with some flexibility. The approach we use is as
follows:

• Sequential implementation: Start with the initial sequential algorithms;
• Sequential optimisation: Optimise the sequential algorithms e.g. improve heap consumption

by identifying any space leaks and fix them; use tail recursive functions; and add strictness
where necessary;

• Time profile: To point out “big eaters”, i.e. parts of the programs that are compute-intensive;
• Top-level parallelisation: Parallelise top-level data independent operations e.g. map

functions representing data-oriented parallelism, and independent tasks representing task-
oriented parallelism, using high-level constructs provided in the parallel programming model;

• Parallel execution and initial results: Run parallel programs on multi-core machine or
cluster to obtain initial results;

• Parallel tuning: To achieve better runtimes and speed-ups, use more advanced and explicit
features of the model. This step also looks at scalability of the parallel programs by tuning for
varying/increasing input sizes.

3.2. GpH: Glasgow parallel Haskell

GpH extends Haskell with two basic primitives to enable semi-explicit parallelism: par for parallel
composition and pseq for sequential composition [51, 34, 35]. The par primitive “sparks” its
first argument, i.e. it records it to potentially be evaluated in parallel. The pseq primitive evaluates
its first argument to WHNF (Weak Head Normal Form) before continuing with the evaluation of
its second argument and thus enforces sequential ordering. Both primitives return their second
argument as the result.

1 −− p a r a l l e l c o m p o s i t i o n
2 p a r : : a −> b −> b
3 −− s e q u e n t i a l c o m p o s i t i o n
4 pseq : : a −> b −> b

For parallel execution, the program needs to be compiled with the -threaded option. The
runtime option -Nx needs to be specified where x represents the number of processors.

Sparks are added to a spark pool and are taken up for execution by lightweight Haskell threads
which in turn are mapped down to the underlying OS threads. Creating sparks using par is cheap,
amounting to just a pointer, and thousands of them can be created. Converted sparks represent
parallelism extracted from the algorithm, incurring the usual thread creation overhead.

By only using the primitives, it is often possible to specify parallelism in a wrong way, or even
obscure the code. Evaluation strategies provide further abstraction over this level of programming
by separating the coordination and computation concerns. An evaluation strategy is basically a
function of type a -> Eval a that is executed for coordination effects.

1 d a t a Eva l a = Done a
2
3 r u n E v a l : : Eva l a −> a
4 r u n E v a l ( Done x ) = x
5
6 t y p e S t r a t e g y a = a −> Eval a
7
8 r s eq , r p a r : : S t r a t e g y a
9 r s e q x = x ‘ pseq ‘ Done x

10 r p a r x = x ‘ par ‘ Done x
11
12 u s i n g : : a −> S t r a t e g y a −> a
13 x ‘ us ing ‘ s t r a t = r u n E v a l ( s t r a t x )
14
15 −− a p p l y i n g s t r a t e g y e . g .
16 somefunc s t r a t = someexpr ‘ us ing ‘ s t r a t
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The basic strategies rpar and rseq are defined directly in terms of their primitives. The using
function applies a strategy to an expression. Since all parallelism, evaluation order and evaluation
degree are specified within the Eval monad, an explicit runEval is used at the point where it is
applied to a concrete expression. Using a monad helps to separate the purely functional aspects of
the execution from the behavioural aspects of the execution. It also allows the programmer to use
rich sets of libraries and abstractions available for monads in Haskell.

Strategies can be composed just like functions using the dot strategy combinator e.g. (rpar
‘dot‘ rdeepseq) sparks parallel evaluation of its argument and completely evaluates it to
normal form. In this example rdeepseq is used to specify the evaluation degree. The expressive
power of evaluation strategies comes from the ability to compose them, as above, to separate the
specification of parallelism from evaluation degree and other parallelism optimisations such as
clustering, as we will see later, and the possibility to nest strategies, by providing other strategies as
arguments, exploiting higher-order functions in the language.

Skeletons: A number of skeletons are implemented as higher-order functions e.g. parallel map,
pipeline and divide&conquer. Parallel map is the most common one which specifies data-oriented
parallelism over a list.

1 −− p a r a l l e l map d e f i n i t i o n
2 parMap s t r a t f xs = map f xs ‘ us ing ‘ p a r L i s t s t r a t
3
4 xs = parMap r d e e p s e q f [ 1 0 . . 2 5 ]

In the version above, parMap exposes the maximal parallelism, creating a spark for each item
to be evaluated in parallel. In Section 5 we will discuss several techniques for improving parallel
performance by generating fewer, more coarse-grained threads.

3.3. Par monad

The Par monad offers a new parallel programming model which is implemented entirely as a Haskell
library [36]. Programming in the Par monad looks a lot like programming in Concurrent Haskell but
it preserves determinism and is side-effect-free. Par is simply a type declared as a monad. IVars
are used for communication, an implementation of the I-Structures, a concept from the pH and Id
languages [40]. The basic operations use an explicit approach to specify parallel computations.
Parallelism is introduced using fork which creates a parallel task. Tasks are scheduled using
an optimised parallel scheduler among threads. The computation in the monad is extracted using
runPar. The communication constructs include the following functions:

• new to create a new IVar.
• put to place some value in the IVar. It is executed once per IVar otherwise an error occurs.
• get to retrieve the value from the IVar. It is a blocking operation and waits until something

is put into the IVar.

The derived spawn function hides the explicit put and get operations and therefore ensures
that each IVar created is only ever put into once. This raises the level of abstraction provided by
this model.

1 r u n P a r : : Pa r a −> a
2 f o r k : : Par ( ) −> Par ( )
3 spawn : : NFData a => Par a −> Par ( IVar a )
4
5 −− communica t ion
6 d a t a IVar a
7 new : : Par ( IVar a )
8 p u t : : NFData a => IVar a −> a −> Par ( )
9 g e t : : IVar a −> Par a

As the library is fairly recent, it has a limited number of higher-level function abstractions. The
most obvious being a parallel map implementation, parMap. Work on more abstractions is in
progress.
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6 P. TOTOO AND H-W. LOIDL

3.4. Eden

Eden extends Haskell by providing constructs for parallel process definition: abstracting a function
that takes an argument and produces a value into a process with input and output that correspond to
the function argument and result respectively; and process instantiation: evaluating the process in
parallel [32].

1 −− p r o c e s s d e f i n i t i o n
2 p r o c e s s : : ( T rans a , Trans b ) => ( a−>b ) −> P r o c e s s a b
3 −− p r o c e s s i n s t a n t i a t i o n
4 ( # ) : : ( T rans a , Trans b ) => P r o c e s s a b −> a −> b

Building on these coordination constructs, a parallel function application operator and eager
process creation function are derived. spawn is only denotationally specified, ignoring demand
control.

1 −− p a r a l l e l f u n c t i o n a p p l i c a t i o n
2 ( $ # ) : : ( T rans a , Trans b ) => ( a−>b ) −> a −> b
3 f $# x = p r o c e s s f # x
4
5 −− e a g e r p r o c e s s c r e a t i o n
6 spawn : : ( Trans a , Trans b ) => [ P r o c e s s a b ] −> [ a ] −> [ b ]
7 spawn = z ipWi th ( # )

The parallel runtime system distributes the processes to the available processors. Since Eden has
been designed for a distributed-memory model, processes communicate messages to each other to
provide input and retrieve output. All this synchronisation and coordination is handled implicitly
by the runtime system. The programmer does not need to worry about low-level send and receive
between parallel processes, and only uses process abstraction or skeletons built on top of these.
Eden processes produce output eagerly with the argument to the process being evaluated locally in
the parent process before sending. Lists are handled as streams and are sent element-by-element.
This can cause significant overhead and techniques to avoid element-wise streaming are used.

EdenSkel: Eden provides a rich set of higher-order functions that abstract common parallel
patterns in its skeleton library EdenSkel. For instance, an initial implementation of parallel map
uses spawn to eagerly instantiate a list of process abstractions. The parMap skeleton creates a
process for each list element and this often results in far too many processes in comparison to the
number of processing elements available.

Farm process: The farm process skeleton adapts the number of processes to the number of
available processing elements (given by noPe). The input list is grouped into noPe sublists and
then a process is created for each sublist instead of each individual element. Implementing the
farm process, the parMapFarm skeleton provides a simpler interface and a familiar name to
the programmer who specifies unshuffle as the distribution function and shuffle as the
combination function. parMapFarm creates (noPe+1) processes in total with noPe farm processes
and one main process which means that one machine will be allocated two processes. A slight
variation of this skeleton, implemented as parMapFarmMinus, creates noPe-1 processes so that
each processor gets exactly one process.

Chunking input stream: The farm process reduces the number of processes but does not have
any effect on the messages exchanged between the processes. Each element of the list is sent as a
single message by default. To improve process communication, the number of messages is reduced
using a chunking policy. parMapFarmChunk is defined as a new skeleton which decomposes the
input list into chunks of a specified size e.g. 1000 then creates the farm processes and distributes the
chunks to them. This reduces communication overhead.

1 −− p a r a l l e l map d e f i n i t i o n i n Eden
2 parMap f = spawn ( r e p e a t ( p r o c e s s f ) )
3
4 −− u s i n g farm p r o c e s s
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5 parMapFarm f = s h u f f l e . ( parMap ( map f ) ) . ( u n s h u f f l e noPe )
6
7 −− and chunk ing i n p u t s t r e a m
8 parMapFarmChunk f xs = c o n c a t ( parMapFarm ( map f ) ( chunk s i z e xs ) )

Offline processes: Parallel map implemented using offline processes modifies the
communication behaviour where the unevaluated data, when typically smaller than the evaluated
result, is sent to be evaluated lazily by the new process instead of being evaluated by the parent
process. This reduces the combined effort of the main process having to completely evaluate all
input to the farm processes.

