
Coalgebraic Logic Programming for Type Inference

Katya Komendantskaya, joint with J. Power and M. Schmidt

School of Computing, University of Dundee, UK

MSP-RAD’13,
6 June 2013

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 1 / 57

Outline

1 Motivation: LP in Type inference

2 Two old problems of LP:
Parallelism
Corecursion

3 How Coalgebra Saved the Day

4 What does this matter for type inference?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 2 / 57

Outline

1 Motivation: LP in Type inference

2 Two old problems of LP:
Parallelism
Corecursion

3 How Coalgebra Saved the Day

4 What does this matter for type inference?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 2 / 57

Outline

1 Motivation: LP in Type inference

2 Two old problems of LP:
Parallelism
Corecursion

3 How Coalgebra Saved the Day

4 What does this matter for type inference?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 2 / 57

Outline

1 Motivation: LP in Type inference

2 Two old problems of LP:
Parallelism
Corecursion

3 How Coalgebra Saved the Day

4 What does this matter for type inference?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 2 / 57

Milner, 1978 [Mil78]

“A theory of Type Polymorphism in Programming”

An elegant match between polymorphic λ-calculus and type inference by
means of Robinson’s unification/resolution algorithm.
One made another possible...
Principal type exists, and the Robinson’s algorithm is [necessary and]
sufficient to compute it.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 3 / 57

Milner, 1978 [Mil78]

“A theory of Type Polymorphism in Programming”
An elegant match between polymorphic λ-calculus and type inference by
means of Robinson’s unification/resolution algorithm.
One made another possible...
Principal type exists, and the Robinson’s algorithm is [necessary and]
sufficient to compute it.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 3 / 57

Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised in Haskell by [Odersky, Sulzmann, Wehr 1999] to
HM(X) – by means of generalising from Herbrand domains to
arbitrary constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 4 / 57

Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised in Haskell by [Odersky, Sulzmann, Wehr 1999] to
HM(X) – by means of generalising from Herbrand domains to
arbitrary constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 4 / 57

Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised in Haskell by [Odersky, Sulzmann, Wehr 1999] to
HM(X) – by means of generalising from Herbrand domains to
arbitrary constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 4 / 57

Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised in Haskell by [Odersky, Sulzmann, Wehr 1999] to
HM(X) – by means of generalising from Herbrand domains to
arbitrary constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 4 / 57

Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

Dependent Types [BC02],

Type Classes [WB89],

Generalised Algebraic Types (GADTs) [JVWW06]

Dependent Type Classes [SO08] and

Canonical Structures [GZND11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires computation
additional to compile-time.

Implementations of new type inference
algorithms include a variety of first-order decision procedures. notably
Unification and Logic Programming (LP) [JVWW06], Constraint LP
[OSW99, SS08, SJSV09, VJSS11], LP embedded into interactive tactics
(Coq’s eauto) [SO08], and LP supplemented by rewriting [GZND11].
The latter claims that, for richer type systems, LP-style type inference is
more efficient and natural than traditional tactic-driven proof development.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 5 / 57

Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

Dependent Types [BC02],

Type Classes [WB89],

Generalised Algebraic Types (GADTs) [JVWW06]

Dependent Type Classes [SO08] and

Canonical Structures [GZND11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires computation
additional to compile-time. Implementations of new type inference
algorithms include a variety of first-order decision procedures. notably
Unification and Logic Programming (LP) [JVWW06], Constraint LP
[OSW99, SS08, SJSV09, VJSS11], LP embedded into interactive tactics
(Coq’s eauto) [SO08], and LP supplemented by rewriting [GZND11].

The latter claims that, for richer type systems, LP-style type inference is
more efficient and natural than traditional tactic-driven proof development.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 5 / 57

Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

Dependent Types [BC02],

Type Classes [WB89],

Generalised Algebraic Types (GADTs) [JVWW06]

Dependent Type Classes [SO08] and

Canonical Structures [GZND11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires computation
additional to compile-time. Implementations of new type inference
algorithms include a variety of first-order decision procedures. notably
Unification and Logic Programming (LP) [JVWW06], Constraint LP
[OSW99, SS08, SJSV09, VJSS11], LP embedded into interactive tactics
(Coq’s eauto) [SO08], and LP supplemented by rewriting [GZND11].
The latter claims that, for richer type systems, LP-style type inference is
more efficient and natural than traditional tactic-driven proof development.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 5 / 57

