
Coalgebraic Semantics for Parallel Derivation Strategies
in Logic Programming.

Ekaterina Komendantskaya, joint work with John Power

School of Computing, University of Dundee

ScotCat,
4th Scottish Category Theory Seminar

13 May 2011

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 1 / 34

Outline

1 Logic programs...

2 Coalgebraic Semantics for them...

3 Lawvere theory in this picture

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 2 / 34

Outline

1 Logic programs...

2 Coalgebraic Semantics for them...

3 Lawvere theory in this picture

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 2 / 34

Outline

1 Logic programs...

2 Coalgebraic Semantics for them...

3 Lawvere theory in this picture

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 2 / 34

First-order syntax

We fix the alphabet A to consist of

Signature Σ:
I constant symbols a, b, c , possibly with finite subscripts;
I function symbols f , g , h, f1 . . ., with arities;

variables x , y , z , x1 . . .;

predicate symbols P,Q,R,P1,P2 . . ., with arities;

Term:
t = a | x | f (t)

Atomic Formula: At = P(t1, . . . , tn), where P is a predicate symbol of
arity n and ti is a term.

Example

Signature: {O,S} - for natural numbers; {a,b,c} for a graph with 3 nodes.
Atoms: nat(x), edge(a,b), etc...

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 3 / 34

Logic programs

A first-order logic program consists of a finite set of clauses of the form

A← A1, . . . ,An

where A and the Ai ’s are atomic formulae, typically containing free
variables; and A1, . . . ,An is to mean the conjunction of the Ai ’s.

Definition

Let a goal G be ← A1, . . . ,Am, . . . ,Ak and a clause C be
A← B1, . . . ,Bq. Then G ′ is derived from G and C using mgu θ if the
following conditions hold:

• Am is an atom, called the selected atom, in G .

• θ is an mgu of Am and A.

• G ′ is the goal ← (A1, . . . ,Am−1,B1, . . . ,Bq,Am+1, . . . ,Ak)θ.

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 4 / 34

Example: Goal ← p(a).

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

← p(a)

← q(b, a), s(a, b)

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 5 / 34

Example: Goal ← p(a).

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 6 / 34

Example: Goal ← p(a).

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 7 / 34

Example: Goal ← p(a).

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 8 / 34

Logic program: Graph connectivity

Example

connected(x,x) ←
connected(x,y) ← edge(x,z),

connected(z,y).

edge(a,b) ←
edge(b,c) ←
edge(c,a) ←

a

b c

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 9 / 34

Example: Goal ← connected(a, c).

Example

connected(x,x) ←
connected(x,y) ← edge(x,z),

connected(z,y)

edge(a,b) ←
edge(b,c) ←
edge(c,a) ←

← connected(a, c)

← edge(a, x), connected(x, c)

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 10 / 34

Example: Goal ← connected(a, c).

Example

connected(x,x) ←
connected(x,y) ← edge(x,z),

connected(z,y)

edge(a,b) ←
edge(b,c) ←
edge(c,a) ←

← connected(a, c)

← edge(a, x), connected(x, c)

← connected(b, c)

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 11 / 34

Example: Goal ← connected(a, c).

Example

connected(x,x) ←
connected(x,y) ← edge(x,z),

connected(z,y)

edge(a,b) ←
edge(b,c) ←
edge(c,a) ←

← connected(a, c)

← edge(a, b), connected(b, c)

← connected(b, c)

← edge(b, x), connected(x, c)

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 12 / 34

Example: Goal ← connected(a, c).

Example

connected(x,x) ←
connected(x,y) ← edge(x,z),

connected(z,y).

edge(a,b) ←
edge(b,c) ←
edge(c,a) ←

← connected(a, c)

← edge(a, b), connected(b, c)

← connected(b, c)

← edge(b, x), connected(x, c)

← connected(x, c)

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 13 / 34

Example: Goal ← connected(a, c).

Example

connected(x,x) ←
connected(x,y) ← edge(x,z),

connected(z,y).

edge(a,b) ←
edge(b,c) ←
edge(c,a) ←

← connected(a, c)

← edge(a, b), connected(b, c)

← connected(b, c)

← edge(b, x), connected(x, c)

← connected(x, c)

�

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 14 / 34

Recursion and Corecursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

Example

bit(0) ←
bit(1) ←

stream(cons (x,y)) ← bit(x), stream(y)

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 15 / 34

Algebraic and coalgebraic semantics for LP

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[CC

��

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 16 / 34

Coalgebraic Analysis of Logic Programs

Generally, given a functor F , an F -coalgebra is a pair (S , α) consisting of a
set S and a function α : S −→ F (S). We will take a powerset functor Pf .

Proposition

For any set At, there is a bijection between the set of variable-free logic
programs over the set of atoms At and the set of Pf Pf -coalgebra
structures on At.

Proof.

