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Abstract. Every variable-free logic program induces a PfPf -coalgebra
on the set of atomic formulae in the program. The coalgebra p sends
an atomic formula A to the set of the sets of atomic formulae in the
antecedent of each clause for which A is the head. In an earlier paper,
we identified a variable-free logic program with a PfPf -coalgebra on Set
and showed that, if C(PfPf ) is the cofree comonad on PfPf , then given
a logic program P qua PfPf -coalgebra, the corresponding C(PfPf )-
coalgebra structure describes the parallel and-or derivation trees of P .
In this paper, we extend that analysis to arbitrary logic programs. That
requires a subtle analysis of lax natural transformations between Poset-
valued functors on a Lawvere theory, of locally ordered endofunctors and
comonads on locally ordered categories, and of coalgebras, oplax maps of
coalgebras, and the relationships between such for locally ordered endo-
functors and the cofree comonads on them.
Key words: Logic programming, SLD-resolution, Coalgebra, Lawvere
theories, Lax natural transformations, Oplax maps of coalgebras.

1 Introduction

In the standard formulations of logic programming, such as in Lloyd’s book [18],
a first-order logic program P consists of a finite set of clauses of the form

A← A1, . . . , An

where A and the Ai’s are atomic formulae, typically containing free variables,
and where A1, . . . , An is understood to mean the conjunction of the Ai’s: note
that n may be 0.

SLD-resolution, which is a central algorithm for logic programming, takes a
goal G, typically written as

← B1, . . . , Bn

where the list of Bi’s is again understood to mean a conjunction of atomic formu-
lae, typically containing free variables, and constructs a proof for an instantia-
tion of G from substitution instances of the clauses in P [18]. The algorithm uses
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Horn-clause logic, with variable substitution determined universally to make the
first atom in G agree with the head of a clause in P , then proceeding inductively.

A running example of a logic program in this paper is as follows.

Example 1. Let ListNat denote the logic program

nat(0)←
nat(s(x))← nat(x)

list(nil)←
list(cons x y)← nat(x), list(y)

The program involves variables x and y, function symbols 0, s, nil and cons,
and predicate symbols nat and list, with the choice of notation designed to
make the intended meaning of the program clear.

Logic programs resemble, and indeed induce, transition systems or rewrite
systems, hence coalgebras. That fact has been used to study their operational
semantics, e.g., [4, 6]. In [15], we developed the idea for variable-free logic pro-
grams. Given a set of atoms At, and a variable-free logic program P built over
At, one can construct a PfPf -coalgebra structure on At, where Pf is the finite
powerset functor: each atom is the head of finitely many clauses in P , and the
body of each of those clauses contains finitely many atoms. Our main result was
that if C(PfPf ) is the cofree comonad on PfPf , then, given a logic program
P qua PfPf -coalgebra, the corresponding C(PfPf )-coalgebra structure charac-
terises the parallel and-or derivation trees of P : see Section 2 for a definition and
for more detail.

Modulo a concern about recursion, which can be addressed by extending from
finiteness to countability, one can construct a variable-free logic program from
an arbitrary logic program by taking all ground instances of all clauses in the
original logic program. The resulting variable-free logic program is of equivalent
power to the original one, but one has factored out all the analysis of substitution
that appears in SLD-resolution. So, in order to model the substitution in the
SLD-resolution algorithm, in this paper, we extend our coalgebraic analysis of
logic programming from variable-free logic programs to arbitrary logic programs.
In particular, we study the relationship between coalgebras for an extension of
PfPf and the coalgebras for the comonad induced by it.

There have been several category theoretic models of logic programs and
computations, and several of them have involved the characterisation of the
first-order language underlying a logic program as a Lawvere theory, e.g., [2,
4, 5, 14], and that of most general unifiers (mgu’s) as equalisers, e.g., [3] or as
pullbacks, e.g., [5, 2]. We duly adopt those ideas here, see Section 3.

