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First-order syntax

We fix the alphabet A to consist of

Signature Σ:
I constant symbols a, b, c , possibly with finite subscripts;
I function symbols f , g , h, f1 . . ., with arities;

variables x , y , z , x1 . . .;

predicate symbols P,Q,R,P1,P2 . . ., with arities;

Term:
t = a | x | f (t)

Atomic Formula: At = P(t1, . . . , tn), where P is a predicate symbol of
arity n and ti is a term.

Example

Signature: {O,S} - for natural numbers; {a,b,c} for a graph with 3 nodes.
Atoms: nat(x), edge(a,b), etc...
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Logic programs

A first-order logic program consists of a finite set of clauses of the form

A← A1, . . . ,An

where A and the Ai ’s are atomic formulae, typically containing free
variables; and A1, . . . ,An is to mean the conjunction of the Ai ’s.

Definition

Let a goal G be ← A1, . . . ,Am, . . . ,Ak and a clause C be
A← B1, . . . ,Bq. Then G ′ is derived from G and C using mgu θ if the
following conditions hold:

• Am is an atom, called the selected atom, in G .

• θ is an mgu of Am and A.

• G ′ is the goal ← (A1, . . . ,Am−1,B1, . . . ,Bq,Am+1, . . . ,Ak)θ.

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 4 / 34



Example: Goal ← p(a).

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

← p(a)

← q(b, a), s(a, b)
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Logic program: Graph connectivity

Example

connected(x,x) ←
connected(x,y) ← edge(x,z),

connected(z,y).

edge(a,b) ←
edge(b,c) ←
edge(c,a) ←

a

b c
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Example: Goal ← connected(a, c).

Example

connected(x,x) ←
connected(x,y) ← edge(x,z),

connected(z,y)

edge(a,b) ←
edge(b,c) ←
edge(c,a) ←

← connected(a, c)

← edge(a, x), connected(x, c)
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Example: Goal ← connected(a, c).

Example
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Recursion and Corecursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

Example

bit(0) ←
bit(1) ←

stream(cons (x,y)) ← bit(x), stream(y)
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Algebraic and coalgebraic semantics for LP
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Coalgebraic Analysis of Logic Programs

Generally, given a functor F , an F -coalgebra is a pair (S , α) consisting of a
set S and a function α : S −→ F (S). We will take a powerset functor Pf .

Proposition

For any set At, there is a bijection between the set of variable-free logic
programs over the set of atoms At and the set of Pf Pf -coalgebra
structures on At.

Proof.

Given a variable-free logic program P, let At be the set of all atoms
appearing in P. Then P can be identified with a Pf Pf -coalgebra (At, p),
where p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of
those clauses in P with head A, each body being viewed as the set of
atoms that appear in it.
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Example

Example

Consider the logic program from the previous Example.

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

The program has three atoms, namely q(b,a), s(a,b) and p(a). So
At = {q(b,a), s(a,b), p(a)}. And the program can be identified with
the Pf Pf -coalgebra structure on At given by
p(q(b,a)) = {{}, {s(a,b)}}, where {} is the empty set.
p(s(a,b)) = {{}}, i.e., the one element set consisting of the empty set.
p(p(a)) = {{q(b,a),s(a,b)}}.
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Coalgebraic Analysis of derivations in Logic Programs

Theorem

Given an endofunctor H : Set −→ Set with a rank, the forgetful functor
U : H-Coalg −→ Set has a right adjoint R.

R is constructed as follows. Given Y ∈ Set, we define a transfinite
sequence of objects as follows. Put Y0 = Y , and Yα+1 = Y × H(Yα). We
define δα : Yn+1 −→ Yn inductively by

Yα+1 = Y × HYα
Y×Hδα−1−→ Y × HYα−1 = Yα,

with the case of α = 0 given by the map Y1 = Y ×HY
π1−→ Y . For a limit

ordinal, let Yα = limβ<α(Yβ), determined by the sequence

Yβ+1
δβ−→ Yβ.

If H has a rank, there exists α such that Yα is isomorphic to Y × HYα.
This Yα forms the cofree coalgebra on Y .
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Coalgebraic Analysis of derivations in Logic Programs

U: H-Coalg Set

R
//

oo

Corollary

If H has a rank, U has a right adjoint R and putting G = RU, G possesses
a canonical comonad structure and there is a coherent isomorphism of
categories

G -Coalg ∼= H-Coalg,

where G -Coalg is the category of G-coalgebras for the comonad G.

Given an H-coalgebra p : Y −→ HY , we construct maps pα : Y −→ Yα
for each ordinal α as follows. The map p0 : Y −→ Y is the identity, and
for a successor ordinal, pα+1 = 〈id ,Hpα ◦ p〉 : Y −→ Y × HYα. For limit
ordinals, pα is given by the appropriate limit. By definition, the object GY
is given by Yα for some α, and the corresponding pα is the required
G -coalgebra.
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Coalgebraic Analysis of derivations in Logic Programs

Taking p : At −→ Pf Pf (At), by the proof of Theorem 1, the
corresponding C (Pf Pf )-coalgebra where C (Pf Pf ) is the cofree comonad
on Pf Pf is given as follows: C (Pf Pf )(At) is given by a limit of the form

. . . −→ At× Pf Pf (At× Pf Pf (At)) −→ At× Pf Pf (At) −→ At.