Recursion and Corecursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

Example

bit(0) ←
bit(1) ←

stream(cons (x,y)) ← bit(x), stream(y)

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 6 / 57

SLD-resolution (+ unification and backtracking) behind
LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 7 / 57

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 8 / 57

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 9 / 57

Outline

1 Motivation: LP in Type inference

2 Two old problems of LP:
Parallelism
Corecursion

3 How Coalgebra Saved the Day

4 What does this matter for type inference?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 10 / 57

Let’s parallelise it!

[A popular trend in the 90s...]

Unsound and-or parallelism:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

If unsound – lets synchronize variable substitution! – many engineering
solutions... but basically still a problem! [Big Survey [GPA+12]

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 11 / 57

Let’s parallelise it!

[A popular trend in the 90s...] Unsound and-or parallelism:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

If unsound – lets synchronize variable substitution! – many engineering
solutions... but basically still a problem! [Big Survey [GPA+12]

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 11 / 57

Let’s parallelise it!

[A popular trend in the 90s...] Unsound and-or parallelism:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

If unsound – lets synchronize variable substitution! – many engineering
solutions...

but basically still a problem! [Big Survey [GPA+12]

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 11 / 57

Let’s parallelise it!

[A popular trend in the 90s...] Unsound and-or parallelism:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

If unsound – lets synchronize variable substitution! – many engineering
solutions... but basically still a problem! [Big Survey [GPA+12]

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 11 / 57

Outline

1 Motivation: LP in Type inference

2 Two old problems of LP:
Parallelism
Corecursion

3 How Coalgebra Saved the Day

4 What does this matter for type inference?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 12 / 57

Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 13 / 57

Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.

Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 13 / 57

Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 13 / 57

Solution - 1 [Gupta, Simon et al., [Ge07, Se07]

Use normal SLD-resolution but add a new rule:

If a formula repeatedly appears as a resolvent (modulo α-conversion), then
conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

The answer is: x/0,
y/cons(x1, y1).

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

�

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 14 / 57

Solution - 1 [Gupta, Simon et al., [Ge07, Se07]

Use normal SLD-resolution but add a new rule:

If a formula repeatedly appears as a resolvent (modulo α-conversion), then
conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

The answer is: x/0,
y/cons(x1, y1).

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

�

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 14 / 57

Explicitly-treated corecursion

To know whether to allow (co-LP) or disallow (standard LP) infinite loops,
explicit annotation is needed.

Example

biti (0) ←
biti (1) ←

streamc(scons(x , y)) ← biti (x), streamc(y)

listi (nil) ←
listi (cons(x , y)) ← biti (x), listi (y)

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 15 / 57

Drawbacks:

some predicates may behave inductively or coinductively depending
on the arguments provided, and such cases need to be resolved
dynamically, and not statically; in which case mere predicate
annotation fails.

... cannot mix induction and coinduction. — All clauses need to be
marked as inductive or coinductive in advance.

Can deal only with restricted sort of structures — the ones having
finite regular pattern.

Example

0:: 1:: 0:: 1:: 0:: ... may be captured by such programs.
π represented as a stream may not.

the derivation itself is not really a corecursive process.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 16 / 57

Outline

1 Motivation: LP in Type inference

2 Two old problems of LP:
Parallelism
Corecursion

3 How Coalgebra Saved the Day

4 What does this matter for type inference?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 17 / 57

Algebraic and coalgebraic semantics for LP

... with John Power, 2008 - 2012. Initially, we were not aware of the two
implementation trends above...

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[CC

��

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 18 / 57

Coalgebraic Analysis of derivations in Logic Programs

Given a variable-free logic program P, let At be the set of all atoms
appearing in P. Then P can be identified with a Pf Pf -coalgebra (At, p),
where p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of
those clauses in P with head A, each body being viewed as the set of
atoms that appear in it.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 19 / 57

Coalgebraic Analysis of derivations in Logic Programs

Taking p : At −→ Pf Pf (At), the corresponding C (Pf Pf)-coalgebra where
C (Pf Pf) is the cofree comonad on Pf Pf is given as follows: C (Pf Pf)(At)
is given by a limit of the form

. . . −→ At× Pf Pf (At× Pf Pf (At)) −→ At× Pf Pf (At) −→ At.