1 −− x i s s t r i c t l y r e d u c e d and s e n t t o c h i l d p r o c e s s
2 f $# x
3
4 −− p a r a m e t e r p a s s i n g : i n p u t s e r i a l i s e d and s e n t t o remote PE
5 ( \ ( ) −> f x ) $# ( )

3.5. Summary

In summary, all three models provide high-level constructs which can be used to get initial
parallelism from the sequential algorithm. Both GpH and Eden represent semi-explicit parallelism,
without an explicit notion of threads. Both implementations delegate the coordination of the
parallelism to a sophisticated runtime system, in the case of Eden, based on a distributed-
memory model, and in the case of GpH, based on a (virtual) shared-memory model. Under closer
examination, Eden can be considered slightly more explicit since process instantiation mandates the
generation of parallelism, whereas all parallelism in GpH is advisory and may be discarded by the
runtime system. In contrast, Par monad is explicit in creating parallel threads, using spawn, and it is
up to the programmer to coordinate the parallel threads, using IVars on a physical shared-memory
system.

Skeletons: To further raise the level of abstraction, all three languages provide skeleton libraries.
The most advanced of these libraries is the EdenSkel library. It uses internal primitives of the
Eden implementation to realise sophisticated topology skeletons, such as rings and tori, as well as
optimised, high-level algorithmic skeletons for common patterns such as data parallelism, divide-
and-conquer etc. Based on a long history of developed and comparative applications to a range of
symbolic applications [30], it represents the best tuned skeleton library of these.

The abstraction provided for GpH are evaluation strategies, which have proven to be very
flexible and easily composable in describing patterns of parallelism [35]. They provide the least
intrusive way of specifying parallelism, achieving the clean separation between coordination and
computation.

Par monad is the youngest of these systems, and thus, it comes with only a small set of skeletons,
most notably ones for data-parallelism. Being the most explicit of these languages, it provides the
highest level of control to the skeleton programmer. This is reflected in a carefully tuned, work-
inlining scheduler, that aims to minimise the parallelism overhead in massively parallel programs.

Runtime system: The most significant difference between these three models is on the runtime
system level. GpH implements parallelism on top of a (virtual) shared-memory model. It is
implemented very efficiently on physical shared-memory systems, via the GHC-SMP runtime
system, which is part of the main release of GHC. It is also implemented on distributed-memory
architectures, via the GHC-GUM runtime system and explicit message passing. Eden has been
designed for distributed-memory architectures from the start but can also be used on shared-
memory machines by exploiting an optimised implementation of MPI or custom shared-memory
implementation of internal communication. This generality of design, however, bears the danger of
runtime overhead due to duplication of data in different memory locations. The GHC-Eden runtime
system is the only stable release of distributed-memory parallelism for Haskell at the moment. The
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8 P. TOTOO AND H-W. LOIDL

implementation of Par monad supports only physical shared-memory systems. In contrast to GpH
and Eden, it does not require any runtime system extension and is implemented entirely as a library.
One advantage of this design is the decoupling from any internal changes to the GHC compile chain
or runtime system. As of the time of writing, the latest official GHC-based releases are 7.4 for GHC-
SMP and 6.12.3 for GHC-Eden. A release candidate for GHC-Eden 7.4 and an unstable version of
GHC-GUM 6.12.3 exist.

Because of the different advantages for the individual systems, a combination of some or all
of them is desirable in particular for heterogeneous, hierarchical networks of multi-cores. The
development of such a merged system is currently being pursued by several research groups.

4. SEQUENTIAL IMPLEMENTATION

In this section, we discuss the sequential implementation of the two algorithms. Starting with a naive
initial implementation, we perform several sequential tuning steps to optimise both the all-pairs
and the Barnes-Hut algorithm. We consider the problem in three dimensional space. The runtimes
reported exclude the generation of input and show the main part of the program that performs the
core computation.

4.1. All-Pairs

The all-pairs program proceeds by comparing each body with the rest in order to calculate the
accelerations induced by the other bodies. The accumulated accelerations are deducted from the
body’s initial velocity and the position of the body is updated to reflect its movement. Two algebraic
data types are defined to represent a body and the acceleration.

Data types definition
1 d a t a Body −− body t y p e d e f
2 = Body { x : : Double , y : : Double , z : : Double ,
3 vx : : Double , vy : : Double , vz : : Double ,
4 m : : Double }
5
6 d a t a Acce l −− a c c e l e r a t i o n t y p e d e f
7 = Accel { ax : : Double , ay : : Double , az : : Double }

The main part of the program is implemented using two map functions, simulating a double nested
loop. The top-level map function applies the composite function (updatePos . updateVel)
to each body in the list bs. The main computation happens in the updateVel function, which has
another map function to calculate the accelerations against all the bodies. The fold function deducts
the accelerations which gives the updated velocity. The code below shows the computation for one
iteration.

All-Pairs main iteration
1 d o S t e p s : : I n t −>[Body]−>[Body ]
2 d o S t e p s 0 bs = bs
3 d o S t e p s s bs = d o S t e p s ( s−1) new bs
4 where
5 new bs = map ( u p d a t e P o s . u p d a t e V e l ) bs
6
7 u p d a t e P o s ( Body x y z vx vy vz m) = Body ( x+ t i m e S t e p ∗vx ) ( y+ t i m e S t e p ∗vy ) ( z

+ t i m e S t e p ∗vz ) vx vy vz m
8
9 u p d a t e V e l b = f o l d l deduc tChange b ( map ( a c c e l b ) bs )

10
11 deduc tChange ( Body x y z vx vy vz m) ( Acce l ax ay az ) = Body x y z ( vx−ax )

( vy−ay ) ( vz−az ) m
12
13 a c c e l ( Body i x i y i z i v x i v y i v z imass ) ( Body j x j y j z j v x j v y j v z jmass ) =

Accel ( dx∗ jmass ∗mag ) ( dy∗ jm∗mag ) ( dz∗ jm∗mag )
14 where
15 mag = t i m e S t e p / ( dSquared ∗ d i s t a n c e )
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16 d i s t a n c e = s q r t ( dSquared )
17 dSquared = dx∗dx + dy∗dy + dz∗dz + eps
18 dx = i x − j x
19 dy = i y − j y
20 dz = i z − j z

4.2. Barnes-Hut

The Barnes-Hut implementation is based on the 2D version of the algorithm discussed in [6] and
[42]. The program consists of two main steps which are broken down into smaller functions. In
addition to the Body and Accel types used in the all-pairs version, three new data types are defined
to represent:

1. BHTree the Barnes-Hut tree structure;
2. Bbox the bounding box representing a region in 3D space, and
3. Centroid the centroid of a region.

The BHTree data type implements a rose tree where each node can have an arbitrary number of
sub-trees. In our case of modelling a 3D space, this will not be more than 8 children per node, thus
an oct-tree. The node of the tree consists of the size of a region, the centre of mass, total mass and
sub-trees.

Additional types for Barnes-Hut
1 d a t a BHTree
2 = BHT { s i z e : : Double , c e n t e r x : : Double , c e n t e r y : : Double ,
3 c e n t e r z : : Double , t o t a l m a s s : : Double , s u b T r e e s : : [ BHTree ] }
4
5 d a t a Bbox
6 = Bbox { minx : : Double , miny : : Double , minz : : Double ,
7 maxx : : Double , maxy : : Double , maxz : : Double }
8
9 d a t a C e n t r o i d

10 = C e n t r o i d { cx : : Double , cy : : Double , cz : : Double , cm : : Double }

The algorithm proceeds in two main phases:

tree construction first an oct-tree is constructed from the list of bodies (buildTree);

force calculation then all forces between bodies are calculated to update the velocities
(updateVel) and positions (updatePos).

Tree construction: This phase constructs an oct-tree from the list of bodies, shown in the
buildTree function below. The bounding box representing the lower and upper coordinates of
the region containing all the points is found (findBounds) and the size of the region is calculated.
The centre of mass (cx, cy, cz) and total mass (cm) are calculated and stored at the root node of
the tree to represent the whole space.

The centre of mass (R) and total mass (M ) of a list of bodies (m) are given by:

M =
n∑

i=1

mi where n is number of bodies (1)

R =
1
M

n∑
i=1

mi × ri (2)

The bounding box is used to subdivide the bodies into 8 smaller regions (splitPoints) and
then the centre of mass and total mass of the bodies contained in each region are computed in the
same way and stored in the children nodes. The process continues until a region has no body in it —
buildTree is essentially a recursive function. The actual bodies are not stored in the tree structure
as in some implementation as the centre and total mass are calculated in the tree construction phase.
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Barnes-Hut tree building
1 d o S t e p s 0 bs = bs
2 d o S t e p s s bs = d o S t e p s ( s−1) new bs
3 where
4 bbox = f indBounds bs
5 t r e e = b u i l d T r e e ( bbox , bs )
6 new bs = map ( u p d a t e P o s . u p d a t e V e l ) bs
7
8 −− b u i l d t h e Barnes−Hut t r e e
9 b u i l d T r e e : : ( Bbox , [ Body ] )−>BHTree

10 b u i l d T r e e ( bb , bs ) = BHT s i z e cx cy cz cm s u b T r e e s
11 where
12 s u b T r e e s = i f bs <= 1 t h e n [ ]
13 e l s e map b u i l d T r e e ( s p l i t P o i n t s bb bs )
14 C e n t r o i d cx cy cz cm = c a l c C e n t r o i d bs
15 s i z e = c a l c B o x S i z e bs
16
17 f i ndBounds : : [ Body]−>Bbox
18 −− s p l i t b o d i e s i n t o s u b r e g i o n s
19 s p l i t P o i n t s : : Bbox−>[Body]−>[(Bbox , [ Body ] ) ]
20 −− c a l c u l a t e t h e c e n t r o i d o f p o i n t s
21 c a l c C e n t r o i d : : [ Body]−>C e n t r o i d
22 −− s i z e o f t h e r e g i o n
23 c a l c B o x S i z e : : Bbox−>Double

Force calculation: In this phase, the acceleration due to each body is computed by traversing the
tree, shown in the calcAccel function below.

The traversal along any path is stopped as soon as a node is too far away to make a significant
contribution to the overall force (isFar). This is determined by dividing the size s of the region
by the distance d between the body and the node centre of mass coordinates. If the ratio s

d is less
than a certain threshold t where 0 <t <1 then the centroid is used as approximation as the point is
far from the region. Setting t to zero degenerates to a brute force version while increasing the value
improves performance at the expense of losing some precision.