Given a variable-free logic program P, let At be the set of all atoms
appearing in P. Then P can be identified with a Pf Pf -coalgebra (At, p),
where p : At −→ Pf (Pf (At)) sends an atom A to the set of bodies of
those clauses in P with head A, each body being viewed as the set of
atoms that appear in it.

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 17 / 34

Example

Example

Consider the logic program from the previous Example.

q(b,a) ← s(a,b)

q(b,a) ←
s(a,b) ←
p(a) ← q(b,a), s(a,b)

The program has three atoms, namely q(b,a), s(a,b) and p(a). So
At = {q(b,a), s(a,b), p(a)}. And the program can be identified with
the Pf Pf -coalgebra structure on At given by
p(q(b,a)) = {{}, {s(a,b)}}, where {} is the empty set.
p(s(a,b)) = {{}}, i.e., the one element set consisting of the empty set.
p(p(a)) = {{q(b,a),s(a,b)}}.

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 18 / 34

Coalgebraic Analysis of derivations in Logic Programs

Theorem

Given an endofunctor H : Set −→ Set with a rank, the forgetful functor
U : H-Coalg −→ Set has a right adjoint R.

R is constructed as follows. Given Y ∈ Set, we define a transfinite
sequence of objects as follows. Put Y0 = Y , and Yα+1 = Y × H(Yα). We
define δα : Yn+1 −→ Yn inductively by

Yα+1 = Y × HYα
Y×Hδα−1−→ Y × HYα−1 = Yα,

with the case of α = 0 given by the map Y1 = Y ×HY
π1−→ Y . For a limit

ordinal, let Yα = limβ<α(Yβ), determined by the sequence

Yβ+1
δβ−→ Yβ.

If H has a rank, there exists α such that Yα is isomorphic to Y × HYα.
This Yα forms the cofree coalgebra on Y .

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 19 / 34

Coalgebraic Analysis of derivations in Logic Programs

U: H-Coalg Set

R
//

oo

Corollary

If H has a rank, U has a right adjoint R and putting G = RU, G possesses
a canonical comonad structure and there is a coherent isomorphism of
categories

G -Coalg ∼= H-Coalg,

where G -Coalg is the category of G-coalgebras for the comonad G.

Given an H-coalgebra p : Y −→ HY , we construct maps pα : Y −→ Yα
for each ordinal α as follows. The map p0 : Y −→ Y is the identity, and
for a successor ordinal, pα+1 = 〈id ,Hpα ◦ p〉 : Y −→ Y × HYα. For limit
ordinals, pα is given by the appropriate limit. By definition, the object GY
is given by Yα for some α, and the corresponding pα is the required
G -coalgebra.

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 20 / 34

Coalgebraic Analysis of derivations in Logic Programs

Taking p : At −→ Pf Pf (At), by the proof of Theorem 1, the
corresponding C (Pf Pf)-coalgebra where C (Pf Pf) is the cofree comonad
on Pf Pf is given as follows: C (Pf Pf)(At) is given by a limit of the form

. . . −→ At× Pf Pf (At× Pf Pf (At)) −→ At× Pf Pf (At) −→ At.

This chain has length ω. As above, we inductively define the objects
At0 = At and Atn+1 = At× Pf PfAtn, and the cone

p0 = id : At −→ At(= At0)

pn+1 = 〈id ,Pf Pf (pn) ◦ p〉 : At −→ At× Pf PfAtn(= Atn+1)

and the limit determines the required coalgebra p : At −→ C (Pf Pf)(At).

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 21 / 34

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The SLD derivation from a
previous example

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 22 / 34

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The SLD derivation from a
previous example

← p(a)

← q(b, a), s(a, b)

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 22 / 34

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The proof tree

← p(a)

← q(b, a)

�

← s(a, b)

�

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 23 / 34

Examples of a derivations

The action of
p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The SLD tree

← p(a)

← q(b, a), s(a, b)

← s(a, b)

�

← s(a, b), s(a, b)

← s(a, b)

�

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 24 / 34

Is there anything at all in practice of Logic Programming
that corresponds to the action of C (PfPf)-comonad?
From the examples above, it’s clear that:

Sequential SLD-derivation

is the least suitable for the model given by C (Pf Pf)-comonad.

Proof trees

exhibit an and-parallelism in derivations - that is, parallel proof search over
conjuncts in a goal, but the choices of different clauses to use in the
process are not reflected - except for - one can use a sequence of
proof-trees for this purpose.

SLD-trees

exhibit an or-parallelism in derivations - that is, they show different
possibilities of derivations if there are multiple clauses that unify with a
goal; but they process conjuncts in a goal sequentially.

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 25 / 34

It turns out that the answer lies in the combination of the
two kinds of parallelism:

p : At −→ C (Pf Pf)(At) on
p(a)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

The and-or parallel tree (as
defined in the literature)

← p(a)

q(b, a)

s(a, b)

�

�

s(a, b)

�

Except for... they are unsound for
first-order programs.

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 26 / 34

Why unsound?

list(cons(x, cons(y, x)))

nat(x)

� nat(x1)

...

list(cons(y, x))

nat(y)

� nat(x1)

...

list(x)

� nat(z1)

...

list(z2)

...