This chain has length ω.
We inductively define the objects At0 = At and Atn+1 = At× Pf PfAtn,
and the cone

p0 = id : At −→ At(= At0)

pn+1 = 〈id ,Pf Pf (pn) ◦ p〉 : At −→ At× Pf PfAtn(= Atn+1)

and the limit determines the required coalgebra p : At −→ C (Pf Pf)(At).

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 20 / 57

Example

Example

Consider the logic program below .

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 21 / 57

Examples of derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The SLD
derivation

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 22 / 57

Examples of derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The SLD
derivation

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 22 / 57

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The proof tree

← p(a)

← q(b, a)

�

← s(a, b)

�

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 23 / 57

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The SLD tree

← p(a)

← q(b, a), s(a, b)

← s(a, b)

�

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 24 / 57

Is there anything at all in practice of Logic Programming
that corresponds to the action of C (PfPf)-comonad?

From the examples above, it’s clear that:

Sequential SLD-derivation

is the least suitable...

Proof trees

exhibit an and-parallelism in derivations...

SLD-trees

exhibit an or-parallelism in derivations...

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 25 / 57

It turns out that the answer lies in the combination of the
two kinds of parallelism:

p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The and-or parallel tree

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Except for... and-or trees are un-
sound in the first-order case.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 26 / 57

Lawvere theories and the first-order signature Σ

A signature Σ consists of a set of function symbols f , g , . . . each equipped
with a fixed arity. The arity of a function symbol is a natural number
indicating the number of its arguments. Nullary (0-ary) function symbols
are allowed: these are called constants.

Given a signature Σ, construct the Lawvere theory LΣ:

Define the set ob(LΣ) to be the set of natural numbers.

For each natural number n, let x1, . . . , xn be a specified list of distinct
variables.

Define ob(LΣ)(n,m) to be the set of m-tuples (t1, . . . , tm) of terms
generated by the function symbols in Σ and variables x1, . . . , xn.

Define composition in LΣ by substitution.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 27 / 57

Example of Lawvere theory generated by a LP

Example

The constants O and nil are modelled by maps from 0 to 1 in LΣ, s is
modelled by a map from 1 to 1, and cons is modelled by a map from 2 to
1. The term s(0) is therefore modelled by the map from 0 to 1 given by
the composite of the maps modelling s and 0; similarly for the term
s(nil), although the latter does not make semantic sense.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 28 / 57

We use Lawvere Theory LΣ intead of set At

Some modifications are needed:

we need to extend Set to Poset,

natural transformations to lax natural transformations, and

replace the outer instance of Pf by Pc - the countable powerset
functor (as recursion generates countability).

Then p : At −→ PcPf At gives a Lax(LopΣ ,PcPf)-coalgebra structure on
At; and p determines a Lax(LopΣ ,C (PcPf))-coalgebra structure
p̄ : At −→ C (PcPf)(At).

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 29 / 57

We use Lawvere Theory LΣ intead of set At

Some modifications are needed:

we need to extend Set to Poset,

natural transformations to lax natural transformations, and

replace the outer instance of Pf by Pc - the countable powerset
functor (as recursion generates countability).

Then p : At −→ PcPf At gives a Lax(LopΣ ,PcPf)-coalgebra structure on
At; and p determines a Lax(LopΣ ,C (PcPf))-coalgebra structure
p̄ : At −→ C (PcPf)(At).

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 29 / 57

Examples of first-order coinductive trees determined by the
semantics:

A(x , y) ∈ At(2)

Then apply At to the map
(s, s) : 1→ 2 in LΣ

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

A(z) ∈ At(1)

At((s, s))(A(x , y)) is an element
of PcPf At(1).

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 30 / 57

Examples of first-order coinductive trees determined by the
semantics:

A(x , y) ∈ At(2)

Then apply At to the map
(s, s) : 1→ 2 in LΣ

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

A(z) ∈ At(1)

At((s, s))(A(x , y)) is an element
of PcPf At(1).

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 30 / 57

Examples of first-order coinductive trees determined by the
semantics:

A(z) ∈ At(1)

Then apply At to the map
O : 0→ 1 in LΣ.