The accel function here differs from the one in the all-pairs version in that instead of calculating
the acceleration between two bodies, it uses the centroid of a region and a body. The updateVel
function deducts the net acceleration due to each body.

Barnes-Hut acceleration calculation
1 u p d a t e P o s ( Body x y z vx vy vz m) = . . . −− same as a l l p a i r s
2
3 u p d a t e V e l b@( Body x y z vx vy vz m) = Body x y z ( vx−ax ) ( vy−ay ) ( vz−az ) m
4 where
5 Accel ax ay az = c a l c A c c e l b t r e e
6
7 c a l c A c c e l : : Body−>BHTree−>Accel
8 c a l c A c c e l b tree@ (BHT s u b t r e e s )
9 | n u l l s u b t r e e s = a c c e l t r e e b

10 | i s F a r t r e e b = a c c e l t r e e b
11 | o t h e r w i s e = f o l d l addAcce l ( Acce l 0 0 0 ) ( map ( c a l c A c c e l b ) s u b t r e e s )
12 where
13 addAcce l ( Acce l ax1 ay1 az1 ) ( Acce l ax2 ay2 az2 ) = Accel ( ax1+ax2 ) ( ay1

+ay2 ) ( az1+az2 )
14
15 a c c e l : : BHTree−>Body−>Accel
16 i s F a r : : BHTree−>Body−>Bool

4.3. Sequential tuning

A number of sequential optimisation techniques are used for improving the runtime, heap usage and
fixing issues like stack overflow.

Optimisations: The following general optimisations apply to both algorithms:
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Reducing stack consumption: The naive implementation of the algorithm suffers from an
excessive stack consumption if huge number of bodies are used. Space profiling helps to understand
the memory usage of each algorithm and to find any space leak, which led to a stackoverflow in
the initial implementation. To fix the problem and improve general performance of the sequential
algorithm, the following steps are taken:

• Tail recursion:
Two general, well known techniques for reducing stack consumption in functional languages
are to make the function tail recursive and to use accumulating parameters.

• Strictness:
More specifically to a lazily evaluated language such as Haskell, strictness annotations can
be added, where delaying evaluation is not necessary thus avoid unnecessary thunking of
computations. This is achieved in a number of ways e.g. using the pseq primitive, the strict
function application ($!) or strictness annotation (!) from the BangPatterns extension.

• Types Definition:
Initially, type synonyms are used to represent position, velocity and mass as triple tuple, e.g.
type Pos = (Double,Double,Double). Through the use of more advanced data
types provided in Haskell e.g. with strict data fields, space leaks can be avoided and this
improves performance considerably with high input sizes as we will see shortly.

Reducing heap consumption: While the GHC compiler performs numerous automatic
optimisations, more opportunities can be exposed by specific code changes, in particular in fusing
function applications where necessary. This removes any intermediate data structures that could
potentially decrease performance.

1 −− A t r i v i a l example
2 map u p d a t e P o s ( map u p d a t e V e l bs )
3
4 −− r e w r i t t e n u s i n g f u n c t i o n c o m p o s i t i o n
5 map ( u p d a t e P o s . u p d a t e V e l ) bs

The composed version using a single map is easier to read and also does not depend on compiler
optimisation. The use of foldr in conjunction with list comprehension (foldr/build) also
eliminates the intermediate lists produced by build and consumed by foldr. This is used in the
Barnes-Hut tuning.

Quantifying sequential tuning: Table I shows the results of each step of tuning the sequential
all-pairs and Barnes-Hut algorithms.

All-Pairs

• Version 1: the initial version of the all-pairs program uses type synonyms/tuples to represent
position, velocity, mass and acceleration. Type synonyms are not new data types but are used
mainly for code clarity. For example, it is easy to read that a position consists of 3 doubles,
thus representing it using a tuple.

1 t y p e Pos = ( Double , Double , Double )
2 t y p e Vel = ( Double , Double , Double )
3 t y p e Mass = Double
4 t y p e Acce l = ( Double , Double , Double )

• Version 2: change type synonyms to data types. This causes the initial runtime to go up by
60%. Using type synonym is usually more efficient as it incurs one less indirection than data
type. However, data types are more powerful and can be used with further optimisation as we
will see in the following versions. Data type necessitates deriving appropriate typeclasses e.g.
Eq if we need to be able to compare them.

1 d a t a Pos = Pos Double Double Double
2 d a t a Vel = Vel Double Double Double
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Table I. Sequential tuning

(a) All-Pairs (5000 bodies)

Version Runtime (s) Max Resi (KB) Heap Alloc (%)
allpairs1 39.47 1976 +0.0
allpairs2 63.24 3533 +30.9
allpairs3 2.54 1273 -77.9
allpairs4 2.15 726 -28.9
allpairs5 2.14 726 -0.0

allpairs-final 1.94 69 -0.0

(b) Barnes-Hut (80000 bodies)

Version Runtime (s) Max Resi (KB) Heap Alloc (%)
bh1 41.90 28 +0.0%

bh-final 33.37 27 -88.6%

3 d a t a Mass = Mass Double
4 d a t a Acce l = Accel Double Double Double

• Version 3: add strictness to avoid unnecessary thunking of computation. For example, return
type of the accel function below is Accel. By default the data fields of Accel are
evaluated lazily, explaining why Version 2 takes up a lot of memory space. By making them
strict, they are computed eagerly. The clearer way to achieve this is by using the (!) strictness
annotation instead of the most explicit pseq. As the results show, this step accounts for the
main reduction in heap and time by 78% and 96% respectively.

1 −− d a t a f i e l d s e v a l u a t e d l a z i l y
2 a c c e l body i body j = Accel ( dx∗ jm∗mag ) ( dy∗ jm∗mag ) ( dz∗ jm∗mag )
3 −− add s t r i c t n e s s a n n o t a t i o n ( ! )
4 a c c e l body i body j = Accel ax ay az
5 where
6 ! ax = ( dx∗ jm∗mag )
7 ! ay = ( dy∗ jm∗mag )
8 ! az = ( dz∗ jm∗mag )

• Version 4: Strict data fields. Making the data fields strict removes the need for the previous
strictness annotation added inside the function. Additionally, the use of the UNPACK pragma
indicates to the compiler to unpack the contents of the constructor field into the constructor
itself, removing a level of indirection.

1 d a t a Pos = Pos {−# UNPACK #−} ! Double {−# UNPACK #−} ! Double {−# UNPACK #−}
! Double

• Version 5: use appropriate higher order functions from the standard libraries e.g. use foldl’
instead of foldl for its strictness properties.

• Final version: use single Body data type. This removes the need to deal with many different
data types, makes the program more compact, and as a result, reduces the runtime by 10%.
The maximum residency sees an important decrease.

1 d a t a Body
2 = Body
3 { x : : {−# UNPACK #−} ! Double −− pos o f x
4 , y : : {−# UNPACK #−} ! Double −− pos o f y
5 , z : : {−# UNPACK #−} ! Double −− pos o f z
6 , vx : : {−# UNPACK #−} ! Double −− v e l o f x
7 , vy : : {−# UNPACK #−} ! Double −− v e l o f y
8 , vz : : {−# UNPACK #−} ! Double −− v e l o f z
9 , m : : {−# UNPACK #−} ! Double } −− mass
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allpairs1 allpairs-final
Optimisation Runtime (s) Max Resi (KB) Runtime (s) Max Resi (KB)

-O0 (disable optimisations) 48.26 1667000 18.58 71
-O1 (standard optimisations) 3.76 1094 0.31 69
-O2 (full optimisations) 3.72 1117 0.31 69

Table II. Effect of compiler optimisation (2000 bodies)

Barnes-Hut In addition to the optimisations applied to all-pairs, the main tuning for Barnes-Hut
sequential performance is the use of foldr/build.

• Version 1: The first Barnes-Hut version includes all all-pairs optimisations detailed earlier.
This gives a good initial runtime.

• Version 2: Use foldr/build in the calcAccel function which eliminates intermediate
lists produced by build and consumed by foldr.

1 −− b e f o r e
2 f o l d l ’ addAcce l ( Acce l 0 0 0) [ c a l c A c c e l s t b | s t <− s u b t r e e s ]
3 −− a f t e r
4 f o l d r addAcce l ( Acce l 0 0 0) [ c a l c A c c e l s t b | s t <− s u b t r e e s ]

Compiler optimisation: The sequential runtimes up to now are based on fully optimised code
and on an input size of 5000 bodies for the all-pairs program. GHC’s automatic optimisation
already manages to improve time and heap performance significantly. Table II shows that without
enabling compiler optimisation, the runtime may be very high, and actually too high that we use
2000 bodies here to show the difference in optimisation. The table shows that GHC’s aggressive
optimisation machinery manages to automatically improve performance of the final version by a
factor of 13.0, relative to the unoptimised version, but does not find many more optimisation sources
when going to full optimisation. Algorithmic optimisation, represented by all the sequential tuning
steps as discussed in this section, gives a performance gain of a factor of 12.0 (combined with full
optimisations). Both taken together account for a sequential speed-up of 155.7.

Baseline comparison: We use the n-body benchmark from the language shootout website ‡ as
baseline for comparing with our sequential all-pairs program. We are particularly interested with the
shootout Haskell version, which implements the same all-pairs algorithms, as well as the Fortran,
which is the fastest, and C versions. Using 50 million iterations and 5 bodies, the Haskell version is
slower by a factor of 1.8 and 1.2 compared to the Fortran and C version respectively.

We adapt the shootout Haskell version to use the same input as we use for our all-pairs program,
i.e. 16000 bodies and 1 iteration, so that we have a head-to-head comparison between these two
Haskell implementations. We note that our all-pairs program runs at 20.14s compared to 12.55s
for the shootout, thus slower by a factor of 1.6. However, it is worth pointing out that the shootout
version, though implementing the same algorithm, is highly optimised by expert programmers in
Haskell and the GHC compiler, and makes use of inplace update operations organised through
monadic code and unsafe operations like unsafePerformIO. The disadvantage of this approach
is that it introduces sequentialisation in the code as part of the optimisation and therefore loses a lot
of potential for parallelism.