Given a signature Σ of function symbols, let LΣ denote the Lawvere theory
generated by Σ. Given a logic program P with function symbols in Σ, we would
like to consider the functor category [LopΣ , Set], extending the set At of atoms in
a variable-free logic program to the functor from LopΣ to Set sending a natural



number n to the set At(n) of atomic formulae with at most n variables generated
by the predicate symbols in P . One can extend any endofunctor H on Set to the
endofunctor [LopΣ , H] on [LopΣ , Set] that sends F : LopΣ → Set to the composite
HF . So we would then like to model P by the putative [LopΣ , PfPf ]-coalgebra
p : At −→ PfPfAt that, at n, takes an atomic formula A(x1, . . . , xn) with at
most n variables, considers all substitutions of clauses in P whose head agrees
with A(x1, . . . , xn), and gives the set of sets of atomic formulae in antecedents,
mimicking the construction for variable-free logic programs. Unfortunately, that
does not work.

Consider the logic program ListNat of Example 1. There is a map in LΣ of
the form 0→ 1 that models the nullary function symbol 0. So, naturality of the
map p : At −→ PfPfAt in [LopΣ , Set] would yield commutativity of the diagram

At(1)

At(0)

PfPfAt(1)

PfPfAt(0)

There being no clause of the form nat(x) ← in ListNat, commutativity of the
diagram would in turn imply that there cannot be a clause in ListNat of the
form nat(0)← either, but in fact there is one!

In order to model examples such as ListNat, we need to relax the naturality
condition on p: if naturality could be relaxed to a subset condition, so that, in
general,

At(m)

At(n)

≥

PfPfAt(m)

PfPfAt(n)

need not commute, but rather the composite via PfPfAt(m) need only yield a
subset of that via At(n), it would be possible for p1(nat(x)) to be the empty set
while p0(nat(0)) is non-empty in the ListNat example above.

In order to express such a lax naturality condition, we need to extend
Set to Poset and we need to extend Pf from Set to Poset. The category
Lax(LopΣ , Poset) of strict functors and lax natural transformations is not com-
plete, so the usual construction of a cofree comonad on an endofunctor no longer
works directly. On the other hand, Poset is finitely cocomplete as a locally or-
dered category, so we can adopt the subtle work of [13] on categories of lax
natural transformations, which is what we do: see Section 4.

A mild problem arises in regard to the finiteness of the outer occurrence of Pf
in PfPf . The problem is that substitution can generate infinitely many instances



of clauses with the same head. For instance, suppose one extends ListNat with
a clause of the form A ← nat(x) with no occurrences of x in A. Substitution
yields the clause A ← nat(sn(0)), for every natural number n, giving rise to a
countable set of clauses with head A. We need to allow for possibilities such as
this as the infiniteness arises even from a finite signature. So we extend from
PfPf to PcPf , where Pc extends the countable powerset functor.

Those are the key technical difficulties that we address in the paper. Note
that, in contrast to [15], we do not model the ordering of subgoals and repeti-
tions. These have been modelled in relevant literature, notably in Corradini and
Montanari’s landmark papers [7, 8], but we defer making precise the relationship
with the ideas herein.

We end the paper by making a natural construction of a locally ordered end-
ofunctor to extend PcPf in Section 5, checking how coalgebra models our leading
example, and comparing the trees we obtain with parallel and-or derivation trees.

2 Parallel and-or derivation trees and coalgebra

In this section, we briefly recall from [15] the definition of the parallel and-or
derivation trees generated by an arbitrary logic program, and how, in the case of
variable-free logic programs, they can be seen in terms of coalgebraic structure.

Key motivating texts for the definition of parallel and-or derivation tree
are [9] and [12], as explained in [15]. We freely use the usual logic program-
ming conventions for substitution and most general unifiers, see Section 3.

Definition 1. Let P be a logic program and let ← A be an atomic goal (possibly
with variables). The parallel and-or derivation tree for A is the possibly infinite
tree T satisfying the following properties.