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

pAt(0)At((s, s))(A(x , y))

list(cons(s(0), cons(s(0), s(0))))

nat(s(0))

nat(0)

�

list(cons(s(0), s(0))

nat(s(0))

nat(0)

�

list(s(0))

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 31 / 57

Examples of first-order coinductive trees determined by the
semantics:

A(z) ∈ At(1)

Then apply At to the map
O : 0→ 1 in LΣ.

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

pAt(0)At((s, s))(A(x , y))

list(cons(s(0), cons(s(0), s(0))))

nat(s(0))

nat(0)

�

list(cons(s(0), s(0))

nat(s(0))

nat(0)

�

list(s(0))

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 31 / 57

Algebraic and coalgebraic semantics for LP

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[CC

��

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 32 / 57

Algebraic and coalgebraic semantics for LP

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semantics

Coalgebraic
Logic programming

__

��

KK
88

xx

First sequential (in PROLOG) and parallel (in GO) prototypes (by
M. Schmidt) are available on the Web:
www.computing.dundee.ac.uk/staff/katya/coalp.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 33 / 57

Algebraic and coalgebraic semantics for LP

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semantics

Coalgebraic
Logic programming

__

��

KK
88

xx

First sequential (in PROLOG) and parallel (in GO) prototypes (by
M. Schmidt) are available on the Web:
www.computing.dundee.ac.uk/staff/katya/coalp.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 33 / 57

Coalgebraic Logic Programming (CoALP)

... arose from considerations valid for coalgebraic semantics of logic
programs

Technically:

features parallel derivations;

it is not a standard SLD-resolution any more, e.g. unification is
restricted to term matching;

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 34 / 57

Coalgebraic Logic Programming (CoALP)

... arose from considerations valid for coalgebraic semantics of logic
programs
Technically:

features parallel derivations;

it is not a standard SLD-resolution any more, e.g. unification is
restricted to term matching;

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 34 / 57

Coinductive trees

Definition

Let P be a logic program and G =← A be an atomic goal. The
coinductive derivation tree for A is a tree T satisfying the following
properties.

A is the root of T .

Each node in T is either an and-node or an or-node.

Each or-node is given by •.
Each and-node is an atom.

For every and-node A′ occurring in T , there exist exactly m > 0
distinct clauses C1, . . . ,Cm in P (a clause Ci has the form
Bi ← B i

1, . . . ,B
i
ni

, for some ni), such that A′ = B1θ1 = ... = Bmθm,
for some substitutions θ1, . . . , θm, then A′ has exactly m children
given by or-nodes, such that, for every i ∈ m, the ith or-node has n
children given by and-nodes B i

1θi , . . . ,B
i
ni
θi .

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 35 / 57

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 36 / 57

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 36 / 57

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 36 / 57

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

�

stream(scons(y1, z1))

bit(y1) stream(z1)

Answers for x: cons(z , y) and cons(0, cons(y1, z1)). It’s a different
(corecursive) approach to what a “terminating derivation” is.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 37 / 57

CoALP’s features

Advantages

Works uniformly for both inductive and coinductive definitions,
without having to classify the two into disjoint sets;

in spirit of corecursion, derivations may feature an infinite number of
finite structures.

there does not have to be regularity or repeating patterns in
derivations.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 38 / 57

Guarding corecursion

(Co)-Recursion is always dangerous:

... and needs to be guarded against infinite loops. Both in FP and LP,
such guards can be given semantically or syntactically
(”guardeness-by-construction”).

Example

This program is not guarded-by-constructors:

1. connected(x,x) ←
2. connected(x,y) ← edge(x,z), connected(z,y).

... and it will produce infinite coinductive trees.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 39 / 57

Infinite forests of infinite trees:

connected(O, z)

edge(O, y) connected(y, z))

edge(y, y1) connected(y1, z)

...

connected(O, z)

edge(O, s(y)) connected(s(y), z))

edge(s(y), y1) connected(y1, z1)

...

connected(O, z)

edge(O, s(y)) conn(s(y), z))

edge(s(y), s(y1))conn(s(y1), z1)

...

. . .
connected(O, z)

edge(O, s(s(y)))conn(s(s(y)), z))

edge(s(s(y)), y1) conn(y1, z1)

...

