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A Promising Genetic Algorithm Approach to Job-Shop Scheduling,Rescheduling, and Open-Shop Scheduling ProblemsHsiao-Lan Fang, Peter Ross, Dave CorneDepartment of Arti�cial IntelligenceUniversity of EdinburghEdinburgh, UKEmail: fhsiaolan,peter,daveg@aisb.edinburgh.ac.ukAbstractThe general job-shop scheduling problem isknown to be extremely hard. We describea GA approach which produces reasonablygood results very quickly on standard bench-mark job-shop scheduling problems, betterthan previous e�orts using genetic algorithmsfor this task, and comparable to existing con-ventional search-based methods. The rep-resentation used is a variant of one knownto work moderately well for the travelingsalesman problem. It has the considerablemerit that crossover will always produce le-gal schedules. A novel method for perfor-mance enhancement is examined based ondynamic sampling of the convergence rates indi�erent parts of the genome. Our approachalso promises to e�ectively address the open-shop scheduling problem and the job-shoprescheduling problem.1 INTRODUCTIONThe job-shop scheduling problem (JSSP) is a very im-portant practical problem. E�cient methods of solv-ing it can have major e�ects on pro�tability and prod-uct quality, but with the JSSP being among the worstmembers of the class of NP-complete problems (Gary& Johnson 1979) there remains much room for im-provement in current techniques. In general, the di�-culty of the general JSSP makes it very hard for con-ventional search-based methods to �nd near{optimain reasonable time. This has led to recent interest inusing genetic algorithms (GAs) to address these prob-lems.In the general JSSP, there are j jobs and m machines;each job comprises a set of tasks1 which must eachbe done on a di�erent machine for di�erent speci�ed1Note: what we call a \task" is often called an \opera-tion" in the JSSP literature.

processing times, in a given job-dependent order. Eg:,table 1 shows a standard 6 � 6 benchmark problem(ie, j = 6;m = 6), from (Muth & Thompson 1963). In(m,t) (m,t) (m,t) (m,t) (m,t) (m,t)Job 1: 3,1 1,3 2,6 4,7 6,3 5,6Job 2: 2,8 3,5 5,10 6,10 1,10 4,4Job 3: 3,5 4,4 6,8 1,9 2,1 5,7Job 4: 2,5 1,5 3,5 4,3 5,8 6,9Job 5: 3,9 2,3 5,5 6,4 1,3 4,1Job 6: 2,3 4,3 6,9 1,10 5,4 3,1Table 1: The 6x6 benchmark problemthis example, job 1 must go to machine 3 for 1 unit oftime, then to machine 1 for 3 units of time, and so on.A legal schedule is a schedule of job sequences on eachmachine such that each job's task order is preserved,a machine is not processing two di�erent jobs at once,and di�erent tasks of the same job are not simulta-neously being processed on di�erent machines. Theproblem is to minimise the total elapsed time betweenthe beginning of the �rst task and the completion ofthe last task (the makespan). Other measures of sched-ule quality exist, but shortest makespan is the simplestand most widely used criterion. For the above prob-lem the minimum makespan is known to be 55, as in,for example, the schedule shown in �gure 1 .There are two similar benchmarks, of sizes 10 � 10and 20� 5. The best results on these benchmarks fortraditional (B & B { branch & bound search) and GAmethods published so far are shown in table 22The branch & bound method (eg: see (Carlier & Pin-son 1989)) produces good results but takes consider-able computer time even for the 10� 10 problem be-cause of the signi�cant amount of schedule generationimplicit in the method. (Davis 1985) was the �rstto suggest and demonstrate the feasibility of using a2Adapted from (Nakano 1991).