As a baseline comparison, we hereby observe a sequential overhead of a factor of 2.9 against
the fastest available all-pairs program on the language shootout. By remaining faithful to a purely
functional programming model, our implementation provides opportunities for parallelism, that do
not exist in the lower-level implementations and have to be refactored in a time-consuming and error
prone parallelisation methodology. By exploiting high-level parallelism, we can compensate for the

‡The Computer Language Benchmarks Game [21] http://shootout.alioth.debian.org/

Copyright c© 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2012)
Prepared using cpeauth.cls DOI: 10.1002/cpe

http://shootout.alioth.debian.org/


14 P. TOTOO AND H-W. LOIDL

sequential overhead, using a fairly small number of processors, and achieve high scalability of our
code, through the usage of more massively parallel hardware. In particular, the final parallel program
will not be tied to one particular class of architectures, nor to a certain number of processors.

5. PARALLEL IMPLEMENTATION

By using the high-level constructs and functions implementing common skeletons in each
programming model, the sequential algorithm is expected to require little changes to get initial
parallel versions of both algorithms. We present results from the initial implementations and show,
through a set of parallel performance tuning steps, how runtimes and speedups are improved. The
experimental setup for these results are given in Section 6 where we also evaluate the performance
of all models.

Time profiling: Identifying the main source of parallelism is the first step in the parallel
implementation. Time profiling points out the “big eaters,” that is, functions that take the largest
percentage of the total time. Listing 1 shows the time and allocation profiling for both algorithms.

Listing 1: Time and Allocation Profiling Report
i n d i v i d u a l i n h e r i t e d

COST CENTRE MODULE e n t r i e s %t ime %a l l o c %t ime %a l l o c

−− All−P a i r s (2000 bod ie s , 1 i t e r a t i o n )

d o S t e p s Main 1 0 . 0 0 . 0 100 .0 9 9 . 8
u p d a t e P o s Main 2000 0 . 0 0 . 0 0 . 0 0 . 0
u p d a t e V e l Main 2000 3 . 1 1 . 9 9 9 . 9 9 9 . 8

a c c e l Main 4000000 2 3 . 5 3 7 . 2 9 4 . 5 9 3 . 3
deduc tChange Main 4000000 2 . 4 4 . 5 2 . 4 4 . 5

−− Barnes−Hut (8000 bod ie s , 1 i t e r a t i o n )

d o S t e p s Main 1 0 . 0 0 . 0 9 9 . 9 9 9 . 8
f indBounds Main 1 0 . 0 0 . 0 0 . 0 0 . 0
b u i l d T r e e Main 11804 0 . 0 0 . 0 0 . 2 0 . 2

s p l i t P o i n t s Main 3804 0 . 0 0 . 0 0 . 1 0 . 2
c a l c C e n t r o i d Main 11804 0 . 0 0 . 0 0 . 0 0 . 0

u p d a t e P o s Main 8000 0 . 0 0 . 0 0 . 0 0 . 1
u p d a t e V e l Main 8000 0 . 0 0 . 0 9 9 . 7 9 9 . 5

c a l c A c c e l Main 14893157 4 . 8 7 . 1 9 9 . 7 9 9 . 5
a c c e l Main 12193706 1 2 . 9 1 6 . 1 6 5 . 1 6 3 . 3
i s F a r Main 10247211 7 . 1 9 . 2 2 9 . 7 2 9 . 1

In both algorithms, the top-level doSteps function performs the iterations and inherits the
largest percentage of time. The main source of parallelism arises from the update velocity function
updateVel which is used as the function argument of a map operation in both all-pairs and
Barnes-Hut. It accounts for almost 100% of the inherited overall time. As it is used in a map, it
presents data-oriented parallelism.

1 new bs = map ( u p d a t e P o s . u p d a t e V e l ) bs

While the tree construction phase can normally be done in parallel, the time profile indicates that
buildTree accounts for less than 1% of the time in the Barnes-Hut algorithm. Parallelising it may
not cause any significant improvement but could, on the other hand, create overheads. However, with
the same number of bodies as used for all-pairs, the time percentage spent in buildTree reaches
approximately 12%. This is explained by lesser computation involved in the acceleration calculation
phase and thus better distribution of the time between the two phases. Also, depending on the
distance threshold used to determine when to consider a body far enough, the time in updateVel
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can varies significantly. For instance, if the distance threshold is high (closer to 1), the traversal is
very fast, as a result of little computation involved. This is not very good for parallelism as the cost
of creating parallelism may be higher than the actual computation. Smaller thresholds for example
0.1 runs slower, while 0 degenerates to pair-wise comparison. Ideally, we use 0.25 which gives a
reasonable approximation, accuracy and speed.

Both the all-pairs and Barnes-Hut algorithms are structured such that the function to update the
velocity and position of each body can be applied to the list of all bodies in a map operation, thus
exposing data-oriented parallelism. All of the three models provide at least a basic parallel map for
data-parallel operations.

5.1. GpH

All-Pairs: Initial parallelism is obtained by replacing map with parMap such that each body
velocity is computed in parallel.

1 new bs = parMap r d e e p s e q ( u p d a t e P o s . u p d a t e V e l ) bs
2
3 −− e q u i v a l e n t t o
4 new bs = map ( u p d a t e P o s . u p d a t e V e l ) bs ‘ us ing ‘ p a r L i s t r d e e p s e q

The composition in the map function argument can be turned into a pipeline using the parallel
.|| combinator that arranges for a parallel evaluation of both functions being combined. In
this case, the result of updateVel is evaluated in parallel with the application of the first
function. However, given that the updatePos function does negligible computation as opposed
to updateVel, this is not a useful source of parallelism and therefore not considered any further.
It demonstrates, however, that this programming model makes it easy to compose different sources
of parallelism, and to prototype alternative parallelisations, without having to restructure the existing
code in a fundamental way.

The performance results from this naive version are disappointing. In the best case, we observe
a speed-up of 1.4 on 4 processors and a slow-down on 8 processors. The reason for this poor
performance is considerable overhead associated with generating a thread for every list element,
potentially 16000 in total. While the generation of sparks is cheap – it amounts to adding a pointer to
a queue – the generation of a thread requires the allocation and initialisation of a thread state object
(TSO), which among other data contains the stack used by the thread. In this case, the computation
performed by one thread, namely updating the velocity and position of one body, is too small in
comparison with the overhead for TSO initialisation and for scheduling the available threads. The
following statistics summarises the execution on 2 cores. In total, 16000 sparks are created, one for
each list element, and of these 8192 are converted into threads. This lower number is due to the
limited size of the spark pool, which is 4k by default. Since the nature of the parallelism is data-
parallel, no work can be subsumed by a sibling-thread, and thus lazy task creation is not effective in
automatically increasing thread granularities.

Listing 2: Global statistics of a parallel run on 2 cores
. / a l l p a i r s 16000 1 +RTS −N2 −s
56026.00329381344
54897.906546913
t ime t a k e n : 16 .76 s

31 ,145 ,652 ,016 b y t e s a l l o c a t e d none i n t h e heap
27 ,366 ,360 b y t e s c o p i e d d u r i n g GC

2 ,999 ,520 b y t e s nonemaximum r e s i d e n c y (5 sample ( s ) )
517 ,760 b y t e s nonemaximum s l o p

10 MB t o t a l memory none i n use (0 MB l o s t due t o f r a g m e n t a t i o n )

G e n e r a t i o n 0 : 44953 c o l l e c t i o n s , 44952 p a r a l l e l , 2 . 7 0 s , 1 . 2 2 s e l a p s e d
G e n e r a t i o n 1 : 5 c o l l e c t i o n s , 5 p a r a l l e l , 0 . 0 5 s , 0 . 0 3 s e l a p s e d

P a r a l l e l GC work b a l a n c e : 1 . 1 2 (3256443 / 2904329 , i d e a l 2 )
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MUT t ime ( e l a p s e d ) GC t ime ( e l a p s e d )
Task 0 ( worker ) : 4 . 9 0 s ( 15 .63 s ) 1 . 5 1 s ( 0 . 8 2 s )
Task 1 ( worker ) : 6 . 2 1 s ( 15 .63 s ) 0 . 5 2 s ( 0 . 0 8 s )
Task 2 ( bound ) : 9 . 9 6 s ( 15 .63 s ) 0 . 7 2 s ( 0 . 3 6 s )
Task 3 ( worker ) : 0 . 0 0 s ( 15 .63 s ) 0 . 0 0 s ( 0 . 0 0 s )

SPARKS : 16000 (8192 c o n v e r t e d , 0 pruned )

INIT t ime 0 . 0 0 s ( 0 . 0 1 s e l a p s e d )
MUT t ime 21 .07 s ( 15 .63 s e l a p s e d )
GC t ime 2 . 7 5 s ( 1 . 2 5 s e l a p s e d )
EXIT t ime 0 . 0 0 s ( 0 . 0 0 s e l a p s e d )
T o t a l t ime 23 .83 s ( 16 .89 s e l a p s e d )

%GC t ime 11.6% (7.4% e l a p s e d )

A l l o c r a t e 1 ,477 ,931 ,568 b y t e s p e r MUT second

P r o d u c t i v i t y 88.4% noneof t o t a l u se r , 124.8% noneof t o t a l e l a p s e d

To tune parallel performance, we control the number of sparks created by grouping elements
into larger units, known as chunks. Instead of creating a spark for each element in the list, the list is
broken down into chunks and a spark is created for each chunk, thus significantly reducing the thread
creation overhead. The number of chunks is determined by the number of available processors.
Having too few chunks may result in some processors not getting enough work while too many
chunks create excessive overhead.

