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LP Key Facts

An un-typed declarative language, with eager evaluation.

... Based on Predicate logic [vanEmden and Kowalski, “The Semantics of

Predicate Logic as a Programming Language”, 1976]

... Set-theoretic semantics given by lfp or gfp of the semantic
operator TP .

... Operational semantics given by SLD-resolution. [Robinson“A

Machine-Oriented Logic Based on the Resolution Principle”, 1965]

Many dialects exist: Prolog, Datalog, etc.

Applications: Data bases, Proof theory (Automated First Order
Theorem Provers), AI, Hindley-Milner style Type inference in
Functional languages.

Katya (Dundee) CoALP Shonan 3 / 51



Recursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)
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SLD-resolution (+ unification and backtracking) behind
LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)
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SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.
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Relation to Coalgebra? – Poor

Coinduction fails (because of eager evaluation)

Concurrency fails (because of unification and variable dependencies)
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Problems with Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...
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Relation to Coalgebra? – Poor

Coinduction fails (because of eager evaluation)

Concurrency fails (because unification and variable dependencies)
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Problems with concurrency/corecursion in LP

[A popular trend in the 90s...]

Unsound and-or parallelism:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

If unsound – lets synchronize variable substitution! – many engineering
solutions... Synchronisation breaks parallelisation, in the general case.
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Relation to Coalgebra? – Poor

Coinduction fails (because of eager evaluation)

Concurrency fails (because unification and variable dependencies)

Lets time-travel to early 70s and fix it...

... create coalgebraically oriented alternative from scratch...
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CoALP semantics bibliography

E.Komendantskaya and J.Power. Coalgebraic derivations in logic
programming. International conference Computer Science Logic,
CSL’11.

E.Komendantskaya and J.Power. Coalgebraic semantics for
derivations in logic programming. International conference on Algebra
and Coalgebra CALCO’11.

E. Komendantskaya, G. McCusker and J. Power. Coalgebraic
semantics for parallel derivation strategies in logic programming.
Proceedings of AMAST’2010.

Current work – implementation and applications...
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Coalgebraic Analysis of derivations in Logic Programs

Given a variable-free logic program P, let At be the set of all atoms
appearing in P. Then P can be identified with a Pf Pf -coalgebra (At, p),
where p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of
those clauses in P with head A, each body being viewed as the set of
atoms that appear in it.

Example

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

p(q(b, a)) = {{}, {s(a, b)}}
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Coalgebraic Analysis of ground Logic Programs

Taking p : At −→ Pf Pf (At), the corresponding C (Pf Pf )-coalgebra where
C (Pf Pf ) is the cofree comonad on Pf Pf is given as follows: C (Pf Pf )(At)
is given by a limit of the form

. . . −→ At× Pf Pf (At× Pf Pf (At)) −→ At× Pf Pf (At) −→ At.

We inductively define the objects At0 = At and Atn+1 = At× Pf PfAtn,
and the cone

p0 = id : At −→ At(= At0)

pn+1 = 〈id ,Pf Pf (pn) ◦ p〉 : At −→ At× Pf PfAtn(= Atn+1)

and the limit determines the required coalgebra p : At −→ C (Pf Pf )(At).

Katya (Dundee) CoALP Shonan 16 / 51



Semantics, graphically represented

The action of
p : At −→ C (Pf Pf )(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

for logic program:

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←

p(a) ← q(b,a), s(a,b)
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Language design

The action of
p : At −→ C (Pf Pf )(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

We transform this construction
verbatim to logic algorithm

... corresponds to and-or
parallel trees introduced for
LP in the 90s

if we are in the 70s, we
“win” 20 years.

Ready-to-use algorithm for
Datalog programs or
equivalent finite-model LP
fragments.

Non-determinism – if
or-nodes are considered as
points of non-determinism
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Implementation

[2012, with M.Schmidt] - First prototype in Prolog

[2012-2013, with M.Schmidt, J.Heras] - Parallel implementation in Go
(language for concurrency inspired by Hoare logic).
Very nice results in terms of the speed-up.

[2013 - , with J.Heras, V.Komendantsky] – Parallel Haskell
implementation. We do not have thorough evaluation yet...
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Lawvere theories and the first-order signature Σ

A signature Σ consists of a set of function symbols f , g , . . . each equipped
with a fixed arity. The arity of a function symbol is a natural number
indicating the number of its arguments. Nullary (0-ary) function symbols
are allowed: these are called constants.

Given a signature Σ, construct the Lawvere theory LΣ:

Define the set ob(LΣ) to be the set of natural numbers.

For each natural number n, let x1, . . . , xn be a specified list of distinct
variables.

Define ob(LΣ)(n,m) to be the set of m-tuples (t1, . . . , tm) of terms
generated by the function symbols in Σ and variables x1, . . . , xn.

Define composition in LΣ by substitution.
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Example of Lawvere theory generated by a LP

Example

The constants O and nil are modelled by maps from 0 to 1 in LΣ, s is
modelled by a map from 1 to 1, and cons is modelled by a map from 2 to
1. The term s(0) is therefore modelled by the map from 0 to 1 given by
the composite of the maps modelling s and 0; similarly for the term
s(nil), although the latter does not make semantic sense.