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Figure 1: An optimal schedule for 6�6 JSSP bench-markPaper Method 6x6 10x10 20x5McMahon 75 B & B 55 972 1165Baker 85 B & B 55 960 1303Carlier 89 B & B 55 930 1165Nakano 91 GA 55 965 1215Table 2: Some published benchmark resultsGA on a simple JSSP, employing an essentially ad-hoc set of genetic operators and a memory-intensivechromosome representation, paving the way for futureimprovements. Meanwhile, the general success of GAson other kinds of hard scheduling problems, such asthe traveling salesman problem (TSP), started to leadto clues for more e�ective representations and opera-tors for GA approaches. Eg: (Whitley et al 1989) de-�ned a new edge recombination operator for the TSP,although noted that performance degraded when ap-plied to more typical scheduling problems; (Bagchi etal 1991) used problem-speci�c information in the rep-resentation and genetic operators, addressing a limitedform of JSSP in which certain batches of tasks must bescheduled continuously. More recently, (Nakano 1991)used a conventional (binary) GA for the JSSP, supple-mented with algorithms for interpreting and repairinggenomes, and was successful in improving on the per-formance of some previously reported branch & boundsearch methods on benchmark problems, though didnot improve on the best results found with these meth-ods.Our approach uses a variant of the ordinal representa-tion introduced in (Grefenstette et al 1985) and usedfor the TSP. This representation has the considerablemerit of producing only legal schedules under crossoverand mutation. When applied to the JSSP, it producesbetter results than those of (Nakano 1991) with pleas-ingly small computational e�ort, and thus provides aconvenient way to handle the rescheduling problemtoo. The rescheduling problem involves modifying aschedule in process of execution in order to take ac-count of changed, canceled or new jobs. Because this

sort of thing happens frequently in the kind of organi-sation that has to deal with JSSPs, it is as important to�nd e�cient rescheduling algorithms (which hopefullydon't involve rebuilding the schedule from scratch) asit is to �nd e�ective algorithms for the full JSSP.2 OVERVIEWIn section 3 we describe our encoding technique, andoutline the basic activities of the schedule builderwhich performs the interpretation of a genome for theJSSP. In section 4 we go on to discuss the applicationof this approach to Open-Shop scheduling, and outlinethe more sophisticated schedule builder we employ inthis latter case. In section 5 we briey describe thejob-shop rescheduling problem, and how it can be ad-dressed via our approach. In section 6 we go on todiscuss the qualitative GA dynamics which arise fromthe representation we use, making points in particu-lar about the redundancy of the representation, andthe variation in convergence rates for di�erent genes(or `chunks' of the genome). This leads us towardsintroducing a method for combating premature con-vergence in general GA applications that involve sig-ni�cant variation in gene convergence rates, which isdiscussed further in section 7. Section 8 presents somebasic results: concerning the performance of our ba-sic approach on two benchmark JSSPs, showing howthis approach outperforms previously reported GA at-tempts at this task which we know of; concerning theperformance of our basic approach, enhanced by `gene-variance-based operator targeting', showing improve-ment on the initial unenhanced results; and concerningperformance on a selection of benchmark open-shop-scheduling problems, showing how our approach comeswithin a few percent (sometimes 0%) of the optimal orbest-known solutions for the problems tried. We knowof no GA-based e�orts on the OSSP with which tocompare, so we present these latter results in order toshow the potential for a GA approach to open-shopscheduling, and invite fellow GA researchers to exper-iment with the same problems. At the end of thissection, we describe how to obtain the problem de�ni-tions for the benchmarks used in this paper. Finally,section 9 summarises our results and discusses the gen-eral approach and further work.3 THE REPRESENTATIONThe genotype for a j �m problem is a string contain-ing j � m chunks, each chunk being large enough tohold the largest job number (j). A chunk is atomic asfar as the GA is concerned. It provides instructionsfor building a legal schedule as follows: the string ofchunks abc � � � means: put the �rst untackled task ofthe a-th uncompleted job into the earliest place whereit will �t in the developing schedule, then put the �rstuntackled task of the b-th uncompleted job into the