As often in data-parallel programs, a careful balance between low thread management overhead
and massive parallelism is crucial. There is no dynamic parallelism here, i.e. all parallelism is
generated at the beginning. Thus a low, fixed number of chunks is likely to be the best choice for
performance. Each processor does not necessarily get the same number of chunks. Using more
chunks retains more flexibility for the runtime system, because a faster or more lightly loaded
processor can pick-up new work after having finished its initial work allocation.

We now consider three ways to introduce chunking (or clustering) into the algorithm (the
language-level differences between these approaches are discussed in more detail in [35]).

Explicit Chunking: The most obvious way of performing chunking, is to explicitly apply
functions performing chunking before and de-chunking after the data-parallel core of the application
(see below). Explicit chunking is also used in the Par monad version, and its performance discussed
in Section 5.2.

1 s = 1000 −− chunk s i z e
2 new bs = c o n c a t ( map ( map ( u p d a t e P o s . u p d a t e V e l ) ) ( chunk s bs ) ‘ us ing ‘ p a r L i s t

r d e e p s e q )

Used directly in the application code, this technique obfuscates the computational core of the
application, and introduces an intermediate data structure that is only needed to increase thread
granularity.

Strategic Chunking: Another skeleton-based approach to introduce chunking is to modify the
definition of the strategy and to encode chunking additionally to the specification of parallelism
inside this skeleton. Thus, we change parList to parListChunk, which takes an additional
argument, specifying the chunk size. The parListChunk strategy applies the given strategy,
in this case rdeepseq, to each chunk. This achieves a clean separation of computation and
coordination, leaving the core code unchanged, and hiding the intermediate data structure in a
custom strategy. However, this strategy is now fixed to one parallel pattern and one way of chunking.

1 s = ( l e n g t h bs ) ‘ quot ‘ ( n u m C a p a b i l i t i e s ∗ 4) −− 4 chunks / PE
2 new bs = map ( u p d a t e P o s . u p d a t e V e l ) bs ‘ us ing ‘ p a r L i s t C h u n k s r d e e p s e q

Table X (a) in Appendix 10 shows the runtime and speed-up results for different number of chunks
per processor using parListChunk strategy. While generating exactly one chunk per processor
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nochunk parListChunk evalCluster
no. PE Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup
Seq. 20.04 1.00 20.06 1.00 20.02 1.00

1 20.64 0.97 22.10 0.91 19.71 1.02
2 16.76 1.20 11.33 1.77 10.93 1.83
4 13.89 1.44 5.97 3.36 5.83 3.43
8 15.64 1.28 3.29 6.10 3.28 6.10

Table III. GpH runtime and speed-up (All-Pairs, 16k bodies, 1 iteration)

might intuitively seem to be the best choice, it is also the least flexible one, because it deprives the
runtime system from distributing parallelism in the case where one processor suffers from a high
external load. Therefore, a small number of chunks greater than one is usually a good choice. In this
case, the right balance is to have approximately four chunks per processor.

Implicit Clustering: A more compositional way to introduce chunking is to delegate it to an
instance of a new Cluster class, with functions for performing clustering and declustering (or
flattening). We can use available abstractions of performing an operation on each element of a cluster
(lift) and of flattening the resulting data structure (decluster). Thus, to define an instance of
this class the programmer only needs to define cluster in such a way that the specified proof
obligation is fulfilled e.g. an instance for lists as given below requires us only to define cluster.

1 c l a s s ( T r a v e r s a b l e c , Monoid a ) => C l u s t e r a c where
2 c l u s t e r : : I n t −> a −> c a
3 d e c l u s t e r : : c a −> a
4 l i f t : : ( a −> b ) −> c a −> c b
5
6 l i f t = fmap −− c i s a Func to r , v i a T r a v e r s a b l e
7 d e c l u s t e r = f o l d −− c i s F o l d a b l e , v i a T r a v e r s a b l e
8 −− we r e q u i r e : d e c l u s t e r . c l u s t e r n == i d
9

10 i n s t a n c e C l u s t e r [ a ] [ ] where
11 c l u s t e r = chunk

Based on this class definition, we can then separately define an evalCluster strategy, which
uses these functions before and after applying its argument strategy to each cluster, thus separating
the definition of parallelism from any form of clustering.

1 e v a l C l u s t e r : : C l u s t e r c => I n t−>S t r a t e g y a−>S t r a t e g y a
2 e v a l C l u s t e r n s x = r e t u r n ( d e c l u s t e r ( c l u s t e r n x ‘ us ing ‘ c s ) )
3 where cs = e v a l T r a v e r s a b l e s : : S t r a t e g y c

Using this approach, we can add clustering to the basic data-parallel strategy, without changing
the original strategy at all. We simply replace evalList (rpar ‘dot‘ rdeepseq), which
is the definition of parList, by evalCluster s (rpar ‘dot‘ rdeepseq). In short, the
compositionality of this style of programming allows to specify a parallel strategy combined with a
clustering strategy. This provides more flexibility in aggregating collections in ways that cannot be
expressed using only strategies.

In summary, the code below shows the use cases for all three clustering techniques:
1 −− e x p l i c i t c l u s t e r i n g
2 c o n c a t ( map ( map f ) ( chunk s bs ) ‘ us ing ‘ p a r L i s t r d e e p s e q )
3 −− s t r a t e g i c c l u s t e r i n g
4 map f xs ‘ us ing ‘ p a r L i s t C h u n k s r d e e p s e q
5 −− combin ing p a r a l l e l and c l u s t e r i n g s t r a t e g i e s
6 map f xs ‘ us ing ‘ e v a l C l u s t e r s ( r p a r ‘ dot ‘ r d e e p s e q )

Table III summarises the parallel results of using no chunk and chunking through
parListChunk and evalCluster, both four chunks per PE. Most notably, the implicit
evalCluster version achieves the same performance as the strategic parListChunk. Thus,
using this more compositional version, which makes it easy to introduce and modify clustering
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Top-level map only Parallel buildTree
no. PE Runtime (s) Speedup Runtime (s) Speedup
Seq. 33.31 1.00 33.31 1.00

1 35.77 0.93 35.77 0.93
2 21.50 1.55 21.61 1.54
4 11.00 3.03 10.77 3.09
8 6.77 4.92 6.11 5.45

Table IV. GpH runtime and speed-up (Barnes-Hut, 80k bodies, 1 iteration)

strategies separately from specifying parallelism over the data structure, does not incur a significant
performance penalty.

Barnes-Hut: Sequential profiling of the Barnes-Hut algorithm identifies the same function –
updateVel – as the most compute-intensive. As the call count for this function shows, this is
due to the iterative use in the top level map. Therefore, the Barnes-Hut algorithm is parallelised in
the same, data-parallel way as the all-pairs version. Since an abundance of fine-grained parallelism
is also a problem in this version, we use the same form of chunking to tune the parallel performance.

In this version a natural parallel phase is buildTree, where sub-trees can be constructed in
parallel. But as the profiling report showed earlier, it does not account for a significant percentage
of the overall time, and therefore the benefits from parallelising this stage are limited. However, it is
cheap to mark the stage as parallel computation, and whether to take the spark for parallel execution
is up to the runtime system.

Another generic optimisation that is applied in the buildTree function is thresholding. By
adding an explicit argument to the function that represents the current level of the tree, the generation
of parallelism can be restricted to just the top levels. This makes sure there are not too many parallel
threads for the tree construction otherwise it would cause overheads with large number of bodies
which would require a big tree structure.

As expected, Table IV shows that parallel buildTree does not improve performance
significantly but it does not cause additional cost either. The main observation though is that the
algorithm does not achieve as good speed-up as the all-pairs algorithm. This is expected as all
parallel tasks in the all-pairs algorithm have the same amount of computation to perform i.e. the
parallelism is regular; whereas the acceleration calculation steps in the Barnes Hut algorithm varies
for each body depending on its location. Some bodies require traversing deeper inside the tree to
calculate the net acceleration, while for some, it may not require to do so. For instance, quantifying
the irregularity of the computation involved in Barnes-Hut, random generation of 80000 bodies
gives an unbalanced tree with minimum tree depth 6 and maximum depth 9.

5.2. Par monad

All-Pairs: We use the pre-defined parallel map provided in Par monad to add parallelism the
same way as we did in GpH. In contrast to GpH, the parallel computation happens in a monad and
therefore the result has to be extracted using runPar.

1 new bs = r u n P a r $ parMap ( u p d a t e P o s . u p d a t e V e l ) bs

The initial results in Table X (b), without using chunks, already show good performance: a speed-
up of 6.17 on 8 cores. The reason for this efficient behaviour is the work-inlining scheduler, which
distributes the potential parallel tasks to a number of implicitly created threads and then executes
the task within the existing thread. This dramatically reduces the thread creation overhead, at the
expense of less flexibility in how to distribute the tasks in the first place. This model is well suited
for homogeneous, multi-core architectures and no explicit chunking is needed to improve parallel
performance. However, as shown in Table V the use of chunking reduces the maximum residency
by 50% from 4822MB to 2417MB for parallel run on 8 cores.
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Table X (b) also shows that the number of chunks causes negligible change to the runtime and
speed-up. However, to maintain low memory residency and to facilitate scalability beyond the
number of cores available for these measurements, a chunking policy is preferred.

Par monad, however, does not come with a pre-defined parallel map function with chunking. So,
we use explicit chunking, as discussed above. In the following code extract, s is the chunk size and
is used in the same way as in GpH to produce an appropriate number of chunks to match the number
of cores.

1 new bs = parMapChunk ( u p d a t e P o s . u p d a t e V e l ) s bs
2
3 parMapChunk f n xs = c o n c a t ( r u n P a r $ parMap ( map f ) ( chunk n xs ) )

Barnes-Hut: For the Barnes-Hut algorithm, we note that chunking causes a noticeable
improvement in the speed-up from 5.29 to 6.50 on 8 cores (using parallel buildTree). This could
be due to the fact that a large number of bodies are used in this algorithm and the memory usage is
more significant.

The large number of bodies used in Barnes-Hut makes the heap usage significantly higher
compared to the all-pairs algorithm. Without chunking, the maximum residency is 83MB and
productivity is at 63%. With chunking, residency is 55MB and improved productivity by 10%.
This reduced percentage of garbage collection time has an immediate impact on the performance of
the parallel program.