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)
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Fibrations modeling the set At

Intuition is to replace At with the functor At : LopΣ → Set that sends a
natural number n to the set of all atomic formulae generated by Σ, set of
predicates of the given program and n distinct variables.
Some modifications are needed:

we need to extend Set to Poset,

natural transformations to lax natural transformations, and

replace the outer instance of Pf by Pc - the countable powerset
functor (as recursion generates countability).

Then p : At −→ PcPf At gives a Lax(LopΣ ,PcPf )-coalgebra structure on
At.

But cf. Bonchi&Zanasi CALCO’13 paper on getting rid of laxness.
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The semantics, graphically:

A(x , y) ∈ At(2)

stream(scons(x, scons(y, x)))

bit(x) stream(scons(y, x))

bit(y) stream(x)

for a program:

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)
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Language design

Again, we take the construction of the trees “almost” verbatim in the
language design;

We call the trees arising from the logic algorithm – coinductive trees

The effect of fibrations modelled by term-matching (rather than
unification) used in derivations.

Note the finite tree for Stream!!! – looks like lazy evaluation!!!

As before, we give a parallel implementation for computations of
every node.

Note also because of the “laziness” , a single coinductive tree may
not give entire derivation.

We had a “bad” case of “typing”, but the coinductive trees had no
unsound substitutions.

Guardedness ...
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Guarding corecursion

(Co)-Recursion

... needs to be guarded against non-termination. Both in FP and LP, such
guards can be given semantically or syntactically (later is often known as
”guardeness-by-constructors”).

Stream is guarded by constructors and has finite coinductive trees:

Example

bit(0) ←
bit(1) ←
stream(scons x y) ← , bit(x), stream(y)
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Guarding corecursion

Example

This program (graph connectivity) is not guarded-by-constructors:

1. connected(x,x) ←
2. connected(x,y) ← edge(x,z), connected(z,y).

... and it will produce infinite coinductive trees.
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Infinite forests of infinite trees (infinite-breadth and
infinite-depth trees):

connected(O, z)

edge(O, y) connected(y, z))

edge(y, y1) connected(y1, z)

...

connected(O, z)

edge(O, s(y)) connected(s(y), z))

edge(s(y), y1) connected(y1, z1)

...

connected(O, z)

edge(O, s(y)) conn(s(y), z))

edge(s(y), s(y1))conn(s(y1), z1)

...

. . .
connected(O, z)

edge(O, s(s(y)))conn(s(s(y)), z))

edge(s(s(y)), y1) conn(y1, z1)

...
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Guarding corecursion, by constructors:

Example

connected(X , cons(Node,Path)) ← edge(X ,Node), connected(Node,Path)

connected(X , nil) ←
edge(0, 0) ←

edge(X , s(X )) ←

Cf. Coq/Agda guarding (co)-recursion by constructors;

There is a bit more to it than that (more conditions needed to keep
variable substitution under control in absence of types. )

Katya (Dundee) CoALP Shonan 30 / 51



Maps between fibers, graphically:

A(x , y) ∈ At(2)

Then apply At to the map
(s, s) : 1→ 2 in LΣ

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

A(z) ∈ At(1)

At((s, s))(A(x , y)) is an element
of PcPf At(1).

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))
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Maps between fibers, graphically:

A(z) ∈ At(1)

Then apply At to the map
O : 0→ 1 in LΣ.

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

pAt(0)At((s, s))(A(x , y))

list(cons(s(0), cons(s(0), s(0))))

nat(s(0))

nat(0)

�

list(cons(s(0), s(0))

nat(s(0))

nat(0)

�

list(s(0))
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Language design

We take the above fiber transitions “almost” verbatim;

Compute only some maps, not all maps to do derivations;

Note the gracious way variable dependencies have been handled in
“bad typing” case;

Use the old MGU algorithm (on tree leaves and clauses) to compute
substitutions;

These can be computed in parallel or non-deterministic way...

Lazy corecursion in full power: potentially infinite transitions between
finitely computable coindutive trees;

Coinductive trees = finite observations;

Note also the variable length of the size of the finite observations: (
i-productivity, but with dynamic i?)
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An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.

Katya (Dundee) CoALP Shonan 34 / 51



An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.

Katya (Dundee) CoALP Shonan 34 / 51



An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.

Katya (Dundee) CoALP Shonan 34 / 51



An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

�

stream(scons(y1, z1))

bit(y1) stream(z1)

Answers for x: cons(z , y) and cons(0, cons(y1, z1)).
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Guarding corecursive derivations, lazily:

Example

connected(X , cons(Node,Path)) ← edge(X ,Node), connected(Node,Path)

connected(X , nil) ←
edge(0, 0) ←

edge(X , s(X )) ←

conn(O, cons(y, z))

edge(O, y) conn(y, z))

→
conn(O, cons(sO, z))

edge(O, sO)

�

conn(sO, z))

→
conn(O, cons(sO, nil))

edge(O, sO)

�

conn(sO, nil))

�
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Guardedness: More discipline?