earliest place where it will �t in the developing sched-ule, and so on. The representation can be seen toencode all active schedules, and also lends itself toobvious extensions which would enable the encodingof necessary or unnecessary delays on machines. Thetask of constructing an actual schedule is handled by aschedule builder which maintains a circular list of un-completed jobs and a list of untackled tasks for eachsuch job. Thus the notion of \a-th uncompleted job"is taken modulo the length of the circular list to �ndthe actual uncompleted job. Note: instead of employ-ing a circular list, (Grefenstette et al 1985) constrainsalleles of the i-th chunk to range from 1 to N � i + 1in value; it is unclear how to directly extend this tech-nique to a JSSP (with more than one machine), henceour use of a circular list.The schedule builder is straightforward and computa-tionally cheap. It must consider four cases when slot-ting a task into a developing schedule. For instance,suppose it is asked to slot job 1 into machine 2, withprocessing time 2. If there is a suitable gap in theschedule for machine 2, it may be possible to �t thetask in there with or without compulsory idle time.If no suitable gap exists, that task has to be addedto the end of the machine's schedule with or withoutcompulsory idle time. Figure 2 shows the choices. TheWith suitable gap,idle time needed: ... not needed:mc1:.. 11333 mc1:.. 114444mc2:.. 2 ## 3333 mc2:.. 222## 44No suitable gap,idle time needed: ... not needed:mc1:.. 555111 mc1:.. 66611mc2:.. 22 5 ## mc2:.. 22 666##Figure 2: Scheduler builder choices of task placementsymbol \##" shows where the schedule builder wouldplace the task in each case.4 OPEN-SHOP SCHEDULINGThe Open-Shop Scheduling Problem (OSSP) is similarto the JSSP, with the exception that there is no a pri-ori ordering on the tasks within a job. The OSSP hasa considerably larger search space than the JSSP, andseems to be less heavily addressed in the literature,although it is an important and ubiquitous problem,occurring in any job-shop situation in which tasks fora particular job may be carried out in (almost) any or-der, such as automotive repairs (tasks) for cars (jobs),or upgrades/repairs (tasks) for PCs (jobs).Table 3 shows a standard 5�5 benchmark OSSP (thatis, j = 5;m = 5) taken from (Beasley 1990). In the

(m,t) (m,t) (m,t) (m,t) (m,t)Job 1: 4,85 1,64 3,31 5,44 2,66Job 2: 1,7 4,14 2,69 5,18 3,68Job 3: 4,1 1,74 2,70 5,90 3,60Job 4: 2,45 4,76 5,13 3,98 1,54Job 5: 1,80 4,15 2,45 5,91 3,10Table 3: A 5x5 benchmark OSSPabove example, task 1 of job 1 must go to machine 4for 85 units of time, task 2 of job 1 must go to machine1 for 64 units of processing time, and so on, with norestrictions on the order in which the tasks for any jobare to be processed. The problem is to generate a validschedule with minimal makespan. Figure 3 shows aminimum-makespan (300) schedule for the benchmarkin table 3.
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Job 1 2 3 4 5Figure 3: Minimal-makespan schedule for a 5x5 OSSPbenchmarkThe basic extension of the representation described insection 3 to the OSSP involves a genome abcd... mean-ing: put the ath untackled task of the bth uncompletedjob into the earliest place it will �t in the developingschedule, put the cth untackled task of the dth un-completed job into the earliest place it will �t in thedeveloping schedule, and so on. Whereas previously,for the JSSP, the `�rst untackled task' for any par-ticular job was always predetermined owing to the apriori ordering on tasks, in this case we need to incor-porate an extra gene for each job to encode which ofthe remaining tasks for a job to choose (since with nopredetermined ordering, any may be chosen).An alternative is to use precisely the same representa-tion as for the JSSP, but change the interpretation ofabc... to: heuristically choose an untackled task fromthe ath uncompleted job and place it in the earliestplace it will �t in the developing schedule, heuristi-cally choose an untackled task from the bth uncom-pleted job and and place it in the earliest place it will�t in the developing schedule, and so on. In this case,at each step the schedule builder looks ahead to �ndthe earliest available slot(s) in the developing sched-



ule into which a non-empty set of tasks from the cur-rent job can be placed. If lookahead determines thatmore than one equally early slots are available, thena simple heuristic is used to choose which task to ac-tually place in which slot. Two simple heuristics wehave used are: (a) choose randomly from the availabletasks; (b) choose the task with the largest process-ing time. The random method seems to work best onsmall problems, but best results are found on largerproblems with the \largest-�rst" heuristic. In general,this lookahead/heuristic method for the OSSP worksbetter than the basic extension to the JSSP approachdescribed in the above paragraph.5 JOB-SHOP RESCHEDULINGJob-shops are beset by the continual need to alterpreviously worked out schedules in the light