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Abstract. Many problems in industry are a form of open-
shop scheduling problem (OSSP). We describe a hybrid ap-
proach to this problem which combines a Genetic Algorithm
(GA) with simple heuristic schedule building rules. Excel-
lent performance is found on some benchmark OSS problems,
including improvements on previous best-known results. We
describe how our approach can be simply amended to deal
with the more complex style of open shop scheduling prob-
lems which occur in industry, and discuss issues relating to
further improvement of performance and integration of the
approach into industrial job shop environments.

1 INTRODUCTION
The Open-Shop Scheduling Problem (OSSP) is a complex and

common industrial problem [6]. OSSPs arise in an environ-
ment where there is a collection of operations to perform on
one or more machines. Efficient production and manufactur-
ing demands effective methods to optimise various aspects of
a schedule, usually focussing on the total time taken to pro-
cess all of the operations. We present a hybrid GA /heuristic
approach which performs very successfully in comparison with
previous results on some simple benchmark OSSPs [12]. In two
cases (for which global optima had not already been found),
our results improve on a previously best known result pro-
duced by tabu search [12]. Our approach is flexible and easy
to use in terms of development time, and also exhibits several
areas for future improvement.

We concentrate on three chromosome representation strate-
gies. One is a straightforward extension to the OSSP of a
strategy used for the job-shop scheduling problem (JSSP) in
earlier work [5], which does not involve any hybridisation. The
other two strategies incorporate simple means of hybridising
the GA with heuristic rules. One of these methods seems more
powerful and robust than the other two.

We also note that the benchmark problems used can be
freely obtained for comparative research, and describe how
our approach can be extended to address more complex open
shop scheduling problems. We know of no GA-based efforts
except ours on the OSSP with which to compare, so we present
results in order to show the potential for a GA approach to
open-shop scheduling, and invite fellow researchers to exper-
iment with the same problems.
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1.1 Overview

Section 2 describes the OSSP in detail, and our GA approach
is described in section 3. Experiments and results on bench-
mark problems are then presented in section 4. Section 5 dis-
cusses these results, advances various issues concerning per-
formance improvement, and notes how the approach may be
extended to cope with more complex OSSPs.

2 OPEN-SHOP SCHEDULING
PROBLEMS

A commonly used simplification of the OSSP is to specify
that each given operation can only be processed on a given
specified machine. In reality, an operation can often be pro-
cessed in a number of alternative ways, any of which may
involve more than one machine. There may also be due dates
and machine setup times to consider. In the following however
we will concentrate on a simplified form of the general prob-
lem; this is done mainly because the benchmark problems on
which we test the performance of our GA approach are thus
simplified. We will later discuss simple amendments to our
approach which promise to successfully cope with the more
general problem.

An OSSP involves a collection of m machines and a col-
lection of 7 jobs; each job comprises a collection of opera-
tions (sometimes called tasks). An operation is an ordered
pair (a,b), in which a is the machine on which the operation
must be performed, and b is the time it will take to process
this operation on machine a. A feasible OSSP schedule assigns
a start time to each operation, satisfying the constraint that
a machine can only process one operation at a time, and that
two or more operations from the same job cannot be processed
at the same time. The main objective is usually to generate a
schedule with a makespan as short as possible; the makespan
is simply the total elapsed time in the schedule. More com-
plex objectives often arise in practice, where due dates and
machine set up times must also be taken into account, for
example.

The common illustration of this kind of problem is that
of an automotive repair shop [6]. In such a shop, a typical
job might involve the operations ‘spray-paint’, and ‘change-
tyres’ to be performed on the same vehicle. These operations
cannot usually be performed concurrently (especially if the
stations at which these operations are performed are in dif-
ferent places, for instance), but can be performed in any order.
Also it is usually true that different stations (ie: ‘machines’
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) can concurrently process operations from different jobs (eg:
involving different vehicles). If the operations in a job must be
performed in some fixed order, then this becomes a ‘Job-Shop
Scheduling Problem’ (JSSP).

Certain benchmark OSSPs have been used for comparative
research. In these, each job comprises precisely one operation
for each machine. These benchmarks are hence completely
defined by an ordered collection of m processing times for
each job. For example, table 1 shows a 5x5 (ie: 5 jobs and 5
machines) benchmark problem, taken from [9].