– A is the root of T .
– Each node in T is either an and-node or an or-node.
– Each or-node is given by •.
– Each and-node is an atom.
– For every node A′ occurring in T , if A′ is unifiable with only one clause
B ← B1, . . . , Bn in P with mgu θ, then A′ has n children given by and-
nodes B1θ, . . . Bnθ.

– For every node A′ occurring in T , if A′ is unifiable with exactly m > 1
distinct clauses C1, . . . , Cm in P via mgu’s θ1, . . . , θm, then A′ has ex-
actly m children given by or-nodes, such that, for every i ∈ m, if Ci =
Bi ← Bi1, . . . , B

i
ni

, then the ith or-node has ni children given by and-nodes
Bi1θi, . . . , B

i
ni
θi.

We now recall the coalgebraic development of [15].

Proposition 1. For any set At, there is a bijection between the set of variable-
free logic programs over the set of atoms At and the set of PfPf -coalgebra struc-
tures on At, where Pf is the finite powerset functor on Set.



Proposition 2. Let C(PfPf ) denote the cofree comonad on PfPf . Then, for
p : At −→ PfPf (At), the corresponding C(PfPf )-coalgebra is given as follows:
C(PfPf )(At) is a limit of a diagram of the form

. . . −→ At× PfPf (At× PfPf (At)) −→ At× PfPf (At) −→ At.

Put At0 = At and Atn+1 = At× PfPfAtn, and define the cone

p0 = id : At −→ At(= At0)

pn+1 = 〈id, PfPf (pn) ◦ p〉 : At −→ At× PfPfAtn(= Atn+1)

Then the limiting property determines the coalgebra p : At −→ C(PfPf )(At).

In [15], we gave a general account of the relationship between a variable-free
logic program qua PfPf -coalgebra and the parallel and-or derivation trees it
generates. Here we recall a representative example.

Example 2. Consider the variable-free logic program:

q(b,a)←
s(a,b)←
p(a)← q(b,a), s(a,b)

q(b,a)← s(a,b)

The program has three atoms, namely q(b,a), s(a,b) and p(a). So At =
{q(b,a), s(a,b), p(a)}. The program can be identified with the PfPf -coalgebra
structure on At given by
p(q(b,a)) = {{}, {s(a,b)}}, where {} is the empty set.
p(s(a,b)) = {{}}, i.e., the one element set consisting of the empty set.
p(p(a)) = {{q(b,a),s(a,b)}}.

Consider the C(PfPf )-coalgebra corresponding to p. It sends p(a) to the
parallel refutation of p(a) depicted on the left side of Figure 1. Note that the
nodes of the tree alternate between those labelled by atoms and those labelled
by bullets (•). The set of children of each bullet represents a goal, made up of
the conjunction of the atoms in the labels. An atom with multiple children is
the head of multiple clauses in the program: its children represent these clauses.
We use the traditional notation 2 to denote {}.

Where an atom has a single •-child, we can elide that node without losing
any information; the result of applying this transformation to our example is
shown on the right in Figure 1. The resulting tree is precisely the parallel and-or
derivation tree for the atomic goal ← p(a) as in Definition 1. So the two trees
express equivalent information.

In the first-order case, direct use of Definition 2 yields inconsistent deriva-
tions, as explained e.g. in [12]. So composition (and-or parallel) trees were intro-
duced [12]. Construction of composition trees involves additional algorithms that



← p(a)

q(b, a)

s(a, b)

2

2

s(a, b)

2

← p(a)

q(b, a)

s(a, b)

2

2

s(a, b)

2

Fig. 1. The action of p : At −→ C(PfPf )(At) on p(a), and the corresponding parallel
and-or derivation tree.

synchronise branches created by or-nodes. Composition trees contain a special
kind of composition node used whenever both and- and or-parallel computations
are possible for one goal. Every composition node is a list of atoms in the goal.
If, in a goal G = ← B1, . . . Bn, an atom Bi is unifiable with k > 1 clauses, then
the algorithm adds k children (k composition nodes) to the node G; similarly for
every atom in G that is unifiable with more than one clause. Every such compo-
sition node has the form B1, . . . Bn, and n and-parallel edges. Thus, all possible
combinations of all possible or-choices at every and-parallel step are given. In
this paper, we do not study composition trees directly but rather suggest an
alternative.