of prob-lems which arise. This typically means revising theexpected processing time for some job in the sched-ule, or revising (typically delaying) the start time fora particular task. There is thus a need for e�cientmethods of rescheduling. If work has not yet begunon the current schedule, then an obvious and sim-ple approach to rescheduling would be to rerun theschedule-�nding program (eg: in this case, a GA)from scratch on the changed data. Strict reschedul-ing, however, means not scheduling the entire prob-lem from scratch; rescheduling is thus strictly neces-sary when either there is not enough time to be ableto schedule from scratch, or when part of the currentschedule is already in progress. A proper reschedulingmethod would be to re-use some of the work alreadydone in �nding the previous schedule. This might in-volve augmenting the previous schedule with the newchange, and iteratively modifying it until it is accept-able. Another method would be to recover a new,smaller scheduling problem made up from all and onlythose parts of the previous schedule that are a�ectedby the change.Rescheduling from scratch is obviously to be avoided inthe light of the large processing time required for largeproblems and the frequency of the need to reschedule.Also, sophisticated use of previous work is very di�-cult to achieve with a typical GA (although see (Louiset al 1993) for a recent attempt at storing schema in-formation in a case base). Nominal use of previouswork done could involve seeding; we have not yet triedthis. Our representation and schedule builder, how-ever, lend themselves naturally to a method in whichwe make a smaller scheduling problem, via a simpledependency analysis which �nds out which tasks area�ected by the changes.Two kinds of situation are dealt with: a change in theprocessing time of some task (which includes the caseof removing a task entirely), and a change in the starttime of some task (if, for example, a task must be de-

layed because of problems with a machine or delays inobtaining resources). Input to the rescheduler is sim-ply the genome representing the schedule which mustbe altered. The user then enters the required modi�-cation (to the processing time and/or start time of oneor more tasks). With reference to �gure 1, suppose weneed to increase the processing time of the machine2task of job1. A simple dependency analysis discov-ers that the a�ected tasks are those that occur laterin the schedule on machine 2 (as well as the changedtask itself), as well as the machine 4, 5 and 6 tasksof job 1. Recursively, other a�ected tasks are foundfor each of the initially a�ected tasks until the com-plete set of a�ected tasks is found. Along with valuesfrom the previous schedule which contain new avail-able start times for each machine, this set of a�ectedtasks constitutes a reduced JSSP which can be solvedby the GA much more quickly than fully reschedulingfrom scratch. A similar dependency analysis and re-duced JSSP formulation is done for the case in whicha task's earliest possible start time is shifted.This method does not guarantee an optimal new sched-ule; the GA, of course, never guarantees optimal-ity anyway, but the point is that the retention of a�xed (una�ected) portion of the previous (near) opti-mal schedule might preclude the discovery of an op-timal schedule which might otherwise be possible to�nd by rescheduling from scratch. The strength ofthis rescheduling method, however, lies in its speed.There is thus a tradeo� between the speed in whicha good new schedule can be found via retaining partsof the previous schedule, and the potential advantageof rescheduling from scratch with the (probably low)possibility of evolving a signi�cantly better schedule.Experiments are underway to quantitatively analysethis tradeo�.6 PERFORMANCEENHANCEMENTSOn hard problems like the JSSP, GA researchers rou-tinely need to use either problem-speci�c or problem-type speci�c performance enhancements to improveperformance. These enhancements are interesting be-cause of the light they shed on the dynamics of theGA approach and the aspects of problems which makeit hard or easy for GAs to solve them. For ex-ample, Nakano's representation is highly redundant(with 2mj(j�1)=2 genomes representing approximatelyj!m distinct schedules) and so leads to the possibilityof false competition among genotypes, in which dif-ferent representations of the same schedule competeagainst one another, possibly to yield inferior descen-dants which combine aspects of their parents' repre-sentations which do not translate into good buildingblocks. There is, in fact, very little chance (but see be-low) of two representations of the same schedule com-