Table 1. A 5x5 benchmark OSSP

Machines: 1 2 3 4 5
Job 1: 64 66 31 85 44
Job 2: 7 69 68 14 18
Job 3: 74 70 60 1 90
Job 4: 54 45 98 76 13
Job 5: 80 45 10 15 91

In the above example, operation 1 of job 1 must go to
machine 4 for 85 units of processing time, operation 2 of job 1
must go to machine 1 for 64 units of processing time, and so
on, with no restrictions on the order in which the tasks for any
job are to be processed. The problem is to generate a valid
schedule with minimal makespan. Figure 1 shows a minimum-
makespan (300) schedule for the benchmark in table 1.
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Figure 1. Minimal-makespan schedule for a 5x5 OSSP

benchmark

3 A GA/HEURISTIC APPROACH TO
THE OSSP

A common general technique for hybridising a GA with a
heuristic search or heuristic rule based method is to use the
GA to search a space of abstractions of solutions, and employ
a heuristic or some other method to convert the points deliv-
ered by the GA into candidate solutions. Such hybridisation
is one way of avoiding the often highly complicated problem
of representing a complete solution as a chromosome in a way
that facilitates effective GA-based search; it is usually more
easy to represent abstract regions of the solution space, and
have these abstractions converted into (ie: interpreted as) so-
lutions by some other technique.
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This paper presents some simple examples of such hybrid
GA /heuristic methods for the OSSP. Similar GA /heuristic
hybridisation occurs variously in the GA literature. Eg, a re-
cent discussion of hybrid GA /heuristic hybrids for bin-packing
and related problems appears in [11]. In the following, we de-
scribe three simple strategies for using a GA to address an

OSSP.

3.1 Basic chromosome representation

Each of the representations we discuss is based on the follow-
ing basic technique. The genotype for a problem is a string of
p genes, where p is the total number of operations involved,
summed over each job. Each gene can take alleles in the range
{1,2,...,7}, where j is the largest job number. A chromosome
provides instructions for building a schedule as follows: the
string of genes abc - - - means: “choose an untackled operation
from the the a-th uncompleted job, and place it in the earli-
est place where it will fit in the developing schedule, choose
an untackled operation from the b-th uncompleted job and
place it into the earliest place where it will fit in the devel-
oping schedule, ...”; and so on. Building a schedule is ac-
complished by a schedule builder, which maintains a circular
list of uncompleted jobs and a list of untackled operations for
each such job. Thus the notion of “a-th uncompleted job” is
taken modulo the length of the circular list to find the actual
uncompleted job being referred to.

Evidently, this description is incomplete because of the
word “choose” in the interpretation method. In this sense,
each chromosome represents a region of the space of possible
solutions. For example, the region of solutions which may be
represented by the chromosome “1,2,1,...7 is that in which
the first operation scheduled comes from job 1, the second
from job 2, the third from job 1, and so on. The way that a
chromosome is interpreted as a single solution somewhere in
this region can vary. In this paper we look at three ways of
doing this.

3.2 Directly encoding the operation

This is the most straightforward method; we simply double
the size of the chromosome by incorporating genes for the
choice of operation in addition to those for choice of job.
Hence, abed---
operation from the the b-th uncompleted job, and place it in
the earliest place where it will fit in the developing schedule,
choose the c-th untackled operation from the d-th uncom-
pleted job and place it into the earliest place where it will fit
in the developing schedule, ...”, and so on. We will refer to
this method with the abbreviation JoB+0P.

will now mean: “choose the a-th untackled

3.3 Fixed heuristic choice

In this method, a fixed heuristic is decided upon beforehand,
and used by the schedule builder to make the choice of op-
eration at each step. Hence, if we use heuristic X to make
this choice, then the interpretation of abed - - - becomes : “use
heuristic X to choose an operation from the a-th uncompleted
job, and place it in the earliest place where it will fit in the
developing schedule, use heuristic X to choose an operation

from the b-th uncompleted job, and place itin ...”, and so on.
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We use the abbreviation FH(X) in referring to this strategy,
in respect of some particular heuristic X. The simple heuris-
tics we will refer to in this paper are the following eight. In
each case, the set of possible operations to choose from are
those in the ‘current job’. This ‘current job’ is that repre-
sented (via the circular list of uncompleted jobs) by the allele
in the chromosome which is being interpreted at this step.

