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Milner, 1978 [Mil78]

“A theory of Type Polymorphism in Programming”

An elegant match between polymorphic λ-calculus and type inference by
means of Robinson’s unification/resolution algorithm.
One made another possible...
Principal type exists, and the Robinson’s algorithm is [necessary and]
sufficient to compute it.
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Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised in Haskell by [Odersky, Sulzmann, Wehr 1999] to
HM(X) – by means of generalising from Herbrand domains to
arbitrary constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.
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Trend in type inference:
improvement in expressiveness of the underlying type system, e.g., in
terms of

Dependent Types [BC02],

Type Classes [WB89],

Generalised Algebraic Types (GADTs) [JVWW06]

Dependent Type Classes [SO08] and

Canonical Structures [GZND11].

Milner-style decidable type inference does not always suffice (e.g. the
principal type may no longer exist), and TI requires computation
additional to compile-time.

Implementations of new type inference
algorithms include a variety of first-order decision procedures. notably
Unification and Logic Programming (LP) [JVWW06], Constraint LP
[OSW99, SS08, SJSV09, VJSS11], LP embedded into interactive tactics
(Coq’s eauto) [SO08], and LP supplemented by rewriting [GZND11].
The latter claims that, for richer type systems, LP-style type inference is
more efficient and natural than traditional tactic-driven proof development.
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Recursion and Corecursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

Example

bit(0) ←
bit(1) ←

stream(cons (x,y)) ← bit(x), stream(y)
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SLD-resolution (+ unification and backtracking) behind
LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)
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SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.
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Let’s parallelise it!

[A popular trend in the 90s...]

Unsound and-or parallelism:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

If unsound – lets synchronize variable substitution! – many engineering
solutions... but basically still a problem! [Big Survey [GPA+12]
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Corecursion in LP?

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...
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Solution - 1 [Gupta, Simon et al., [Ge07, Se07]

Use normal SLD-resolution but add a new rule:

If a formula repeatedly appears as a resolvent (modulo α-conversion), then
conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

The answer is: x/0,
y/cons(x1, y1).

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

�
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Explicitly-treated corecursion

To know whether to allow (co-LP) or disallow (standard LP) infinite loops,
explicit annotation is needed.

Example

biti (0) ←
biti (1) ←

streamc(scons(x , y)) ← biti (x), streamc(y)

listi (nil) ←
listi (cons(x , y)) ← biti (x), listi (y)
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Drawbacks:

some predicates may behave inductively or coinductively depending
on the arguments provided, and such cases need to be resolved
dynamically, and not statically; in which case mere predicate
annotation fails.

... cannot mix induction and coinduction. — All clauses need to be
marked as inductive or coinductive in advance.

Can deal only with restricted sort of structures — the ones having
finite regular pattern.

Example

0:: 1:: 0:: 1:: 0:: ... may be captured by such programs.
π represented as a stream may not.

the derivation itself is not really a corecursive process.
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Algebraic and coalgebraic semantics for LP

... with John Power, 2008 - 2012. Initially, we were not aware of the two
implementation trends above...

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[ CC

��
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Coalgebraic Analysis of derivations in Logic Programs

Given a variable-free logic program P, let At be the set of all atoms
appearing in P. Then P can be identified with a Pf Pf -coalgebra (At, p),
where p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of
those clauses in P with head A, each body being viewed as the set of
atoms that appear in it.

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 19 / 57



Coalgebraic Analysis of derivations in Logic Programs

Taking p : At −→ Pf Pf (At), the corresponding C (Pf Pf )-coalgebra where
C (Pf Pf ) is the cofree comonad on Pf Pf is given as follows: C (Pf Pf )(At)
is given by a limit of the form

. . . −→ At× Pf Pf (At× Pf Pf (At)) −→ At× Pf Pf (At) −→ At.

This chain has length ω.
We inductively define the objects At0 = At and Atn+1 = At× Pf PfAtn,
and the cone

p0 = id : At −→ At(= At0)

pn+1 = 〈id ,Pf Pf (pn) ◦ p〉 : At −→ At× Pf PfAtn(= Atn+1)

and the limit determines the required coalgebra p : At −→ C (Pf Pf )(At).
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Example

Example

Consider the logic program below .

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)
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Examples of derivations

The action of
p : At −→ C (Pf Pf )(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The SLD
derivation

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�
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Examples of a derivations

The action of
p : At −→ C (Pf Pf )(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The proof tree

← p(a)

← q(b, a)

�

← s(a, b)

�
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p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Match it? - The SLD tree

← p(a)

← q(b, a), s(a, b)

← s(a, b)

�

← s(a, b), s(a, b)

← s(a, b)

�
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Is there anything at all in practice of Logic Programming
that corresponds to the action of C (PfPf )-comonad?