peting in early generations | although there may bea huge number of possible representations of the sameschedule, this number is entirely swamped by the num-ber of distinct schedules. However, false competitionwill still be manifest with di�erent representations ofthe same building block or, to be more correct, thesame forma. A forma (Radcli�e 1990) can be viewedas any dimension along which two genomes are equiv-alent. False competition will then be relevant if theschemata in the representation do not directly coin-cide with the formae which (intuitively) represent theimportant building blocks; this is typically the case insophisticated GA applications. Eg; in our case, theforma: \schedules in which the machine2 task of job1 is scheduled before the machine2 task of job 2" maywell be a good building block (ie: have high average�tness), but, since it does not correspond to a partic-ular schema, two schedules which are instances of thisforma may well recombine to produce children whichare not.Nakano partially combats false competition with forc-ing, in which he replaces illegal genotypes in the poolwith their `nearest' legal matches. This forces a one-to-one genotype/schedule mapping in a gene pool,eliminating false competition in the selection step (al-though still typically resulting in illegal schedules af-ter crossover). Nakano hence uses a highly redundantrepresentation with a complex evaluation technique forthe basic GA, and then signi�cantly improves perfor-mance by using forcing to reduce false competition.Our approach does not require forcing, since the rep-resentation always encodes legal schedules, but thereis high redundancy (though less high than Nakano's),and we similarly need a way of countering false com-petition.Our choice of representation is highly context sensi-tive, and leads to front parts of the genotype convergemore quickly than later parts. This seems to happenbecause schemata de�ned early in the genome corre-spond more precisely to good formae; that is: a schemasuch as 1,2,2,2,..., always corresponds to the forma\�rst schedule the �rst task of job1, and then the �rsttask of job2". If it so happens that this forma hashigh �tness, then this schema will have high �tness.However, schemata de�ned later in the genotype, suchas 2,2,2,2,2,2,2,2,3, are likely to represent radicallydi�erent formae in di�erent genomes (contexts) | thesampled mean �tness of such a schema will thus tendtowards the mean �tness of the population as a whole.Hence, high-�tness schemata will only be found earlyin the genome, and these will converge �rst (providinga `context' which then leads to high �tness schematabeing found a little later in the genome, and so on).False competition thus leads to di�ering convergencerates for schemata across the genotype. This e�ect ac-tually rises quite sharply towards the tail of the geno-type owing to the fact that as the context becomes set

by convergence in the rest of the genome, the j allelesof any tail-end gene are `competing' for, and thus mul-tiply representing, fewer and fewer unscheduled tasks.
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Figure 4: Plot of variance of chunks of the genomewith time, and with genome position, on the 10 � 10JSSP.We can visualise the overall e�ect of this in �gure 4, inwhich we can clearly see gradually decreasing conver-gence speed as we traverse the chromosome from leftto right. This �gure shows a plot of the variance ofeach chunk of the genotype within the pool (size 500)with its position in the genotype, and with generationas the GA operates, for 300 generations of a run on the10�10 benchmark JSSP. As �gure 4 shows, gene con-vergence rates fall fairly smoothly as a function of po-sition in the genotype. This kind of behaviour shouldbe typical of GA problems where the representation,for whatever reason, is such that there is a variation in`signi�cance' across the genotype. In the JSSP case,in which large scale problems not only cost signi�cantcomputational time, but in which the solutions pro-duced might signi�cantly a�ect pro�ts and/or prod-uct quality, we should be able to exploit this e�ectby using it to inform ways of increasing overall con-vergence speed and/or solution quality. In section 7,we describe a gene-variance based operator targetingstrategy, which is a principled �rst attempt at doingjust this, by making sure that genetic operators areconcentrated where and when they seem to be most`needed'. This initial attempt has led to signi�cantimprovement in solution quality.7 GENE-VARIANCE BASEDOPERATOR TARGETINGThe situation in �gure 4 suggests a strategy to im-prove solution quality. First, the faster stabilisationof early parts of the genome suggest premature con-vergence. This is because the fast converging earlyschemata may not have been adequately tested in thecontext of good formae that may be (partly) encodedlater in the genome. Increasing mutation rates at fast