LPT: choose the operation with largest processing time,
breaking ties according to an a priort ordering over the
operations.

SPT: choose the operation with shortest processing time,
breaking ties according to an a prior: ordering over the
operations.

EF-LPT: Let t be the earliest time at which an operation
can be scheduled, and let S be the set of operations that
can be scheduled at t. Simply apply LPT to the operations
in S.

EF-SPT: As above, but using SPT instead of LPT.

EF-BTR: As above, but simply choosing randomly from the
set S.

SG-LPT: Let GG be the set of operations that can be placed
in a gap in the schedule; that is, those operations which fit
inbetween two already scheduled operations on the same
machine. Apply LPT to the operations in G. If G is empty,
proceed as with LPT.

LRG: Choose the operation from G which leaves the longest
amount of time in its gap, breaking ties randomly. If G is
empty, then simply use PT.

SRG: Choose the operation from G which leaves the shortest
amount of time in its gap, breaking ties randomly. If G is
empty, then simply use LPT.

For example, in later experiments using FH(LPT), this
refers to the fixed-heuristic hybrid method, with LPT being
the heuristic used in this case.

3.4 Evolving heuristic choice

Finally, note that there is no good reason to rely on a fixed
heuristic for each choice of operation while building a sched-
ule. Indeed, it is quite easy to see that varying the choice of
heuristic according to the particular job being processed, and
also according to the particular stage in the schedule building
process, may make more sense. It is hard to find some prin-
cipled a priori method for making these varied choices, but
we can implement a simple adaptive strategy by extending
our basic chromosome representation as follows. A chromo-
some abed - - - now means: “use the a-th heuristic to choose an
operation from the b-th uncompleted job, and place it in the
earliest place where it will fit in the developing schedule, use
the c-th heuristic to choose an operation from the d-th uncom-
pleted job, and place itin ...”, and so on. We dub this method
‘EHC’, for ‘Evolving Heuristic Choice’. Alleles of genes which
are interpreted as heuristic choices (eg: odd-numbered genes
in the above example) range through the number of available
heuristics; in the experiments described later, the set of pos-
sible choices are the eight described earlier. We have found
it beneficial for these alleles to be preferentially set to one in
particular of these choices (LPT for most problems) in the
initial generation, thereafter being allowed to vary via muta-
tion and recombination. In the next section then, when we
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refer to the use of a particular heuristic in association with
EHC, we simply mean that the énitial generation of chrom-
somes have their heuristic choice alleles set to this heuristic,
but are allowed to vary from then on.

4 EXPERIMENTS AND RESULTS

We tested each approach on six benchmark OSSPs of sizes
4x4,5%x5,Tx7,10x10,15x 15, and 20 x 20. In each case, the
GA used fitness-proportionate selection based on the objec-
tive function makespan - lower bound, lower bounds being
provided in [12]. Elitist generational reproduction was used;
uniform crossover was used, applied adaptively. That is, the
crossover rate began at 0.8, and was reduced by 0.0005 after
each generation down to a minimum of 0.3. T'wo children were
produced from each crossover; these children, or the parents
(when crossover was not applied) were each mutated with a
fixed probability of 0.5; mutation involved swapping two ran-
domly chosen genes. In each case, the results report the aver-
age of the best makespan found from each of ten trial runs of a
maximum of 1000 generations, and the best makespan found
overall. Convergence typically occured very quickly (some-
times in the initial generation) on the 4 x 4 problem; on larger
problems, convergence ranged from an average of around 30
generations for the 5 x 5 problem to an average of 350 gener-
ations for the 20 x 20 problem. The population size was 200
in each case.

Table 2 shows results for the smaller three benchmarks. The
‘Previous Best’ row gives the best previously known solution.
In the 4 x 4 and 5 x 5 cases, these are known to be global
optima.