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 40 / 57

Guarding corecursion

(Co)-Recursion is always dangerous:

... and needs to be guarded against infinite loops. Both in FP and LP,
such guards can be given semantically or syntactically
(”guardeness-by-construction”).

Example

This program is not guarded-by-constructors:

1. connected(x,x) ←
2. connected(x,y) ← edge(x,z), connected(z,y).

... and it will produce infinite coinductive trees.

In reality, such programs will be disallowed by the termination checker, and
will need to be reformulated.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 41 / 57

Guarding corecursion, for example:

Example

connected(X , cons(Node,Path)) ← edge(X ,Node), connected(Node,Path)

connected(X , nil) ←
edge(0, 0) ←

edge(X , s(X)) ←

conn(O, cons(y, z))

edge(O, y) conn(y, z))

→
conn(O, cons(sO, z))

edge(O, sO)

�

conn(sO, z))

→
conn(O, cons(sO, nil))

edge(O, sO)

�

conn(sO, nil))

�

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 42 / 57

Guarding corecursion, for example:

Example

connected(X , cons(Node,Path)) ← edge(X ,Node), connected(Node,Path)

connected(X , nil) ←
edge(0, 0) ←

edge(X , s(X)) ←

conn(O, cons(y, z))

edge(O, y) conn(y, z))

→
conn(O, cons(sO, z))

edge(O, sO)

�

conn(sO, z))

→
conn(O, cons(sO, nil))

edge(O, sO)

�

conn(sO, nil))

�

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 42 / 57

More discipline?

Adapting this sort of programming discipline from lazy functional
languages to LP may have its advantages. E.g., it will equally guard
against programs that induce infinite SLD-derivations:

Example

1. connected(x,y) ← connected(z,y), edge(x,z)

2. connected(x,x) ←

While currently, it is up to a programmer to manually weed-out such cases.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 43 / 57

Corecursion guarding parallelism:

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 44 / 57

Corecursion FREEING! parallelism:

Unification and SLD-resolution are P-complete algorithms. Parallel LP
community has to be very inventive in the ways to trick it. In particular,
variable synchronization is a huge sequential barrier:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 45 / 57

Corecursion FREEING! parallelism:

Unification and SLD-resolution are P-complete algorithms. Parallel LP
community has to be very inventive in the ways to trick it. In particular,
variable synchronization is a huge sequential barrier:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 45 / 57

Corecursion FREEING! parallelism:

Unification and SLD-resolution are P-complete algorithms. Parallel LP
community has to be very inventive in the ways to trick it. In particular,
variable synchronization is a huge sequential barrier:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 45 / 57

Now, by the same lazy corecursive derivation:

list(c(x, c(y, x)))

nat(x) list(c(y, x))

nat(y) list(x)

→
list(c(O, c(y, O)))

nat(O)

�

list(c(y, O))

nat(y) list(O)

→
list(c(O, c(O, O)))

nat(O)

�

list(c(O, O)

nat(O)

�

list(O)

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 46 / 57

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 47 / 57

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 47 / 57

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 47 / 57

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization?

... is no longer in

power

...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 47 / 57

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in power...

in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 47 / 57

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

... in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 47 / 57

Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

... in use.

Variables can live their own lazy corecursive lives.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 47 / 57

More generally...

So, what happened to the old Rule?

Logic Programs = Logic + Control

[Kowalski 1979]

We have new rules:

Corecursive Programs: LOGIC is Control
.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 48 / 57

More generally...

So, what happened to the old Rule?

Logic Programs = Logic + Control

[Kowalski 1979]

We have new rules:

Corecursive Programs: LOGIC is Control
.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 48 / 57

More generally...

So, what happened to the old Rule?

Logic Programs = Logic + Control

[Kowalski 1979]

We have new rules:

Corecursive Programs: LOGIC is Control
.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 48 / 57

Outline

1 Motivation: LP in Type inference

2 Two old problems of LP:
Parallelism
Corecursion

3 How Coalgebra Saved the Day

4 What does this matter for type inference?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 49 / 57

What does this matter for type inference?