converging sites may thus improve performance; also,this measure should obviate `wasted' mutation in later,slow-converging parts of the schedule which are still inrelatively early stages of exploration. Second, we canexpect crossover at early, more stable positions to haveminimal e�ect on sampling adequacy, since this leadsonly to re-examining schemata over and over again insimilar contexts. So, encouraging crossover more atlater, less stable positions should lead to more e�ec-tive exploitation. On the whole, it would seem a goodidea to increase the extent to which schemata are e�ec-tively sampled in new contexts, in proportion to thedegree to which the GA seems `unsure' about them.Conversely, it would seem a good idea to increase theextent to which new schemata are explored (via muta-tion) , in proportion to the extent to which schematade�ned at the same positions have already been (per-haps prematurely) converged to.A way of implementing these e�ects is what we termgene-variance based operator targeting (gvot). Thisworks by measuring the diversity of genes at each po-sition of the genotype in a pool (in our experiments,we do this by sampling statistical variance after ev-ery ten generations), and choosing the actual pointof crossover or mutation via roulette-wheel selectionbased on these variances. Sites for N-point uniformcrossover are selected probabilistically but accordingto the square of chunk variance, while order-based mu-tation positions are selected according to the inverseof chunk variance. Hence, high variance sections aremore likely to be chosen for crossover; low variancesections for mutation.This can be seen as a speci�c instance of an idea whichshould be of more general use in GA performance en-hancement on hard problems, particularly where thereis a signi�cant variance in convergence rates at dif-ferent sites in the genotype. In many other kinds ofproblem we can't expect smooth changes in varianceacross the genotype; this would not occur in the JSSP,for instance if (unusually) task processing times wereto grow as a function of advancing position in the jobsequence. However, whenever signi�cant variation inconvergence rate does occur (smooth or not), the gvotstrategy, targeting operators solely on the basis of dy-namically sampled variance, should work just as well.This performance enhancement method complementsthose discussed in, for example, (Booker 1987) and(Eshelman & Scha�er 1991), which present ways ofimproving performance by, eg, encouraging recombi-nation between adequately `di�erent' genomes (incestprevention), and avoiding wasted crossover operationsby only recombining the `reduced surrogate' of twoparents (the smaller genome made up of those sitesat which the parents are di�erent). There are com-plex interactions between such methods and gvot.Roughly speaking, gvot slows down convergence ofotherwise fast-converging schemata in order to wait

for other schemata to catch up, while encouraging vig-orous recombination to more e�ectively test the lat-ter; incest prevention in conjunction with reduced-surrogate recombination, on the other hand, will par-tially reproduce this e�ect to the extent that less con-verged schemata will be more likely to be presentin the reduced surrogates of parents which are farenough apart to sanction recombination. The lattermethod, however, does not `slow down' fast-convergingschemata (which gvot does via targeting mutation atfast-converging sites). We intend extensive experimen-tation to tease out the relative e�ectiveness of thesemethods in conjunction with, and other than, gvoton problems with highly context sensitive genome rep-resentations. Our feeling is that gvot, owing to thedirect selective targeting of operators according to con-vergence rates, will be more and more e�ective themore varied the schemata convergence rates are in theapplication.gvot is less e�ective (though still produces better re-sults), for example, with the representations we discussabove for the OSSP. This is because the plot anal-ogous to �gure 4 for the OSSP is rather more at;because of much higher epistasis in the OSSP case(low-variance highly �t schemata only begin to occurat relatively long de�ning lengths), schemata sampledin earlier generations have a less signi�cant advantageover others than in the JSSP case, and hence there isreduced variation in convergence rates.8 RESULTSThe JSSP results below all involve population sizes of500, using rank-based selection with elitism and a �xedcrossover rate, running for 300 generations (unless oth-erwise speci�ed), hence involving 150,000 evaluations.The comparative �gures for Nakano involve the samenumber of evaluations, though based on 1,000 gener-ations with populations of size 150. The raw �tnessof a chromosome was taken to be the makespan ofthe schedule it represents. The OSSP results similarlyinvolve rank-based selection with elitism but use adap-tive crossover and runs