From the examples above, it’s clear that:

Sequential SLD-derivation

is the least suitable...

Proof trees

exhibit an and-parallelism in derivations...

SLD-trees

exhibit an or-parallelism in derivations...
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It turns out that the answer lies in the combination of the
two kinds of parallelism:

p : At −→ C (Pf Pf )(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The and-or parallel tree

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Except for... and-or trees are un-
sound in the first-order case.
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Lawvere theories and the first-order signature Σ

A signature Σ consists of a set of function symbols f , g , . . . each equipped
with a fixed arity. The arity of a function symbol is a natural number
indicating the number of its arguments. Nullary (0-ary) function symbols
are allowed: these are called constants.

Given a signature Σ, construct the Lawvere theory LΣ:

Define the set ob(LΣ) to be the set of natural numbers.

For each natural number n, let x1, . . . , xn be a specified list of distinct
variables.

Define ob(LΣ)(n,m) to be the set of m-tuples (t1, . . . , tm) of terms
generated by the function symbols in Σ and variables x1, . . . , xn.

Define composition in LΣ by substitution.
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Example of Lawvere theory generated by a LP

Example

The constants O and nil are modelled by maps from 0 to 1 in LΣ, s is
modelled by a map from 1 to 1, and cons is modelled by a map from 2 to
1. The term s(0) is therefore modelled by the map from 0 to 1 given by
the composite of the maps modelling s and 0; similarly for the term
s(nil), although the latter does not make semantic sense.
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We use Lawvere Theory LΣ intead of set At

Some modifications are needed:

we need to extend Set to Poset,

natural transformations to lax natural transformations, and

replace the outer instance of Pf by Pc - the countable powerset
functor (as recursion generates countability).

Then p : At −→ PcPf At gives a Lax(LopΣ ,PcPf )-coalgebra structure on
At; and p determines a Lax(LopΣ ,C (PcPf ))-coalgebra structure
p̄ : At −→ C (PcPf )(At).
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Examples of first-order coinductive trees determined by the
semantics:

A(x , y) ∈ At(2)

Then apply At to the map
(s, s) : 1→ 2 in LΣ

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

A(z) ∈ At(1)

At((s, s))(A(x , y)) is an element
of PcPf At(1).

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))
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Examples of first-order coinductive trees determined by the
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Then apply At to the map
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�
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�
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nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

pAt(0)At((s, s))(A(x , y))

list(cons(s(0), cons(s(0), s(0))))

nat(s(0))

nat(0)

�

list(cons(s(0), s(0))

nat(s(0))

nat(0)

�

list(s(0))
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Algebraic and coalgebraic semantics for LP

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[ CC

��
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��
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xx

First sequential (in PROLOG) and parallel (in GO) prototypes (by
M. Schmidt) are available on the Web:
www.computing.dundee.ac.uk/staff/katya/coalp.
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Coalgebraic Logic Programming (CoALP)

... arose from considerations valid for coalgebraic semantics of logic
programs

Technically:

features parallel derivations;

it is not a standard SLD-resolution any more, e.g. unification is
restricted to term matching;
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Coinductive trees

Definition

Let P be a logic program and G =← A be an atomic goal. The
coinductive derivation tree for A is a tree T satisfying the following
properties.

A is the root of T .

Each node in T is either an and-node or an or-node.

Each or-node is given by •.
Each and-node is an atom.

For every and-node A′ occurring in T , there exist exactly m > 0
distinct clauses C1, . . . ,Cm in P (a clause Ci has the form
Bi ← B i

1, . . . ,B
i
ni

, for some ni ), such that A′ = B1θ1 = ... = Bmθm,
for some substitutions θ1, . . . , θm, then A′ has exactly m children
given by or-nodes, such that, for every i ∈ m, the ith or-node has n
children given by and-nodes B i

1θi , . . . ,B
i
ni
θi .
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An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

Note that transitions θ may be determined in a number of ways:

using mgus;

non-deterministically;

randomly;

in a distributed/parallel manner.
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An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

�

stream(scons(y1, z1))

bit(y1) stream(z1)

Answers for x: cons(z , y) and cons(0, cons(y1, z1)). It’s a different
(corecursive) approach to what a “terminating derivation” is.
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CoALP’s features

Advantages

Works uniformly for both inductive and coinductive definitions,
without having to classify the two into disjoint sets;

in spirit of corecursion, derivations may feature an infinite number of
finite structures.

there does not have to be regularity or repeating patterns in
derivations.
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Guarding corecursion

(Co)-Recursion is always dangerous:

... and needs to be guarded against infinite loops. Both in FP and LP,
such guards can be given semantically or syntactically
(”guardeness-by-construction”).