This chain has length ω. As above, we inductively define the objects
At0 = At and Atn+1 = At× Pf PfAtn, and the cone

p0 = id : At −→ At(= At0)

pn+1 = 〈id ,Pf Pf (pn) ◦ p〉 : At −→ At× Pf PfAtn(= Atn+1)

and the limit determines the required coalgebra p : At −→ C (Pf Pf )(At).
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Examples of a derivations

The action of
p : At −→ C (Pf Pf )(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The SLD derivation from a
previous example

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�
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Is there anything at all in practice of Logic Programming
that corresponds to the action of C (PfPf )-comonad?
From the examples above, it’s clear that:

Sequential SLD-derivation

is the least suitable for the model given by C (Pf Pf )-comonad.

Proof trees

exhibit an and-parallelism in derivations - that is, parallel proof search over
conjuncts in a goal, but the choices of different clauses to use in the
process are not reflected - except for - one can use a sequence of
proof-trees for this purpose.

SLD-trees

exhibit an or-parallelism in derivations - that is, they show different
possibilities of derivations if there are multiple clauses that unify with a
goal; but they process conjuncts in a goal sequentially.
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It turns out that the answer lies in the combination of the
two kinds of parallelism:

p : At −→ C (Pf Pf )(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The and-or parallel tree (as
defined in the literature)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Except for... they are unsound for
first-order programs.
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Why unsound?

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...
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Lawvere theories and the first-order signature
We use Lawvere theories,
model most general unifiers (mgu’s) by equalisers,

Given a signature Σ, the Lawvere theory LΣ:

Define the set ob(LΣ) to be the set of natural numbers.
For each natural number n, let x1, . . . , xn be a specified list of distinct
variables. Define ob(LΣ)(n,m) to be the set of m-tuples (t1, . . . , tm) of
terms generated by the function symbols in Σ and variables x1, . . . , xn.
Define composition in LΣ by substitution. The interpretation ‖ ‖Σ sends
an n-ary function symbol f to f (x1, . . . , xn).

Example

The constants O and nil are modelled by maps from 0 to 1 in LΣ, s is
modelled by a map from 1 to 1, and cons is modelled by a map from 2 to
1. The term s(0) is therefore modelled by the map from 0 to 1 given by
the composite of the maps modelling s and 0; similarly for the term
s(nil), although the latter does not make semantic sense.
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Coalgebraic semantics for the first-order case

Assume we have a signature Σ of function symbols and, for each
natural number n, a specified list of variables x1, . . . , xn. Then, given
an arbitrary logic program with signature Σ,

we can consider the functor At : LopΣ → Set that sends a natural number n
to the set of all atomic formulae with variables among x1, . . . , xn generated
by the function symbols in Σ and the predicate symbols appearing in the
logic program. A map f : n→ m in LΣ is sent to the function
At(f ) : At(m)→ At(n) that sends an atomic formula A(x1, . . . , xm) to
A(f1(x1, . . . , xn)/x1, . . . , fm(x1, . . . , xn)/xm), i.e., At(f ) is defined by
substitution.
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Attempt to model P by [Lop
Σ ,PfPf ]-coalgebra

p : At −→ PfPfAt

Naturality fails: ListNat

There is a map in LΣ of the form 0→ 1 that models the nullary function
symbol 0. So, naturality of the map p : At −→ Pf Pf At in [LopΣ ,Set] would
yield commutativity of the diagram

At(1)

At(0)

Pf Pf At(1)

Pf Pf At(0)

No clause “nat(x)← ”, but the commutativity of the diagram would in
turn imply that there cannot be a clause in ListNat of the form nat(0)← .
In fact, there is!
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The solution: Lax naturality, Posets and and Pc

The diagram need not commute, but rather the composite via Pf Pf At(m)
need only yield a subset of that via At(n).

At(m)

At(n)

≥

Pf Pf At(m)

Pf Pf At(n)

p : At −→ PcPf At gives a Lax(LopΣ ,PcPf )-coalgebra structure on At; and
p determines a Lax(LopΣ ,C (PcPf ))-coalgebra structure
p̄ : At −→ C (PcPf )(At).

Note that we extend Set to Poset in At : LopΣ → Set, and change Pf to
Pc for the endofunctor PcPf .
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Examples of first-order coinductive trees determined by the
semantics:

A(x , y) ∈ At(2)

Then apply At to the map
(s, s) : 1→ 2 in LΣ

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

A(z) ∈ At(1)

At((s, s))(A(x , y)) is an element
of PcPf At(1).

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))
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�
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�
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Thank you!
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