of 1,000 generations. The twosmaller OSSPs were tackled with populations of size100, while the rest were tackled with populations ofsize 200. We found that results did not vary signif-icantly across changes in crossover rate and adapta-tion regime. The reported JSSP experiments used acrossover rate of 0.6 and adaptive mutation (startingat 0, rising by 0.001 per generation), while the OSSPexperiments use adaptive crossover (starting with pCat 0.6, falling by 0.002 per generation, with a limitof 0.2) and adaptive mutation at 1 � pC. Typically,order-based mutation (swap alleles between two ran-domly chosen genes) was used. For the OSSP, the mu-tation rate was the probability of mutating a genome;so, for example, where pM (ie: 1 � pC) was 0.6, thisroughly translates to a bit-mutation rate of, for ex-



ample, 0.012 for the 10�10 OSSP (divide by half thegenome length).gvot involves calculating a measure of the diversity ofalleles of a gene (or chunk of genes) within a popula-tion. We are still experimenting to �nd the most suit-able measure of this diversity. Both JSSP-with-gvotand OSSP-with-gvot results use statistical varianceof the numerical value of the alleles as a simple ap-proximation to this measure; we are also investigat-ing the use of allele entropy as a more well-foundedinformation-theoretic measure of the diversity of alle-les. In addition, we are experimenting with di�erentways of using the diversity measure to target opera-tors. For the JSSP with gvot, the method we usedwas roulette-wheel selection of crossover points basedon variance (mutation sites based on inverse variance).For the OSSP with gvot, we employed what we termmultiform crossover, in which the probability of swap-ping genes between parents at a particular site is ad-justed (from the normal 0.5, for uniform crossover) inaccordance with the relative variance at that site.Our main results are that we have been able to �ndbetter solutions on benchmark JSSPs than previousGA-based methods and have thus closed the gap some-what between GA-based approaches and the best so-lutions so far found with branch & bound search.In the two following tables, `average' �gures refer tothe mean result over 10 trials; these are not avail-able for Nakano's technique. Also, Nakano's `without-forcing' result on the 10� 10 benchmark is read froma graph in (Nakano 1991), hence our estimated errormargin.Table 4 summarises our results without gene-variancebased operator targeting (gvot), compared withNakano's results (where available) without forcing,showing how, the representation we describe leads tobetter results when false competition is highly evidentin both approaches3. 10� 10 20� 5Average sol'n withoutGVOT (Fang et al) 985 1225Best sol'n withoutGVOT (Fang et al) 960 1213Best sol'n withoutforcing (Nakano 91) 1160(�10) |Table 4: Our approach vs. Nakano's, without GVOTWith performance-enhancements in place, our resultsusing gvot are compared with Nakano's results usingforcing in table 5. It can also be noted that our best3It is di�cult for us to quantitatively compare ourwith approaches other than Nakano's since we have notyet found other reported GA approaches which use thebenchmarks.

solutions without GVOT are marginally better thanNakano's with forcing. 10� 10 20� 5Average sol'n withGVOT (Fang et al) 977 1215Best sol'n withGVOT (Fang et al) 949 1189Best sol'n withforcing (Nakano 91) 965 1215Table 5: Our approach vs. Nakano's, with GVOTAlthough improvement in solution quality is modestas a percentage (though signi�cant considering thatthese solutions may be very close to optimal any-way), the real advantage of our technique over pre-vious GA methods is the combination of its appar-ent promise and the straightforwardness of applying it(arising from the absence of any need to repair invalidgenomes). We also feel that it signi�cantly improveson other techniques in terms of computational com-plexity, though unfortunately we cannot yet providemore quantitative results with regard to comparativespeed because of a lack of available �gures for com-parison; however we can report that experiments onthe 10 � 10 JSSP take less than 25 minutes of CPUtime and the 20 � 5 JSSP less than 30 minutes, withour experiments implemented in C and run on a Sun-4(without using gvot, CPU time drops by about 30%).We also experimented with one-point vs uniformcrossover, and adaptive vs �xed order-based mutationrates. The graphs in 5 show our results on the 10� 10and 20�5 JSSP benchmarks, comparing di�erent GAvariants. Fixed-1P employs a �xed mutation rate perchromosome of 0.05 and one-point crossover; one-pointemploys a mutation rate per chromosome which beginsat 0 and increases by 0.001 in each generation (stop-ping at 0.1); uniform employs the same adaptive muta-tion strategy as one-point and uses uniform crossover;�nally, GVOT is as uniform, except for the use of N-point uniform crossover (where N is half the genomelength) with gvot.Initial experiments with a (pseudo-)parallel GA withmigration every 20 generations show improved averagesolution quality, as do experiments with larger popu-lation sizes (though obviously at the expense of time);but more work is needed properly to investigate andquantify these aspects.Our initial results for a set of benchmark open shopscheduling problems are shown in table 6. Resultsfor the two smaller problems were obtained with the`break-ties-randomly' heuristic, while the results forthe larger problems were obtained with the `largest-