Example

This program is not guarded-by-constructors:

1. connected(x,x) ←
2. connected(x,y) ← edge(x,z), connected(z,y).

... and it will produce infinite coinductive trees.
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Infinite forests of infinite trees:

connected(O, z)

edge(O, y) connected(y, z))

edge(y, y1) connected(y1, z)

...

connected(O, z)

edge(O, s(y)) connected(s(y), z))

edge(s(y), y1) connected(y1, z1)

...

connected(O, z)

edge(O, s(y)) conn(s(y), z))

edge(s(y), s(y1))conn(s(y1), z1)

...

. . .
connected(O, z)

edge(O, s(s(y)))conn(s(s(y)), z))

edge(s(s(y)), y1) conn(y1, z1)

...
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Guarding corecursion

(Co)-Recursion is always dangerous:

... and needs to be guarded against infinite loops. Both in FP and LP,
such guards can be given semantically or syntactically
(”guardeness-by-construction”).

Example

This program is not guarded-by-constructors:

1. connected(x,x) ←
2. connected(x,y) ← edge(x,z), connected(z,y).

... and it will produce infinite coinductive trees.

In reality, such programs will be disallowed by the termination checker, and
will need to be reformulated.
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Guarding corecursion, for example:

Example

connected(X , cons(Node,Path)) ← edge(X ,Node), connected(Node,Path)

connected(X , nil) ←
edge(0, 0) ←

edge(X , s(X )) ←

conn(O, cons(y, z))

edge(O, y) conn(y, z))

→
conn(O, cons(sO, z))

edge(O, sO)

�

conn(sO, z))

→
conn(O, cons(sO, nil))

edge(O, sO)

�

conn(sO, nil))

�
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More discipline?

Adapting this sort of programming discipline from lazy functional
languages to LP may have its advantages. E.g., it will equally guard
against programs that induce infinite SLD-derivations:

Example

1. connected(x,y) ← connected(z,y), edge(x,z)

2. connected(x,x) ←

While currently, it is up to a programmer to manually weed-out such cases.
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Corecursion guarding parallelism:
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Corecursion FREEING! parallelism:

Unification and SLD-resolution are P-complete algorithms. Parallel LP
community has to be very inventive in the ways to trick it. In particular,
variable synchronization is a huge sequential barrier:

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...
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Now, by the same lazy corecursive derivation:

list(c(x, c(y, x)))

nat(x) list(c(y, x))

nat(y) list(x)

→
list(c(O, c(y, O)))

nat(O)

�

list(c(y, O))

nat(y) list(O)

→
list(c(O, c(O, O)))

nat(O)

�

list(c(O, O)

nat(O)

�

list(O)
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Corecursion FREEING! parallelism:

Seq no more!

Where was unification, we bring term-matching!

Where was SLD-derivations, we bring corecursive derivations!

Both are parallelisable, and LP is free.

Variable Synchronization? ... is no longer in

power

...

in use.

Variables can live their own lazy corecursive lives.
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More generally...

So, what happened to the old Rule?

Logic Programs = Logic + Control

[Kowalski 1979]

We have new rules:

Corecursive Programs: LOGIC is Control
.
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Outline

1 Motivation: LP in Type inference

2 Two old problems of LP:
Parallelism
Corecursion

3 How Coalgebra Saved the Day

4 What does this matter for type inference?
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What does this matter for type inference?

Practical aspect: hopefully, CoALP’s parallelism or corecursion (or
some specific combination of the above) will be of some use for new
type inference trends;

Aesthetic: perhaps it is time to bring some harmony into the question
of relationship between a type system and the underlying TI
algorithm.
Can we uniformly classify programming languages in terms of
extensions of the Hindley-Milner inference algorithm? What impact
does it have on operational semantics?
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Other questions one may ask:
(SLD-)Resolution methods are involved in TI in two novel extensions
of Coq: in type classes [SO08] and canonical structures [GZND11]. In
both cases, enriched type systems give rise to type inference search
that exploits many typing options at once. This seems an ideal
application for CoALP. Will it be, in practice? Could it be a basis for
unifying the two Coq extensions?
Can constraint LP algorithms implemented in Haskell be efficiently
and elegantly combined with CoALP (cf. the combination of
sequential Co-LP with Constraints [SG12])? If so, can this yield
further improvements in type inference such as in speed,
parallelisation or expressiveness?
Co-LP [Ge07, Ge11] was implemented for type inference in FJ
[ALZ09, AL11]. CoALP allows us to program a wider class of
corecursive programs than Co-LP does, and it allows us to mix
recursion and corecursion, which was impossible in Co-LP. Can these
properties of CoALP help to improve type inference in FJ or in other
functional languages?

Katya (Dundee) CoALP for Type Inference MSP-RAD’13 51 / 57



The End.
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