Practical aspect: hopefully, CoALP’s parallelism or corecursion (or
some specific combination of the above) will be of some use for new
type inference trends;

Aesthetic: perhaps it is time to bring some harmony into the question
of relationship between a type system and the underlying TI
algorithm.
Can we uniformly classify programming languages in terms of
extensions of the Hindley-Milner inference algorithm? What impact
does it have on operational semantics?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 50 / 57

Other questions one may ask:
(SLD-)Resolution methods are involved in TI in two novel extensions
of Coq: in type classes [SO08] and canonical structures [GZND11]. In
both cases, enriched type systems give rise to type inference search
that exploits many typing options at once. This seems an ideal
application for CoALP. Will it be, in practice? Could it be a basis for
unifying the two Coq extensions?
Can constraint LP algorithms implemented in Haskell be efficiently
and elegantly combined with CoALP (cf. the combination of
sequential Co-LP with Constraints [SG12])? If so, can this yield
further improvements in type inference such as in speed,
parallelisation or expressiveness?
Co-LP [Ge07, Ge11] was implemented for type inference in FJ
[ALZ09, AL11]. CoALP allows us to program a wider class of
corecursive programs than Co-LP does, and it allows us to mix
recursion and corecursion, which was impossible in Co-LP. Can these
properties of CoALP help to improve type inference in FJ or in other
functional languages?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 51 / 57

The End.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 52 / 57

Bibliography I

D. Ancona and G. Lagorio.
Idealized coinductive type systems for imperative object-oriented
programs.
RAIRO - Th. Inf. and Applications, 45(1):3–33, 2011.

Davide Ancona, Giovanni Lagorio, and Elena Zucca.
Type inference by coinductive logic programming.
In TYPES, volume 5497 of LNCS, pages 1–18, 2009.

G. Barthe and T. Coquand.
An introduction to dependent type theory.
In Applied Semantics, volume 2395 of LNCS, pages 1–41, 2002.

G. Gupta and et al.
Coinductive logic programming and its applications.
In ICLP 2007, volume 4670 of LNCS, pages 27–44, 2007.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 53 / 57

Bibliography II

Gopal Gupta and et al.
Infinite computation, co-induction and computational logic.
In CALCO, volume 6859 of LNCS, pages 40–54, 2011.

G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo.
Parallel execution of prolog programs: a survey.
ACM Trans. Computational Logic, pages 1–126, 2012.

Georges Gonthier, Beta Ziliani, Aleksandar Nanevski, and Derek
Dreyer.
How to make ad hoc proof automation less ad hoc.
In ICFP. ACM, 2011.

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn.
Simple unification-based type inference for GADTs.
In ICFP, pages 50–61. ACM, 2006.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 54 / 57

Bibliography III

Robin Milner.
A theory of type polymorphism in programming.
J. Comput. Syst. Sci., 17(3):348–375, 1978.

Martin Odersky, Martin Sulzmann, and Martin Wehr.
Type inference with constrained types.
TAPOS, 5(1):35–55, 1999.

L. Simon and et al.
Co-logic programming: Extending logic programming with
coinduction.
In ICALP, volume 4596 of LNCS, pages 472–483. Springer, 2007.

Neda Saeedloei and Gopal Gupta.
Coinductive constraint logic programming.
In FLOPS, volume 7294 of LNCS, pages 243–259, 2012.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 55 / 57

Bibliography IV

Tom Schrijvers, Simon L. Peyton Jones, Martin Sulzmann, and
Dimitrios Vytiniotis.
Complete and decidable type inference for gadts.
In ICFP, pages 341–352. ACM, 2009.

Matthieu Sozeau and Nicolas Oury.
First-class type classes.
In TPHOLs, volume 5170 of LNCS, pages 278–293, 2008.

Martin Sulzmann and Peter J. Stuckey.
Hm(x) type inference is clp(x) solving.
J. Funct. Program., 18(2):251–283, 2008.

Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and
Martin Sulzmann.
Outsidein(x) modular type inference with local assumptions.
J. Funct. Program., 21(4-5):333–412, 2011.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 56 / 57

Bibliography V

Philip Wadler and Stephen Blott.
How to make ad-hoc polymorphism less ad-hoc.
In POPL, pages 60–76. ACM Press, 1989.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 57 / 57

	Motivation: LP in Type inference
	Two old problems of LP:
	Parallelism
	Corecursion

	How Coalgebra Saved the Day
	What does this matter for type inference?