As we did for the GpH version, we also try to parallelise the buildTree function but the
difference is insignificant, as we expected, due to buildTree not representing a large part of the
overall computation (Table VI).

5.3. Eden

All-Pairs: As with the previous two models, we only need a parallel map implementation to
add data-oriented parallelism to the algorithm. Eden offers several skeletal approaches and, in
particular, has several implementations of parallel map as described earlier. The default parMap
implementation creates a process for each list element causing far too much overheads in terms
of number of processes instantiated and messages communicated between them (16001 and
64000 respectively as shown in Appendix Table XI (c)). Observing number of processes and
communications is motivation for picking a different strategy, and with it numbers drop significantly
and speed-up improves.

The farm process skeleton creates the same number of processes as the number of available
processing elements. But the message overheads remain. Each list element is communicated as
a single message which generates 32048 messages in total. This represents a high number but still
the performance is considerably improved compared to the naive parallel map and good speed-up
is noted. This indicates that process creation overheads is far more important than the number of
messages.

Doing parallel tuning to further reduce message overheads, we use chunking to break the stream
into chunks of size 1000 items which are then sent as one message, thus enabling the process to
do more computation at one time rather than having to send and receive messages in between. The
chunking reduces the total number of messages communicated in the parMapFarm version (farm
process) from 32048 to just 80 messages. As a result of this, the runtime and speed-up is improved
as shown in Table VII.

Par. run on 8 cores nochunk chunking
copied during GC (MB) 31527 16171
max residency (MB) 4822 2417

Table V. Par monad GC and max. residency (All-Pairs, 16k bodies, 1 iteration)
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Top-level map only Parallel buildTree
no. PE Runtime (s) Speedup Runtime (s) Speedup
Seq. 33.39 1.00 33.65 1.00

1 34.49 0.97 33.96 0.99
2 17.72 1.88 17.79 1.89
4 9.21 3.63 8.97 3.75
8 5.91 5.65 5.18 6.50

Table VI. Par monad runtime and speed-up (Barnes-Hut, 80k bodies, 1 iteration)

The offline farm process, where process input is evaluated by the child process instead of the
parent process, causes a small performance improvement compared to the farm process. Sending
process input to child processes to be evaluated is intended to reduce the combined time the parent
process spent in reducing all inputs. However, in our algorithm, the inputs to farm processes is a
Body type with strict fields. So there is no much reduction happening after sending it to the child
processes.

The all-pairs measurements using all skeletons are given in Appendix Tables XI (a) and (b), with
(c) summarising the overheads of each skeleton.

Barnes-Hut: Though the Eden all-pairs implementation has given the best performance so far
compared to the other two models, the performance for the Barnes-Hut algorithm using Eden is not
as good as the other models. The speed-up is roughly the same on 1 to 4 cores but then there is no
further speed-up upto 8 cores. The best speed-up achieved is using offline process with chunking
as given in Table VIII. This is partially due to the high maximum residency caused by all PEs
combined due to the large number of bodies used. Furthermore, this indicates that spark-oriented
parallelism in GpH and Par monad parallel tasks deal better with dynamic and irregular parallelism.
We compare the performance of all implementations in more detail in Section 6.

farm processes with stream chunking
parMapFarm parMapFarmChunk

no. PE Runtime (s) Speedup Runtime (s) Speedup
Seq. 22.13 1.00 22.13 1.00

1 23.67 0.93 22.91 0.97
2 11.91 1.86 11.57 1.91
4 6.08 3.64 5.82 3.80
8 3.41 6.49 3.09 7.16

Table VII. Eden runtime and speed-up (All-Pairs, 16k bodies, 1 iteration)

Top-level map only Parallel buildTree
parMapOfflineFarmChunk

no. PE Runtime (s) Speedup Runtime (s) Speedup
Seq. 35.34 1.00 35.32 1.00

1 33.11 1.07 33.89 1.04
2 18.41 1.92 18.73 1.89
4 10.62 3.33 11.24 3.14
8 10.37 3.41 10.71 3.30

Table VIII. Eden runtime and speed-up (Barnes-Hut, 80k bodies, 1 iteration)
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6. PERFORMANCE EVALUATION

Experimental Setup: The machine used for measurements has the following hardware
specifications: an Intel Xeon CPU E5410 2.33 GHz processor with 8 cores, 8GB RAM and 12MB
L2 cache. The machine runs a 64-bit CentOS 5.8 Linux distribution with kernel version 2.6.18-
308.11.1.el5. The GHC compiler version 7.0.1 is used with the parallel and monad-par
packages for GpH and Par monad respectively. The Eden extension to the GHC compiler version
6.12.3 (GHC-6.12.3-Eden) is used for Eden. At the time of writing, both the GHC and GHC-Eden
compilers have newer but not yet stable versions. Any comparison between GpH/Par monad and
Eden is therefore on the basis of speed-up.

The input size for all-pairs measurements is 16000 bodies, while for Barnes-Hut, being a more
efficient algorithm and able to cope with high number of bodies, we use 80000 bodies. The input
sizes ensure the runtimes of one iteration are within a minute for both algorithms. Larger input
sizes are used for doing scale-up tests and smaller sizes in the sequential optimisation phase.
Measurements for the challenge input specification of 1024 bodies and 20 iterations are given at
the end of the section, for comparison with other systems. The tables and graphs show absolute
speed-ups.

Apart from the performance obtained from using the different models for the parallel
implementations, other factors are equally important. For example, each model is built around
different concepts and the underlying implementation is fairly technical. However, exposing high-
level functions with simple interfaces to the casual programmer is an important part of any
programming model. All of them do provide similar interfaces familiar to the programmer, for
example, parallel map.

Tuning: While an initial parallel version was easily produced with only a one-line program
change, GpH required some parallel performance tuning, in particular by using chunks to generate
a bounded number of threads of suitable granularity. Selecting a good chunk size required a series
of experiments, establishing four threads per processor to be the best balance between massive
parallelism and coarse thread granularity. The more irregular nature of the parallelism in the Barnes-
Hut version, compared to the naive all-pairs version, diminishes the achieved speed-up, but also
demonstrates that the runtime system effectively manages and distributes the available parallelism,
without requiring further application code changes from the programmer.

The Par monad version uses a highly tuned, data-parallel map skeleton, and thus can efficiently
handle a large number of parallel tasks with an initial version, eliminating the need for explicit
chunking. However, chunking does improve the maximum residency and therefore the scalability
of the application.

Eden provides the richest set of skeletons available to implement both versions of the algorithm.
In this model, parallelisation amounts to selecting the most suitable skeleton for the main worker
function. Ample literature on the advantages and disadvantages of different skeletons helps in
making the best decision for a specific application and architecture. For fine-tuning the parallel
performance, however, an understanding of the process creation and message passing is required to
minimise the amount of communication in this distributed-memory model.

For any high-level language model, good tool support is crucial in order to understand the concrete
dynamic behaviour of a particular algorithm and to tune its performance. Threadscope helps to
visualise the work distribution among the available processors for GpH and Par monad. Figure 2
shows the work distribution of running the all-pairs GpH program on 8 cores before and after parallel
tuning using chunking. The first horizontal bar on the graph shows the overall activity, measured
in terms of the total number of active processors at each time in the execution. The remaining bars
shows the activity for each of the processors, with green representing “running” and red representing
“idle”. Additionally, the time spent in garbage collection is indicated in orange. The number of
sparks is given in the runtime statistics for GpH. For Par monad, however, the exact number of
threads created is not given.
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(a) nochunk

(b) 4chunksPerPE

Figure 2. Threadscope work distribution (Par. run on 8 cores)

The Eden Trace Viewer (EdenTV) gives useful information about processes, their placement,
conversations and messages between processes. Figure 3 compares the use of the naive
parallel map (parMap) against the farm process implementation using stream chunking
(parMapFarmChunk). It shows the overheads of too many processes, and consequently messages,
being generated in the former. The overheads are eliminated in the tuned version. Each line
represents the activity on one processor with green representing “running” and blue representing
“waiting for data”. While the first trace shows frequent changes between running and waiting states,
reflecting the element-by-element transfer of the input data from the master to the workers, the
second trace shows much better utilisation as uninterrupted activity once the entire block of input
data has been received by a worker. The master remains idle, while the workers produce their results.
A related set of skeletons allows a dual usage of the master process as worker in such a case, and
can be used to improve performance further.
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(a) parMap

(b) parMapFarmChunk

Figure 3. EdenTV using different map skeleton (Par. run on 8 PEs)

Scale-up: The optimisations carried out in the sequential tuning phase is crucial in ensuring
that both the all-pairs and Barnes-Hut programs can be executed on a large number of bodies
by maintaining low heap consumption. Figure 4 assesses the scalability of the two algorithms
by plotting the runtimes against increasing input sizes on 8 cores: 12k-24k for all-pairs and 80k-
200k for Barnes-Hut. The graph indicates almost linear scale-up within this window by all models.
The Barnes-Hut program using Eden has higher runtimes, reflecting a significantly higher memory
consumption, which comes from Eden’s distributed-memory model, which duplicates data more
often than needed on a shared-memory architecture. Figure 5 is a 3D scale-up plot showing the
number of cores on one axis. As expected, Barnes-Hut is also able to cope with very large numbers
of bodies e.g. 1 million, but not shown here.

Speed-up: The head-to-head comparison of speed-ups for the all-pairs versions in Figure 6(a)
show that, despite a higher variability, the Eden implementation performs best, even though it
was designed for distributed-memory architectures. This indicates that message passing can work
well on shared-memory architectures. Using a highly tuned skeleton that avoids synchronisation
bottlenecks on high-latency, distributed-memory systems, is beneficial even on a single multi-core.
The support for light-weight parallelism in all three runtime systems helps to reduce the overhead
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(a) All-Pairs

(b) Barnes-Hut

Figure 4. Scale-up graphs (Par. run on 8 cores)

that has to be paid for exposing parallelism. The GpH version is potentially more flexible and
adaptive, through its dynamic, spark-based load distribution policy. This is beneficial in particular
in heterogeneous environments, with dynamically changing external load. On an otherwise idle
machine as used for these measurements, however, these benefits cannot be capitalised on, while
the overhead still has to be paid for. The Par monad version performs very well with an initial,
unoptimised version, but does not exceed the performance of the other systems in its final version.
In this case, the overhead of encoding scheduling and other dynamic machinery in the application,
rather than the runtime system, is higher compared to the other two systems.