3 Using Lawvere theories to model first-order signatures
and substitution

In this section, we start to move towards using coalgebra to model arbitrary
logic programs by recalling the relationship between first-order signatures and
Lawvere theories, in particular how the former give rise to the latter. Then we
recall how to use that to model most general unifiers as equalisers.

A signature Σ consists of a set of function symbols f, g, . . . each equipped with
a fixed arity given by a natural number indicating the number of arguments it
is supposed to have. Nullary (0-ary) function symbols are allowed and are called
constants. Given a countably infinite set Var of variables, the set Ter(Σ) of
terms over Σ is defined inductively:

– x ∈ Ter(Σ) for every x ∈ Var .
– If f is an n-ary function symbol (n ≥ 0) and t1, . . . , tn ∈ Ter(Σ), then
f(t1, . . . , tn) ∈ Ter(Σ).



Definition 2. Given a signature Σ and a category C with strictly associative
finite products, an interpretation of Σ in C is an object X of C, together with,
for each function symbol f of arity n, a map in C from Xn to X.

Proposition 3. Given a signature Σ, there exists a category LΣ with strictly
associative finite products and an interpretation ‖ ‖Σ of Σ in LΣ, such that for
any category C with strictly associative finite products, and interpretation γ of
Σ in C, there exists a unique functor g : LΣ → C that strictly preserves finite
products, such that g composed with ‖ ‖Σ gives γ, as in the following diagram:

LΣ
g

Σ

‖ ‖Σ

C

γ

Proof. Define the set ob(LΣ) to be the set of natural numbers.
For each natural number n, let x1, . . . , xn be a specified list of distinct vari-

ables. Define ob(LΣ)(n,m) to be the set of m-tuples (t1, . . . , tm) of terms gener-
ated by the function symbols in Σ and variables x1, . . . , xn. Define composition
in LΣ by substitution. The interpretation ‖ ‖Σ sends an n-ary function symbol
f to f(x1, . . . , xn).

One can readily check that these constructions satisfy the axioms for a cate-
gory and for an interpretation, with LΣ having strictly associative finite products
given by the sum of natural numbers. The terminal object of LΣ is the natural
number 0. The universal property follows directly from the construction.

Definition 3. Given a signature Σ, the category LΣ determined by Proposi-
tion 3 is called the Lawvere theory generated by Σ [17].

One can describe LΣ without the need for a specified list of variables for each
n: in a term t, a variable context is always implicit, i.e., x1, . . . , xm ` t, and the
variable context is considered as a binder.

In contrast to the usual practice in category theory, sorting is not modelled by
using a sorted finite product theory but rather by modelling predicates for sorts
such as nat or list using the structure of the category [LΣ , Set] or, more subtly,
of Lax(LΣ , Poset), as illustrated below: Lloyd’s book [18] gives a representataive
account of logic programming, and although category theorists may disapprove,
it is not sorted.

Example 3. Consider ListNat. It is naturally two-sorted, with one sort for nat-
ural numbers and one for lists. Traditionally, category theory would not use
Proposition 3 but rather a two-sorted version of it: see [16]. But ListNat is a
legitimate untyped logic program and is representative of such.

The constants O and nil are modelled by maps from 0 to 1 in LΣ , s is
modelled by a map from 1 to 1, and cons is modelled by a map from 2 to 1. The



term s(0) is therefore modelled by the map from 0 to 1 given by the composite
of the maps modelling s and 0; similarly for the term s(nil), although the latter
does not make semantic sense.

A key construct in standard accounts of SLD-resolution such as [18] is that
of a most general unifier, which we now recall. It is typically expressed using
distinctive notation for substitution. Note that the coalgebraic approach does
not require us to model substitution by most general unifiers; it does not even
require us to take syntax over Lawvere theories, as we may take it over more
general categories: note the generality of Section 4 and see [14].