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 27 / 34

Lawvere theories and the first-order signature
We use Lawvere theories,
model most general unifiers (mgu’s) by equalisers,

Given a signature Σ, the Lawvere theory LΣ:

Define the set ob(LΣ) to be the set of natural numbers.
For each natural number n, let x1, . . . , xn be a specified list of distinct
variables. Define ob(LΣ)(n,m) to be the set of m-tuples (t1, . . . , tm) of
terms generated by the function symbols in Σ and variables x1, . . . , xn.
Define composition in LΣ by substitution. The interpretation ‖ ‖Σ sends
an n-ary function symbol f to f (x1, . . . , xn).

Example

The constants O and nil are modelled by maps from 0 to 1 in LΣ, s is
modelled by a map from 1 to 1, and cons is modelled by a map from 2 to
1. The term s(0) is therefore modelled by the map from 0 to 1 given by
the composite of the maps modelling s and 0; similarly for the term
s(nil), although the latter does not make semantic sense.

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 28 / 34

Coalgebraic semantics for the first-order case

Assume we have a signature Σ of function symbols and, for each
natural number n, a specified list of variables x1, . . . , xn. Then, given
an arbitrary logic program with signature Σ,

we can consider the functor At : LopΣ → Set that sends a natural number n
to the set of all atomic formulae with variables among x1, . . . , xn generated
by the function symbols in Σ and the predicate symbols appearing in the
logic program. A map f : n→ m in LΣ is sent to the function
At(f) : At(m)→ At(n) that sends an atomic formula A(x1, . . . , xm) to
A(f1(x1, . . . , xn)/x1, . . . , fm(x1, . . . , xn)/xm), i.e., At(f) is defined by
substitution.

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 29 / 34

Attempt to model P by [Lop
Σ ,PfPf]-coalgebra

p : At −→ PfPfAt

Naturality fails: ListNat

There is a map in LΣ of the form 0→ 1 that models the nullary function
symbol 0. So, naturality of the map p : At −→ Pf Pf At in [LopΣ ,Set] would
yield commutativity of the diagram

At(1)

At(0)

Pf Pf At(1)

Pf Pf At(0)

No clause “nat(x)← ”, but the commutativity of the diagram would in
turn imply that there cannot be a clause in ListNat of the form nat(0)← .
In fact, there is!

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 30 / 34

The solution: Lax naturality, Posets and and Pc

The diagram need not commute, but rather the composite via Pf Pf At(m)
need only yield a subset of that via At(n).

At(m)

At(n)

≥

Pf Pf At(m)

Pf Pf At(n)

p : At −→ PcPf At gives a Lax(LopΣ ,PcPf)-coalgebra structure on At; and
p determines a Lax(LopΣ ,C (PcPf))-coalgebra structure
p̄ : At −→ C (PcPf)(At).

Note that we extend Set to Poset in At : LopΣ → Set, and change Pf to
Pc for the endofunctor PcPf .

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 31 / 34

Examples of first-order coinductive trees determined by the
semantics:

A(x , y) ∈ At(2)

Then apply At to the map
(s, s) : 1→ 2 in LΣ

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

A(z) ∈ At(1)

At((s, s))(A(x , y)) is an element
of PcPf At(1).

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 32 / 34

Examples of first-order coinductive trees determined by the
semantics:

A(x , y) ∈ At(2)

Then apply At to the map
(s, s) : 1→ 2 in LΣ

list(cons(x, cons(y, x)))

nat(x) list(cons(y, x))

nat(y) list(x)

A(z) ∈ At(1)

At((s, s))(A(x , y)) is an element
of PcPf At(1).

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 32 / 34

Examples of first-order coinductive trees determined by the
semantics:

A(z) ∈ At(1)

Then apply At to the map
O : 0→ 1 in LΣ.

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

pAt(0)At((s, s))(A(x , y))

list(cons(s(0), cons(s(0), s(0))))

nat(s(0))

nat(0)

�

list(cons(s(0), s(0))

nat(s(0))

nat(0)

�

list(s(0))

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 33 / 34

Examples of first-order coinductive trees determined by the
semantics:

A(z) ∈ At(1)

Then apply At to the map
O : 0→ 1 in LΣ.

list(cons(s(z), cons(s(z), s(z))))

nat(s(z))

nat(z)

list(cons(s(z), s(z)))

nat(s(z))

nat(z)

list(s(z))

pAt(0)At((s, s))(A(x , y))

list(cons(s(0), cons(s(0), s(0))))

nat(s(0))

nat(0)

�

list(cons(s(0), s(0))

nat(s(0))

nat(0)

�

list(s(0))

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 33 / 34

Thank you!

Katya (Dundee) Coalgebraic Semantics for Parallel Derivation Strategies in Logic Programming.ScotCat May’11 34 / 34

	Logic programs...
	Coalgebraic Semantics for them...
	Lawvere theory in this picture