The speed-up results for the Barnes-Hut algorithm in Figure 6(b) show a significantly different
picture. The dynamic behaviour of the Barnes-Hut algorithm differs from that of the all-pairs
version, in that the parallel threads vary significantly in their granularities. The amount of work
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(a) All-Pairs

(b) Barnes-Hut

Figure 5. 3D Scale-up graphs (Par. runs on 1 to 8 cores)

is significantly higher when calculating the impact of a densely populated cube in the oct-tree
representation. In contrast, the parallelism in the all-pairs version is more regular, with parallel tasks
taking approximately the same amount of time to execute on different processors. The irregular
parallelism in the Barnes-Hut version is more challenging to manage efficiently. The underlying
runtime system of GpH and the application-level implementation of scheduling for Par monad,
are designed to be very flexible and dynamic in their management of parallelism, in particular
allowing for cheap transfer of potential parallelism. Considering the more challenging nature of the
parallelism, GpH and Par monad achieve good speed-ups. The Eden version, however, suffered most
severely from the irregular parallelism. This case shows the limitations of a purely skeleton-based
approach, that relies on the existence of a wide range of skeletons for many different architectures.
Since Eden is not limited to such a pure skeleton-based approach, but is a skeleton implementation
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(a) All-Pairs

(b) Barnes-Hut

Figure 6. Speed-up graphs of both algorithms on up to 8 cores

language in its own right, further optimisation should be possible, by fine tuning an existing skeleton
for this application. We have not explored a cluster configuration of the Eden execution in sufficient
detail to report any solid results on it here.

MultiCore Challenge input specification: Finally, Table IX shows the speed-up results for
the tuned versions of all-pairs and Barnes-Hut using the MultiCore Challenge input specification of
1024 bodies and 20 iterations. As expected, the speed-ups are slightly lower for the smaller input
set and for an execution which requires synchronisation between the iterations. Still, the speed-ups
of 5.23 for GpH and 5.63 for Par monad for the Barnes-Hut version are remarkable, for less than
a dozen lines of code changes, and no structural changes to the original Haskell implementation.
In particular, we surpass the calculated sequential overhead of a factor 2.9 compared to Fortran
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on a moderate multi-core architecture and deliver superior, scalable performance with a high-level
language model.

7. RELATED WORK

The recent proliferation of parallel hardware poses a significant challenge to the way how these
machines are programmed. Traditionally, the coordination of the parallel execution is controlled
in every detail to achieve near-optimal performance. This is only feasible in a setting, where a lot
of person-effort can be spent on the parallelisation of a single application. Thus, this traditional
view of parallelism, supercomputing parallelism, represents a niche market in the overall domain
of computer science. With multi-core hardware now dominating the architecture landscape, a new
view of parallelism, desktop parallelism, is of increasing importance. Here the goal is to achieve
some speed-up from a general-purpose, compute-intensive application, that has been developed and
is maintained by domain experts, rather than experts in parallel programming. The target compute
platform is a multi-/many-core machine or a cluster thereof.

Importantly from a programming model point of view, most traditional models for parallel
programming are prohibitively expensive in terms of person-effort for this new target community.
Therefore, a general trend is to find higher levels of abstractions that can be used to simplify the
challenging process of parallelising a complex application. The most successful development in this
direction is the use of patterns of parallel computation [38], so called algorithmic skeletons [11],
and to instantiate these patterns thereby getting parallelism “for free.” The most prominent
pattern using this approach is Google’s MapReduce pattern [14]. Several different systems provide
implementations of this pattern, in particular tuned for large, local clusters: the Google MapReduce
system, Apache’s Hadoop system, and the Twister system. Already in September 2007 Dean et
al. [15] report circa 6500 applications being parallelised using this pattern, and typically obtaining
excellent speed-ups on a highly-optimised, cluster based implementation. Naturally, a restriction
of this approach is that the application must fit one of the available patterns. However, very active
research on skeletons has exposed a very rich set of such patterns, with several systems providing
state-of-the-art implementations on different kinds of parallel hardware. More recently, the trend is
to generalise the systems beyond just one pattern, and to support skeleton description languages.
The next major release of Hadoop, with the working title Yarn [19], provides a high-level, data-
flow like language for defining new skeletons. Microsoft’s new Dryad system [24] takes a similar
approach, extending its Daytona system [13] for iterative MapReduce patterns. Many systems for
skeleton-based parallelism have been developed, and the most notable of these systems are eSkel [3],
Müsli [10], Skandium [29] and P3L [1]. A good, up-to-date survey on skeletons is given in [23].

The area of declarative programming languages provides a particularly rich source for parallelism,
stemming from the referentially transparent nature of the evaluation in a (pure) language [52].
This property guarantees that any order of evaluating an expression will deliver the same result.
In particular, independent parts of the program can be evaluated in parallel. A straightforward
implementation of this approach would yield an abundance of parallelism, with too fine grained
threads to be efficient. Therefore most modern parallel functional languages take an approach of

All-Pairs Barnes-Hut
GpH Par monad GpH Par monad

no. PE Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup
Seq. 1.67 1.00 1.70 1.00 1.36 1.00 1.35 1.00

1 1.71 0.98 1.66 1.02 1.40 0.97 1.38 0.98
2 0.94 1.78 0.93 1.83 0.78 1.74 0.72 1.88
4 0.51 3.27 0.52 3.27 0.44 3.09 0.42 3.21
8 0.30 5.57 0.30 5.67 0.26 5.23 0.24 5.63

Table IX. GpH and Par monad runtime and speed-up (1024 bodies, 20 iterations)
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semi-explicit parallelism: they provide a means of identifying those sources of parallelism that are
likely to be useful. Still, most of the synchronisation, communication and thread management is
hidden from the programmer and done automatically in a sophisticated runtime system.

An influential, early system for parallel functional programming was Mul-T [28] using Lisp. It
introduced the concept of futures as handles for a data-structure, that might be evaluated in parallel
and on which other threads should synchronise. Importantly for performance, this system introduced
lazy task creation [39] as a technique, where one task can automatically subsume the computation of
another task, thus increasing the granularity of the parallelism. Both, the language- and the system-
level contributions have been picked up in recent implementations of parallel functional languages.

One prominent example of this approach is the Manticore system [18] using a parallel variant
of ML that includes futures and constructs for data parallelism. It allows to specify parallelism on
several levels in a large-scale applications, typically using explicit synchronisation and coordination
on the top level [45] and combining it with implicit, automatically managed, fine-grained threads
on lower levels [17].

Another ML extension is Polyml [37], which also supports futures, light-weight threads and
implicit scheduling in its implementation. Reflecting its main usage as an implementation language
for automated theorem provers, such as Isabelle, it has been used to parallelise its core operations.

Another parallel extension of Haskell is Data Parallel Haskell [25], which has evolved out of the
Nepal language [6]. It provides language, compiler and runtime system support for data-parallel
operations, in particular parallel list comprehensions. Several program transformations, e.g. data-
structure flattening, are performed in the compiler to optimise the parallel code. Its design is heavily
based on the Blelloch’s NESL language [4], a nested, data-parallel language with an explicit cost
model to predict parallel performance.

SAC [46] is another functional, data-parallel language. Its syntax is based on C, but its semantics
is based on single assignment, and therefore referentially transparent. It mainly targets numerical
applications and achieves excellent speed-ups on the NAS benchmark suite.

Microsoft’s Accellerator [47] is another prominent data-parallel system. It supports high-
level, language-independent program development, and generates parallel code to be executed on
GPGPUs or on multi-cores with vector-processing extensions.

Several experimental languages explored the use of high-level, parallelism language features in
object-oriented languages: Fortress [48], X10 [8] and Chapel [7]. Of these, Chapel is currently
best supported, in particular on massively parallel supercomputers. These languages introduce
high-level constructs such as virtual shared-memory (X10), structured programming constructs for
parallel execution (Chapel), and software transactional memory (Fortress) to avoid a re-design of the
software architecture due to specifics of the underlying, parallel architecture [9]. These new parallel
languages adopt high-level language concepts, pioneered by parallel functional languages:

• Static type systems play a central role in all of these languages. X10 even uses dependent types
to express constraints on the location of computations [8]. Fortress, designed as a “secure
Fortran,” puts an emphasis on the security gained from a static type system [48];

• Higher-order functions are successfully used in several parallel libraries, such as Intel’s thread
library [44] or in Google’s map-reduce framework [14];

• Declarative or rule-based computation, with its inherently decentralised nature of
computation, has been identified as one promising direction for (semi-) automatically
exploiting parallelism on multi-core machines [9];

• Generic programming offers the potential of code-reuse and is used for example in Chapel [7].

Based on the experiences with these languages, high-level abstractions are now entering main-
stream languages for parallel programming. In particular, the concept of partitioned global address
spaces (PGAS) enables the programmer to use the abstraction of virtual shared-memory, while
providing possibilities for co-locating data on specific nodes and thereby tune the parallel execution.
The most prominent languages in this family are Unified Parallel C (UPC) [16] and Co-Array
Fortran [41].

Increasingly, these high-level abstractions are also used in main-stream languages to facilitate
parallel programming. The latest version of the .NET platform, comes with the Task Parallel
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Library [5], which provides a set of parallel patterns, in particular for divide-and-conquer and
pipeline parallelism, and some advanced parallel programming constructs such as futures. Several
languages implemented on top of .NET, including C# and F#, can make direct use of these library
functions to introduce parallelism, without extending the language itself. Intel’s Threading Building
Blocks [44], also a collection of parallel patterns, has been successfully used on a range of parallel
architectures.