Definition 4. A substitution is a function θ from Var to Ter(Σ) that is the
identity on all but finitely many variables. Each substitution canonically gener-
ates a function from Ter(Σ) to itself defined inductively by the following:

θ(f(t1, . . . , tn)) ≡ f(θ(t1), . . . , θ(tn))

Following the usual convention in logic programming, we denote θ(t) by tθ[18].

Definition 5. Let S be a finite set of terms. A substitution θ is called a unifier
for S if, for any pair of terms t1 and t2 in S, applying the substitution θ yields
t1θ = t2θ. A unifier θ for S is called a most general unifier (mgu) for S if, for
each unifier σ of S, there exists a substitution γ such that σ = θγ.

The structure of LΣ allows us to characterise most general unifiers in terms
of equalisers as follows, cf [21], where they are modelled by coequalisers in the
Kleisli category for a the monad TΣ on Set induced by LΣ .

Proposition 4. Given a signature Σ, for any pair of terms (s,t) with variables
among x1, . . . , xn, a most general unifier of s and t exists if and only if an
equaliser of s and t qua maps in LΣ exists, in which case the most general
unifier is given by the equaliser.

Example 4. A most general unifier of the terms cons(x,nil) and cons(s(O),y)

of Example 3 exists and is given by the substitution σ : {s(0)/x, nil/y}.

4 Coalgebra on categories of lax maps

Assume we have a signature Σ of function symbols and, for each natural num-
ber n, a specified list of variables x1, . . . , xn. Then, given an arbitrary logic
program with signature Σ, we can extend our study of the set At of atoms for
a variable-free logic program in [15] by considering the functor At : LopΣ → Set
that sends a natural number n to the set of all atomic formulae with variables
among x1, . . . , xn generated by the function symbols in Σ and the predicate
symbols appearing in the logic program. A map f : n→ m in LΣ is sent to the
function At(f) : At(m)→ At(n) that sends an atomic formula A(x1, . . . , xm) to
A(f1(x1, . . . , xn)/x1, . . . , fm(x1, . . . , xn)/xm), i.e., At(f) is defined by substitu-
tion.



As explained in the Introduction, we cannot model a logic program by a
natural transformation of the form p : At −→ PfPfAt as naturality breaks down
even in simple examples such as ListNat. We need lax naturality. In order even
to define it, we first need to extend At : LopΣ → Set to have codomain Poset.
That is routine, given by composing At with the inclusion of Set into Poset.
Mildly overloading notation, we denote the composite by At : LopΣ → Poset,
noting that it is trivially locally ordered.

Definition 6. Given locally ordered functors H,K : D −→ C, a lax natural
transformation from H to K is the assignment to each object d of D, of a
map αd : Hd −→ Kd such that for each map f : d −→ d′ in D, one has
(Kf)(αd) ≤ (αd′)(Hf).

Locally ordered functors and lax natural transformations, with pointwise com-
position and pointwise ordering, form a locally ordered category we denote by
Lax(D,C).

As explained in the Introduction, we need to extend the endofunctor PcPf on
Set rather than extending PfPf as, even with finitely many function symbols,
substitution could give rise to countably many clauses with the same head. So we
need to extend PcPf from an endofunctor on Set to a locally ordered endofunctor
on Lax(LopΣ , Poset). A natural way to do that, while retaining the role of PcPf ,
is first to extend PcPf to a locally ordered endofunctor E on Poset, then to
consider the locally ordered endofunctor Lax(LopΣ , E) on Lax(LopΣ , Poset) that
sends H : LopΣ → Poset to the composite EH.

We shall return to the question of extending to PcPf to Poset, but what
about the cofree comonad C(PcPf ) on PcPf?

The locally ordered category Lax(LopΣ , Poset) is neither complete nor cocom-
plete, so it does not follow from the usual general theory that a cofree comonad
on a locally ordered endofunctor on it need exist at all, let alone be given by
a limiting construct resembling that of Proposition 2. Moreover, the laxness in
Lax(LopΣ , Poset) makes the category of coalgebras for an endofunctor on it prob-
lematic, as the strictness in the definition of map of coalgebras does not cohere
well with the laxness in the definition of map in Lax(LopΣ , Poset).