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    GVOTFigure 5: Relative performance of di�erent variants onthe 10� 10 and 20� 5 JSSP benchmarks�rst' heuristic. For the two smaller problems and twolarger problems, `Best Known' is the optimal solution;for the rest, it is the best known solution. All OSSPexperiments involved use of gvot, which produced re-liably better results than without gvot, though lessmarkedly so than with the JSSP.OSS Problem Best Known Results: mean/best4 � 4 193 193 / 1935 � 5 300 302.2 / 3007 � 7 438 447.1 / 43910 � 10 645 679.5 / 66915 � 15 937 980.0 / 96920 � 20 1155 1235.1 / 1213Table 6: Results on benchmark OSSPsThe JSSP benchmark problems used in this paper canbe obtained from (Muth & Thompson 1963). TheOSSP problems referred to in table 6 can be obtainedvia (Beasley 1990). The OR library referred to in thelatter article is an electronic library from which maybe obtained benchmarks for a wide range of OR prob-lems. These are distributed in the form of Pascal codewhich generates the problems. Researchers wishing tocompare with our results will need to know that theproblems referred to in table 6 are each the problemNo. 1 of their speci�ed size. Alternatively, problemdata may be obtained directly from us.9 CONCLUSIONS AND FURTHERWORKWe present a promising new representation for GAapproaches to the JSSP, and described novel tech-niques for analysing the GA dynamics in terms of thevariation in gene variance across the genotype, andtargeting operator positions according to dynamicallysampled measures of gene convergence rates. Our ap-proach improves on the results obtained fromother GAmethods we know of, and brings us closer to closingthe gap in solution quality between the best solutions

found by branch & bound search and those found byGA approaches so far.The approach also conveniently handles reschedulingin the job-shop problem, and seems promising for ap-plication to the open shop scheduling problem. Moretests are needed, however, before we can report a thor-ough comparison of our method against other tech-niques, and before we can determine the e�cacy of ourmethod when applied to real-world problems (bench-mark problems are unrepresentative of the true di�-culty of the general JSSP; the same might also be trueof most real-life JSSPs!). In this vein, further work isunder way to more thoroughly test the performance ofour technique on the benchmarks, and on a set of realworld JSSPs which we are planning to collate.Finally, we hope to have shown further promise forGA-based approaches to job-shop problems, and hopeand expect that further improvements will be reported(by us and others) via the use of various problem-speci�c heuristic improvements, as well as via ap-proaches based on di�erent genome representations.For example (Grefenstette 1987) discusses the generalidea of incorporating problem-speci�c knowledge intovarious parts of the GA, while (Beasley et al 1993),describes a GA approach to combinatorial problemsbased on an epistasis reducing representation, whichmay be of use for the JSSP.AcknowledgmentsWe gratefully acknowledge the constructive criticismand comment received from three anonymous referees,from which this paper has bene�ted, and we hope thatwe have satisfactorily accommodated their concernsand suggestions. Many thanks also to the China SteelCorporation, Taiwan, R.O.C., for �nancial support ofHsiao-Lan Fang.ReferencesS. Bagchi, S. Uckun, Y. Miyabe, & K. Kawamura(1991). Exploring problem-speci�c recombination op-erators for job shop. In R.K. Belew & L.B. Booker(eds) Proceedings of the Fourth International Confer-ence on Genetic Algorithms, pages 10{17. San Mateo:Morgan Kaufmann, 1991.D. Beasley, D. R. Bull, & R. R. Martin (1993). Reduc-ing Epistasis in Combinatorial Problems by ExpansiveCoding. In S. Forrest (ed), Genetic Algorithms; Pro-ceedings of the Fifth International Conference (GA93),Morgan Kaufmann, San Mateo, CA.J. E. Beasley (1990). OR-Library: Distributing testproblems by electronic mail. In Journal of the Opera-tional Research Society, Vol 41, pp. 1069{1072.L. Booker (1987). Improving Search in Genetic Al-gorithms. In L. Davis (ed) Genetic Algorithms and
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