Table 2. Results on small benchmark OSSPs
Benchmark OSSP (jobs X machines)
4x4 5X5 7Tx 7
Previous Best 193 300 438
JOB+OP
Mean 194.4 308.5 454.1
Best 193 302 441
Fixed Heuristic
Mean (EF-SPT) 1934  303.9 449.7
Best (EF-SPT) 193 301 445
Mean (EF-LPT) 211.0 312.2 449.8
Best (EF-LPT) 211 305 443
Mean (EF-BTR) 195.6  305.6 448.9
Best (EF-BTR) 195 301 436
Evolving Heuristic Choice
Mean (EF-SPT)  193.0  305.0 149.7
Best (EF-SPT) 193 300 441
Mean (EF-LPT) 1943  307.6 444.9
Best (EF-LPT) 193 305 435
Mean (EF-BTR) 194.1  305.3 449.8
Best (EF-BTR) 193 300 435

The most striking aspect of these results was that EHC
yielded a better result, 435, than any previously found (that
we know of) on Taillard’s 7 x 7 benchmark ; the previous
best for this was reached by tabu search [12]. Note also that
FH(EF-BTR) also improved on this previous best. More gen-
erally, it appears that the methods incorporating SPT (as
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fixed in FH, or initially fixed in EHC) are best on the two
smallest problems while LPT shines through on the larger
problem. We find that this reliably extends to problems larger
than 7 x 7, and hence only incorporate LPT (as the fixed or
initially fixed choice) in the experiments to follow. All of the
FH and EHC methods improved on the JOB+OP trials, showing
a clear benefit for some form of hybridisation.

In table 3, we compare JoB+opP, FH(LPT), and EHC(LPT)
for the three larger benchmarks. Note that in this case the
previous best results are known to be global optima for the
15 x 15 and 20 x 20 cases [12].

Table 3. Results on large benchmark OSSPs
Benchmark OSSP (jobs X machines)
10 x 10 15 x 15 20 x 20
Previous Best 645 937 1155
JOB+4+OP
Mean 690.7 968.9 1244.5
Best 668 951 1224
Fixed Heuristic (LPT)
Mean 662.7 942.9 1163.7
Best 646 937 1155
Evolving Heuristic Choice
Mean 660.1 940.1 1167.7
Best 641 937 1156

The most striking result in this case is the discovery of
a new best result for the 10 x 10 benchmark, which again
was obtained using the EHC method. Note also that these re-
sults further underline the quality of a hybrid approach as
compared to that of the ‘pure GA’ JoB+0P method. Beyond
these observations we cannot really discern any clear indica-
tions as to the relative quality of FH and EHC on the two larger
benchmarks.

5 DISCUSSION

The approach we describe provides excellent results on diffi-
cult benchmark problems. Although this is no guarantee that
the approach will generalise successfully to real problems,
and/or perform just as well on different and larger bench-
marks, it is clearly a promising enough basis for continued
research along these lines.

It i1s particularly encouraging that even the best results
were achieved with an essentially simple technique, improve-
ments on which can be readily imagined. This augments a
continuing theme in GA research literature, which shows that
GAs begin to compete closely with or outperform other known
methods on some problems when successfully hybridised [10,
11, 8]. Further work is under way to study more sophisticated
heuristics and hybridisation strategies.

In the context of the interplay between the GA and the
heuristics, these results appear counter to findings like those
of [1], which suggest that the more search done by the GA
at the expense of the heuristic, the better in terms of final
solution quality, though probably at the expense of time. Our
results, and those of other authors in other applications, tend
to show the opposite: better quality results arrive through hy-
bridisation with a heuristic, with little extra time cost. Recon-
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ciliation of such counter observations are readily found how-
ever, by recognising that most generalisations we make from
necessarily small forays into the space of possible experiments
are at the mercy of being overturned by further such inves-
tigation. Better solution quality may well have arrived here
through a ‘pure’ GA approach (such as JOB+OP) but only at
a rather extreme cost in time; eg: for JOB+OP to compete in
terms of solution quality with EHC may well be possible, but
perhaps only if we use far larger population sizes and conse-
quently wait far longer for convergence. Bagchi et al’s notion
makes intuitive sense if we consider that it allows the GA full
rein over the space of possible solutions, rather than search-
ing a contracted space as is effectively done in most hybrid
methods. However, this ‘expansion’ of the space that we allow
the GA to survey carries with it the need for more extensive
sampling and hence much larger population sizes. A hybrid
GA /heuristic method thus tends to seem the better practical
choice, offering a better tradeoff in terms of speed vs quality
on most problems.