Using techniques developed by Kelly in Section 3.3 of [13], we can nego-
tiate these obstacles. Rather than directly considering a cofree comonad on
Lax(LopΣ , E), we can extend the comonad C(PcPf ) from Set to Lax(LopΣ , Poset),
mimicking our extension of PcPf . We can then use a variant of the fact that, if
it exists, a cofree comonad C(H) on an arbitrary endofunctor H is characterised
by a canonical isomorphism of categories

H-coalg ' C(H)-Coalg

where −coalg stands for functor coalgebras while −Coalg is for Eilenberg-Moore
coalgebras. Although the categories of coalgebras and strict maps are problem-
atic in the lax setting, categories of coalgebras and oplax maps do respect the
laxness of Lax(LopΣ , Poset), allowing a suitable variant. The details are as follows.



Proposition 5. Given a locally ordered comonad G on a locally ordered category
C, the data given by Lax(D,G) : Lax(D,C)→ Lax(D,C) and pointwise liftings
of the structural natural transformations of G yield a locally ordered comonad
we also denote by Lax(D,G) on Lax(D,C).

The proof of Proposition 5 is not entirely trivial as it involves a mixture of
the strict structure in the definition of comonad with the lax structure in the
definition of Lax(D,C). Nevertheless, with attention to detail, a proof is routine,
and it means that, once we have extended the comonad C(PcPf ) to Poset, we
can further extend it axiomatically to Lax(LopΣ , Poset).

Let E be an arbitrary locally ordered endofunctor on an arbitrary locally
ordered category C. Denote by E-coalgoplax the locally ordered category whose
objects are E-coalgebras and whose maps are oplax maps of E-coalgebras, mean-
ing that, in the square

X

EX

≤

Y

EY

the composite via EX is less than or equal to the composite via Y , with the
evident composition and locally ordered structure. Since C and E are arbitrary,
one can replace C by Lax(D,C) and replace E by Lax(D,E), yielding the
locally ordered category Lax(D,E)-coalgoplax. The following result is also not
immediate, but it again follows from routine checking. It is an instance of a
general phenomenon that allows laxness to commute exactly with oplaxness
but not with any other variant of laxness such as laxness itself or strictness or
pseudoness.

Proposition 6. The locally ordered category Lax(D,E)-coalgoplax is canoni-
cally isomorphic to Lax(D,E-coalgoplax).

Proposition 6 gives us an easy way to make constructions with, and check
claims regarding, Lax(D,E)-coalgebras : it characterises such coalgebras in
terms of locally ordered functors into E-coalgoplax; the latter locally ordered
category, i.e., E-coalgoplax, is simpler to study than Lax(D,E)-coalgoplax as it
only involves one kind of laxness rather than two.

Definition 7. Given a locally ordered comonad G on C, the locally ordered cat-
egory G-Coalgoplax has objects given by (strict) G-coalgebras and maps given by
oplax maps of coalgebras, where maps are defined as in E-coalgoplax.

With care, Proposition 6 can be extended from locally ordered endofunctors
to locally ordered comonads, yielding the following:

Proposition 7. Given a locally ordered comonad G, the locally ordered category
Lax(D,G)-Coalgoplax is canonically isomorphic to Lax(D,G-Coalgoplax).



The analysis of [13], but expressed there in terms of laxness rather than
oplaxness and in terms of monads rather than comonads, yields the following:

Theorem 1. Given a locally ordered endofunctor E on a locally ordered category
with finite colimits C, if C(E) is the cofree comonad on E, then E-coalgoplax is
canonically isomorphic to C(E)-Coalgoplax.