Adapting this sort of programming discipline from lazy functional
languages to LP may have its advantages. E.g., it will equally guard
against programs that induce infinite SLD-derivations:

Example

1. connected(x,y) ← connected(z,y), edge(x,z)

2. connected(x,x) ←

While currently, it is up to a programmer to manually weed-out such cases.
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Back to 2013...

... we find out that:

Parallel LP has been flourishing around 90s, with general-case
parallelism still being a problem (took 20 years);

Coinductive LP was suggested in 2007, with limited data structures
(took 30 years)

LP was adapted in Hindley-Milner Type inference algorithm (70s), but
the rest of algorithmic development of type-inference was chaotic, on
a “hack-by-need” basis... 2010s showing a need for coinductive and
parallel inference algorithms...
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Co-LP [Gupta, Simon et al., 2007

Use normal SLD-resolution but add a new rule:

If a formula repeatedly appears as a resolvent (modulo α-conversion), then
conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

The answer is: x/0,
y/cons(x1, y1).

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

�
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If a formula repeatedly appears as a resolvent (modulo α-conversion), then
conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

The answer is: x/0,
y/cons(x1, y1).

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

�
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Explicitly-treated corecursion

To know whether to allow (co-LP) or disallow (standard LP) infinite loops,
explicit annotation is needed.

Example

biti (0) ←
biti (1) ←

streamc(scons(x , y)) ← biti (x), streamc(y)

listi (nil) ←
listi (cons(x , y)) ← biti (x), listi (y)
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Drawbacks:

some predicates may behave inductively or coinductively depending
on the arguments provided, and such cases need to be resolved
dynamically, and not statically; in which case mere predicate
annotation fails.

... cannot mix induction and coinduction. — All clauses need to be
marked as inductive or coinductive in advance.

Can deal only with restricted sort of structures — the ones having
finite regular pattern.

Example

0:: 1:: 0:: 1:: 0:: ... may be captured by such programs.
π represented as a stream may not.

the derivation itself is not really a corecursive process.
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CoALP vs Co-LP

Advantages

Works uniformly for both inductive and coinductive definitions,
without having to classify the two into disjoint sets;

in spirit of corecursion, derivations may feature an infinite number of
finite structures.

there does not have to be regularity or repeating patterns in
derivations.
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Corecursion guarding parallelism:
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Corecursion FREEING! parallelism:

Unification and SLD-resolution are P-complete algorithms. Parallel LP
community has to be very inventive in the ways to trick it. In particular,
variable synchronization is a huge sequential barrier:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...
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Now, by the same lazy corecursive derivation:

list(c(x, c(y, x)))

nat(x) list(c(y, x))

nat(y) list(x)

→
list(c(O, c(y, O)))

nat(O)

�

list(c(y, O))

nat(y) list(O)

→
list(c(O, c(O, O)))

nat(O)

�

list(c(O, O)

nat(O)

�

list(O)

So, the same guarded corecursive algorithm does the work for free.
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Outline

1 Motivation: LP key facts

2 Coalgebraic Semantics and its Implementation
Variable-free case
General Case

3 Comparing with the actual state-of-the art...

4 Future: CoALP for Type Inference?
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Milner, 1978

“A theory of Type Polymorphism in Programming”

An elegant match between polymorphic λ-calculus and type inference by
means of Robinson’s unification/resolution algorithm.
One made another possible...
Principal type exists, and the Robinson’s algorithm is [necessary and]
sufficient to compute it.
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Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised in Haskell by [Odersky, Sulzmann, Wehr 1999] to
HM(X) – by means of generalising from Herbrand domains to
arbitrary constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.
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Trend in type inference:

improvement in expressiveness of the underlying type system, e.g., in
terms of

Dependent Types,

Type Classes [Wadler&Blott89],

Generalised Algebraic Types (GADTs) [Jones&al,06]

Dependent Type Classes [Sozeau&Oury,08] and

Canonical Structures [Gonthier&al,11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires computation
additional to compile-time.

Implementations of new type inference
algorithms include a variety of first-order decision procedures, notably
Unification and Logic Programming (LP) [Jones&al,06], Constraint LP
[Odersky,Sulzmann,Schrijvers,Vytiniotis, 1999-2011], LP embedded into
interactive tactics (Coq’s eauto) [Sozeau&Oury,08], and LP supplemented
by rewriting [Gonthier&al,11].
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What can CoALP do for type inference?

Practical aspect: hopefully, CoALP’s parallelism or corecursion (or
some specific combination of the above) will be of some use for new
type inference trends;

Aesthetic: perhaps it is time to bring some harmony into the question
of relationship between a type system and the underlying TI
algorithm.
Can we uniformly classify programming languages in terms of
extensions of the Hindley-Milner inference algorithm? What impact
does it have on operational semantics?

We have minds/hands and EPSRC money to pursue that, so if you see this
useful in *your* language, we will be happy to try that.
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