5.1 Extension to more ‘real’ OSSPs

The more general statement of a jobshop problem is more
complex than that described here in two main ways. First, an
operation has a collection of alternative process plans (it can
be done on different machines), rather than the single process
plan of being specified to be done on a particular machine.
Let each job j; have p; alternative process plans. Each such
plan is a distinct set of machines and associated processing
times, each representing an alternative way of discharging the
job. We might extend our representation to incorporate such
alternatives as follows: a schedule abed - - - means: “choose an
untackled operation from the the a-th uncompleted job, us-
ing the b-th valid process plan for this job, and place it into
the earliest place where it will fit in the developing schedule,
...”7, and so on. Here, when the schedule builder identifies the
job currently referred to in the chromosome (via the heuris-
tic choice), earlier choices in the schedule constrain the set
of valid alternative process plans that are still ‘live’ for this
job. The valid set is treated as circular, and chosen from as
directed by the chromosome. There are of course several other
possibilities. For example, we could use essentially the same
representation as used for the simpler OSSP, but change the
interpretation to: “heuristically choose a valid process plan
from the a-th uncompleted job and then heuristically choose
an operation from this plan, and place it into the earliest place
where it will fit in the developing schedule, ...”, and so on.
This involves the addition of a heuristic to choose the pro-
cess plan as well as choose an operation. Possibilities for the
heuristic which chooses the process plan are easily imagined.
For example, we might choose the plan for which the total
processing time remaining is smallest.

The second important difference is that jobs have due dates
which need to be considered, and also relative precedence.
This can be dealt with in our approach simply by incorporat-
ing these considerations into the fitness function. That is, the
fitness measure is a combination of the makespan of the sched-
ule and the extents to which job precedences are honoured and
due dates are met. Alternatively, preference and due date in-
formation may be readily incorporated into a heuristic. For
example, instead of a heuristic which chooses the job with
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the largest processing time, we might choose the job which
maximises some function of processing time and the extent to
which its due date is met.

Hence, various possibilities are apparent for extending the
approach to deal with more general problems. Such has been
reported, for example, in the context of highly generalised
manufacturing scheduling problems [7], although this did not
report on the hybridisation of the GA with simple heuris-
tics (chromosomes were much more direct representations of
schedules). Our main point here is to show how our approach
readily allows for extensions which will allow it to cope with
problems of the fully general kind found in real machine shop
environments, while still retaining its basic flavour, and hence
retaining the presumed source of its success. It may not be
immediately apparent that the success we demonstrate on
simplified benchmark OSSPs will carry over to effective per-
formance on more complex problems in an extended approach,
but there is no apparent reason to be too skeptical of this pos-
sibility. Further work along these lines will be reported in due
course.

5.2 Conclusion

We have presented an approach to the OSSP which performs
very promisingly on benchmark OSSPs, twice outperforming
previous reported attempts. We discussed how the approach
may be extended to deal with more realistic problems; the
simplicity of the approach, its apparent success, and the evi-
dent potential for much further improvement and extension,
seem to render it a promising method warranting further re-
search. Ultimately, of course, comparisons with other Al- or
OR- based methods will be instructive. Also, the approach
as presented fails to meet some possible needs which sched-
ule managers may have in machine shop environments; eg:
there is no clear way in which rescheduling can be addressed,
other than by redefining the problem as necessary and running
the GA from scratch; a more sophisticated technique however
would be one which made use of information gained during
formation of the previous schedule, which makes rescheduling
a potentially very speedy process.

Finally, it should be noted that the GA configuration used
in the experiments here is not optimal. Continuing GA re-
search reveals variants and techniques that GA application re-
searchers will find rewarding to heed. For example, [2, 3] both
describe spatially-oriented selection strategies which seem to
consistently outperform others, while [4] describes, among
other things, reinitialisation strategies which can enhance over-
all robustness and reliability.

5.3 Notes

The benchmarks used here can be obtained via [9]. The OR
library referred to in [9] is an electronic library of benchmarks
for a wide range of OR problems. Researchers wishing to com-
pare with our results will need to know that the problems
referred to here are each the problem No. 1 of their specified
size and kind. Alternatively, problem data may be obtained
directly from the authors, as can the details of the schedules
found here which improve on previous best known results.
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