Combining Proposition 6, Proposition 7 and Theorem 1, we can conclude the
following:

Theorem 2. Given a locally ordered endofunctor E on a locally ordered category
with finite colimits C, if C(E) is the cofree comonad on E, then there is a
canonical isomorphism

Lax(D,E)-coalgoplax ' Lax(D,C(E))-Coalgoplax

Corollary 1. For any locally ordered endofunctor E on Poset, if C(E) is the
cofree comonad on E, then there is a canonical isomorphism

Lax(LopΣ , E)-coalgoplax ' Lax(LopΣ , C(E))-Coalgoplax

Corollary 1 provides us with the central axiomatic result we need to extend
our analysis of variable-free logic programs in [15] to arbitrary logic programs.
The bulk of the analysis of this section holds axiomatically, so that seems the
best way in which to explain it although we have only one leading example, that
determined by an extension of PcPf to Poset. In Section 5, we shall investigate
such an extension.

5 Coalgebraic semantics for arbitrary logic programs

The reason we need to extend PcPf from Set to Poset is to allow for lax natu-
rality, and the reason for that is to take advantage of the partial order structure
of the set Pc(X): we neither need nor want to change the set Pc(X) itself; we
just need to exploit its natural partial order structure given by subset inclusion.
Nor do we want to change the nature of the relationship between a variable-free
logic program P and the associated coalgebra p : At −→ PfPf (At): as best we
can, we simply want to extend that relationship by making it pointwise relative
to the indexing category LopΣ .

In order to give a locally ordered endofunctor on Poset, we need to extend
PcPf from acting on a set X to acting on a partially ordered set P , respecting
the partial order structure. This leads to a natural choice as follows:

Definition 8. Define Pf : Poset −→ Poset by letting Pf (P ) be the partial order
given by the set of finite subsets of P , with A ≤ B if for all a ∈ A, there exists
b ∈ B for which a ≤ b in P , with behaviour on maps given by image. Define Pc
similarly but with countability replacing finiteness.



As Poset is complete and cocomplete, and as PcPf has a rank, a cofree
comonad C(PcPf ) necessarily exists on PcPf . Moreover, it is given by the trans-
finite (just allowing for countability) extension of the construction in Proposi-
tion 2.

By the work of Section 4, the Lax(LopΣ , PcPf )-coalgebra structure, i.e., the
lax natural transformation, p : At −→ PcPfAt associated with an arbitrary
logic program P , evaluated at a natural number n, sends an atomic formula
A(x1, . . . , xn) to the set of sets of antecedents in substitution instances of clauses
in P for which the head of the substituted instance agrees with A(x1, . . . , xn).
Extending Section 2, this can be expressed as a tree of the nature of the left
hand tree in Figure 1, interleaving two kinds of nodes.

Comparing these trees with the definition of parallel and-or derivation tree,
i.e., with Definition 1, these trees are more intrinsic: parallel and-or derivation
trees have most general unifiers built into a single tree, whereas, for each natural
number n, coalgebra yields trees involving at most n free variables, then models
substitution by replacing them by related, extended trees. We shall illustrate
with our leading example.

The two constructs are obviously related, but the coalgebraic one makes fewer
identifications, SLD-resolution being modelled by a list of trees corresponding to
a succession of substitutions rather than by a single tree. We would suggest that
this list of trees may be worth considering as a possible refinement of the notion
of parallel and-or derivation tree, lending itself to a tree-rewriting understanding
of the SLD-algorithm. Providing such an account is a priority for us as future
research.

Example 5. Consider ListNat as in Example 3. Suppose we start with
A(x, y)εAt(2) given by the atomic formula list(cons(x, cons(y, x))). Then
p(A(x, y)) is the element of PcPfAt(2) expressible by the tree on the left hand
side of Figure 2.

This tree agrees with the first part of the parallel and-or derivation tree for
list(cons(x, cons(y, x))) as determined by Definition 1. But the tree here has
leaves nat(x), nat(y) and list(x), whereas the parallel and-or derivation tree
follows those nodes, using substitutions determined by mgu’s. Moreover, those
substitutions need not be consistent with each other: not only are there two ways
to unify each of nat(x), nat(y) and list(x), but also there is no consistent
substitution for x at all.