Crucial for the feasibility of a high-level language approach to parallelism, is an efficient
and flexible implementation of basic resource management policies, such as load distribution
and scheduling. All three Haskell variants used in this paper profit from light-weight threads as
managed in the runtime system. GpH’s runtime system manages work distribution through “sparks”,
effectively handles to potential parallelism [50]. Work represented by one spark can be subsumed by
a running thread, effectively achieving lazy task creation [39]. Par monad’s approach builds on the
existing mechanisms for thread creation and synchronisation as initially developed for Concurrent
Haskell [43]. Eden’s runtime system is more prescriptive in the way it manages the parallelism,
which allows for the specification of skeletons implementing specific topologies [27].

Several other systems have taken similar design decision in producing a system for dynamic and
adaptive management of parallelism. Filaments [33] was an early system focusing on light-weight
threads, encouraging an approach of parallelisation that exposes massive amounts of parallelism
and deciding at runtime whether or not to exploit specific parallelism, rather than restricting it
on application level. The Charm++ system [26] builds on top of C++ and provides asynchronous
message-driven orchestration together with an adaptive runtime system. It has been used on
numerous, large-scale applications, for example biomolecular simulations from the domain of
molecular dynamics. The Cilk system [20] achieved excellent results on physical shared-memory
systems, in particular for the FFT application. Its C and C++ language extensions are now supported
both by Intel’s Cilk Plus compiler and by GCC 4.7. Goldstein’s thesis [22] provides a detailed study
of different representations of light-weight threads and their impact on parallel performance, e.g. in
the context of the TAM system [12].

Other functional languages that are gaining in popularity also provide high-level parallel
programming support. We provide a performance and programmability comparison in Haskell, F#
and Scala in another paper [49]. Developing several parallel versions, we employ skeleton-based,
semi-explicit and explicit approaches to parallelism. We focus on advanced language features for
separating computational and coordination aspects of the code and tuning performance.

8. CONCLUSIONS

In this paper we have used a very high level language approach to the challenge of obtaining efficient
parallelism from a typical, compute-intensive application: the n-body problem. As host language we
used Haskell, the de-facto standard, non-strict, purely functional language, that is increasingly used
in academia and beyond to achieve a high level of programmer productivity.

We studied three variants of parallel Haskell: evaluation strategies, abstractions built on top of
Glasgow parallel Haskell (GpH); Par monad, with an explicit way of controlling threads; and Eden,
which provides process abstractions akin to lambda abstractions to define parallel computations.
Common to all variants is the design philosophy to minimise the code changes that are needed
to achieve parallel execution. Ideally, the specification of the parallel execution is orthogonal, and
separate from the specification of the code. Indeed, the initial parallel versions of both algorithms
required only one-line code changes. All of these languages build on a sophisticated runtime system
that automatically manages the synchronisation, coordination and communication necessary to
achieve high parallel performance. The resulting programming model is one of semi-explicit parallel
programming for GpH and Eden, where the programmer only has to identify the useful sources
of parallelism, but explicit for Par monad, which allows to encode archetypical runtime system
functionality as high-level Haskell code. More commonly, however, pre-defined parallel skeletons
are used to simplify the parallelisation.
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The three variants differ in the way they facilitate tuning of the initial parallel algorithm, though.
Being first class objects, evaluation strategies can be easily modified to enable different dynamic
behaviour. For example, adding chunking to a data parallel algorithm can be easily done by
composing strategies. This modularity is one of its main advantages. However, control of data
locality is significantly more difficult, because GpH relies on an implicit, work stealing scheduler to
distribute the work. In contrast, in Eden, thread creation is mandatory on process application, and it
provides finer control of co-location, by using partial applications. These features provide more
opportunities for tuning the parallel program without abandoning the high level of abstraction.
Finally, Par monad is the most explicit form of controlling parallelism. Here, threads are explicit
entities in the program, that have to be synchronised using IVars, which raises all the usual issues
about parallel programming. However, by providing parallel patterns of computation, skeletons,
these low-level issues can be hidden from the programmer. By implementing runtime system
functionality on Haskell level, an expert parallel Haskell programmer can also tailor the application,
e.g. by implementing a custom scheduling algorithm.

Another current parallel Haskell extension is Data parallel Haskell (DPH), which implements
a model of implicit, nested data-parallelism on top of parallel arrays. For a predecessor of DPH,
Nepal, it is shown how a Barnes-Hut algorithm can be implemented in this language [25]. Concrete
performance comparisons with this Haskell variant would be interesting future work.

Despite the high-level of abstraction, the performance results show good speed-ups on 8 cores
for all systems: 5.45 for GpH, 6.50 for Par monad, and 3.62 for Eden, all using the Barnes-Hut
algorithm. Most notably, these results were achieved changing only a few lines of code. Introducing
top-level data-parallelism changes only one line of the original code. Further optimisation code, e.g.
for chunking, adds less than a dozen lines of auxiliary functions.

Our main conclusions from this challenge implementation are:

• All three parallel Haskell variants are able to achieve competitive multi-core speed-ups not
only for the simple, regular all-pairs algorithm but also for the more sophisticated, irregular
Barnes Hut algorithm.

• The performance of the parallel all-pairs version surpasses the calculated performance of
the fastest sequential Fortran version from the language shootout [21] and achieves scalable
performance up to the maximum of 8 cores.

• The ease of parallelisation allowed us to develop 6 versions of the challenge, using three
different variants of parallel Haskell and implementing both an all-pairs and a Barnes-Hut
version.

• Well documented program transformations, in the form of local changes to the sequential
program, reduce both heap and stack space consumption considerably and improve sequential
performance by a factor of 12.0.

• Established techniques for tuning parallel performance, in particular chunking, were
important to tune the GpH and Eden implementations of the algorithms.

• The Par monad version already achieves good parallel performance in its initial version, due
to a highly optimised, work-inlining scheduler. In contrast, both the GpH and Eden versions
require explicit chunking to achieve the same level of performance, but allow for more flexible
tuning of performance.

• Interestingly Eden, which is designed for distributed-memory architectures, performs very
well on a shared-memory setup using message passing, in particular for the all-pairs version.

We found this exercise of implementing one agreed challenge application, and comparing the
parallelisation methodology, the tool support and the achieved performance results with other
implementations, that were presented at the workshops, an extremely valuable experience, gaining
insights in the relative advantages of each of the approaches. These results also help to focus our
research efforts in developing the underlying systems further. In particular, one main direction of
further work is to improve our runtime support for hierarchical, heterogeneous parallel architectures,
e.g. clusters of multi-cores, and to integrate the different Haskell variants into one unified language
that makes use of these variants on different levels in the hierarchy. Eden, based on a distributed-
memory model, is a natural match with clusters, whereas GpH and Par monad are natural matches
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for physical shared-memory architectures. GpH also supports virtual memory, which can be
efficiently exploited on closely connected clusters. For the next challenge application we hope to
also cover clusters of multi-cores to address the issue of the scalability of the parallelism in more
detail. Eden already provides a suitably platform for such a comparison, and we hope to also have a
stable cluster-version of GpH ready to use for this next stage.
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10. APPENDIX

Tables X (a) and (b) give more detailed all-pairs measurements for GpH and Par monad. They show
the effect of using different chunk sizes to adapt to the number of cores. For example, two chunks
per PE generates enough chunks such that each core roughly has two chunks.

(a) GpH

nochunk 1chunk/PE 2chunks/PE 4chunks/PE
no. PE Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup
Seq. 20.04 1.00 20.05 1.00 20.03 1.00 20.06 1.00

1 20.64 0.97 27.80 0.72 24.07 0.83 22.10 0.91
2 16.76 1.20 12.73 1.58 11.98 1.67 11.33 1.77
4 13.89 1.44 6.42 3.12 6.15 3.26 5.97 3.36
8 15.64 1.28 3.40 5.90 3.35 5.98 3.29 6.10

(b) Par monad

nochunk 1chunk/PE 2chunks/PE 4chunks/PE
no. PE Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup
Seq. 20.30 1.00 20.06 1.00 20.03 1.00 20.04 1.00

1 20.48 0.99 20.16 1.00 20.08 1.00 20.19 0.99
2 10.96 1.85 10.91 1.84 10.98 1.82 10.94 1.83
4 5.93 3.42 5.85 3.43 5.82 3.44 5.78 3.47
8 3.29 6.17 3.24 6.19 3.22 6.22 3.25 6.17

Table X. GpH and Par monad measurements (All-Pairs, 16k bodies, 1 iteration)
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Tables XI (a) and (b) shows the use of different skeletons and how they affect runtimes and
speed-ups. Table XI (c) shows the actual number of processes, threads, conversations and messages
overheads using each skeleton.

(a) Eden map skeletons (1)

parMap parMapFarm parMapFarmMinus
no. PE Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup
Seq. 22.11 1.00 22.13 1.00 22.12 1.00

1 362.38 0.06 23.67 0.93 23.59 0.94
2 294.99 0.07 11.91 1.86 23.33 0.95
4 259.19 0.09 6.08 3.64 7.73 2.86
8 245.72 0.09 3.41 6.49 3.49 6.34

(b) Eden map skeletons (2)

parMapFarmChunk parMapOfflineFarmChunk workpoolSortedChunk
no. PE Runtime (s) Speedup Runtime (s) Speedup Runtime (s) Speedup
Seq. 22.13 1.00 22.13 1.00 22.12 1.00

1 22.91 0.97 23.02 0.96 23.06 0.96
2 11.57 1.91 11.53 1.92 11.59 1.91
4 5.82 3.80 5.80 3.82 5.84 3.79
8 3.09 7.16 3.04 7.28 3.11 7.11

(c) Eden skeleton overheads - par. run on 8 cores

processes threads conversations messages
parMap 16001 32001 64000 64000
parMapFarm 9 17 48 32048
parMapFarmMinus 8 15 42 32042
parMapFarmChunk 9 17 48 80
parMapOfflineFarmChunk 9 17 40 56
workpoolSortedChunk 9 17 48 80

Table XI. Eden measurements (All-Pairs, 16k bodies, 1 iteration)
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