In contrast, the coalgebraic structure means any substitution, whether de-
termined by an mgu or not, applies to the whole tree. The lax naturality means
a substitution potentially yields two different trees: one given by substitution
into the tree, then pruning to remove redundant branches, the other given by
substitution into the root, then applying p.

For example, suppose we substitute s(z) for both x and y in
list(cons(x, cons(y, x))). This substitution is given by applying At to the map
(s, s) : 1 −→ 2 in LΣ . So At((s, s))(A(x, y)) is an element of At(1). Its image
under p1 : At(1) −→ PcPfAt(1) is the element of PcPfAt(1) expressible by the
tree on the right hand side of Figure 2. The laxness of the naturality of p is indi-



list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z))

nat(s(z))

nat(z)

list(s(z))

Fig. 2. The left hand tree represents p(list(cons(x, cons(y, x)))) and
the right hand tree represents pAt((s, s))(list(cons(x, cons(y, x)))), i.e.,
p(list(cons(s(z), cons(s(z), s(z))))) .

cated by the increased length, in two places, of the second tree when compared
with the first tree. Observe that, before those two places, the two trees have the
same structure: that need not always be exactly the case, as substitution in a
tree could involve pruning if substitution instances of two different atoms yield
the same atom.

Now suppose we make the further substitution of 0 for z. This substitution
is given by applying At to the map 0 : 0 → 1 in LΣ . In Figure 3, we depict
p1At((s, s))(A(x, y)) on the left, repeating the right hand tree of Figure 2, and
we depict p0At(0)At((s, s))(A(x, y)) on the right.

Two of the leaves of the latter tree are labelled by 2, but one leaf, namely
list(s(0)) is not, so the tree does not yield a proof. Again, observe the laxness.

6 Conclusions and Further Work

Using sophisticated category theoretic techniques surrounding the notion of lax-
ness, we have extended the coalgebraic analysis of variable-free logic programs
in [15] to arbitrary logic programs. For variable-free logic programs, the cofree
comonad on PfPf allowed us to represent the parallel and-or derivation trees
generated by a logic program. For arbitrary logic programs, the situation is more
subtle, as coalgebra naturally gives rise to a list of trees determined by substitu-
tions, whereas a parallel and-or derivation tree has all the information squeezed
into one tree.

A natural question to arise in the light of this is whether the coalgebraic
structure given here suggests a more subtle semantics for SLD-resolution than



list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z))

nat(s(z))

nat(z)

list(s(z))

list(cons(s(0), cons(s(0), s(0))))

nat(s(0))

nat(0)

2

list(cons(s(0), s(0))

nat(s(0))

nat(0)

2

list(s(0))

Fig. 3. On the left is the tree depicting pAt((s, s))(list(cons(x, cons(y, x)))) as
also appears on the right of Figure 2, and on the right is the tree depicting
pAt(0)At((s, s))(list(cons(x, cons(y, x))))

that given by parallel and-or derivation trees, perhaps one based upon tree-
rewriting. That is one direction in which we propose to continue research.

The key fact driving our analysis has been the observation that the impli-
cation ← acts at a meta-level, like a sequent rather than a logical connective.
That observation extends to first-order fragments of linear logic and the Logic
of Bunched Implications [10, 20]. So we plan to extend the work in the paper to
logic programming languages based on such logics.

The situation regarding higher-order logic programming languages such as
λ-PROLOG [19] is more subtle. Despite their higher-order nature, such logic
programming languages typically make fundamental use of sequents. So it may
well be fruitful to consider modelling them in terms of coalgebra too, albeit
probably on a sophisticated base category such as a category of Heyting algebras.

More generally, the results of this paper can be applied to the studies of
Higher-order recursion schemes, [1].

A further direction is to investigate the operational meaning of coinductive
logic programming [11, 22]. That requires a modification to the algorithm of
SLD-resolution we have considered in this paper. In particular, given a logic
program that defines an infinite stream (similarly to our running example of
list, but without the base case for nil), the interpreter for coinductive logic
programs of this kind would be able to deduce a finite atom stream(cons(x,y))

from the infinite derivations.
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