
Coinductive Logic Programming for Type Inference

Katya Komendantskaya

School of Computing, University of Dundee, UK

TYPES’11,
10 September 2011

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 1 / 26

Motivation

There was a talk at TYPES’08 [Ancona, Lagorio, et al.] on
coinductive logic programming for type inference (in featherweight
JAVA)

Things I wanted to understand ever since were:

... what is the difference between “normal” LP and coinductive LP?

... the role of coinductive LP for type inference.

... is this role specific to FW-JAVA, or can be extended to functional
languages?

... we have proposed an alternative coinductive LP algorithm
(together with J.Power, [CSL’11]). Would this new version be any
better for type inference?

The last item is largely future work, so please step forward if you would
like to join!

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 2 / 26

Motivation

There was a talk at TYPES’08 [Ancona, Lagorio, et al.] on
coinductive logic programming for type inference (in featherweight
JAVA)

Things I wanted to understand ever since were:

... what is the difference between “normal” LP and coinductive LP?

... the role of coinductive LP for type inference.

... is this role specific to FW-JAVA, or can be extended to functional
languages?

... we have proposed an alternative coinductive LP algorithm
(together with J.Power, [CSL’11]). Would this new version be any
better for type inference?

The last item is largely future work, so please step forward if you would
like to join!

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 2 / 26

Motivation

There was a talk at TYPES’08 [Ancona, Lagorio, et al.] on
coinductive logic programming for type inference (in featherweight
JAVA)

Things I wanted to understand ever since were:

... what is the difference between “normal” LP and coinductive LP?

... the role of coinductive LP for type inference.

... is this role specific to FW-JAVA, or can be extended to functional
languages?

... we have proposed an alternative coinductive LP algorithm
(together with J.Power, [CSL’11]). Would this new version be any
better for type inference?

The last item is largely future work, so please step forward if you would
like to join!

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 2 / 26

Motivation

There was a talk at TYPES’08 [Ancona, Lagorio, et al.] on
coinductive logic programming for type inference (in featherweight
JAVA)

Things I wanted to understand ever since were:

... what is the difference between “normal” LP and coinductive LP?

... the role of coinductive LP for type inference.

... is this role specific to FW-JAVA, or can be extended to functional
languages?

... we have proposed an alternative coinductive LP algorithm
(together with J.Power, [CSL’11]). Would this new version be any
better for type inference?

The last item is largely future work, so please step forward if you would
like to join!

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 2 / 26

Motivation

There was a talk at TYPES’08 [Ancona, Lagorio, et al.] on
coinductive logic programming for type inference (in featherweight
JAVA)

Things I wanted to understand ever since were:

... what is the difference between “normal” LP and coinductive LP?

... the role of coinductive LP for type inference.

... is this role specific to FW-JAVA, or can be extended to functional
languages?

... we have proposed an alternative coinductive LP algorithm
(together with J.Power, [CSL’11]). Would this new version be any
better for type inference?

The last item is largely future work, so please step forward if you would
like to join!

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 2 / 26

Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised by [Odersky, Sulzmann, Wehr 1999] to HM(X) –
by means of generalising from Herbrand domains to arbitrary
constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.

If CLP(X) is strong enough to substitute Hindley-Milner type inference,
where does Co-LP come in?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 3 / 26

Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised by [Odersky, Sulzmann, Wehr 1999] to HM(X) –
by means of generalising from Herbrand domains to arbitrary
constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.

If CLP(X) is strong enough to substitute Hindley-Milner type inference,
where does Co-LP come in?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 3 / 26

Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised by [Odersky, Sulzmann, Wehr 1999] to HM(X) –
by means of generalising from Herbrand domains to arbitrary
constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.

If CLP(X) is strong enough to substitute Hindley-Milner type inference,
where does Co-LP come in?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 3 / 26

Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised by [Odersky, Sulzmann, Wehr 1999] to HM(X) –
by means of generalising from Herbrand domains to arbitrary
constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.

If CLP(X) is strong enough to substitute Hindley-Milner type inference,
where does Co-LP come in?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 3 / 26

Constraints and LP in Type inference

Hindley-Milner Type inference [Milner78, Damas&Milner82] (used in
ML, OCAML, Haskel, and some other languages) was based on
first-order unification, and simultaneous generation and solving of
constraints.

... was generalised by [Odersky, Sulzmann, Wehr 1999] to HM(X) –
by means of generalising from Herbrand domains to arbitrary
constraint domains (hence “X”).

HM(X) type inference was shown to be equivalent to solving CLP(X)
– constraint logic programming (with arbitrary constraint domains),
in a very elegant paper [Sulzmann, Stuckey 2008]. [Constraint solving
and constraint generation are separated.]

In fact, there have been publications on type inference in between,
e.g. [Remy & Potier], but not in the direction of LP.

If CLP(X) is strong enough to substitute Hindley-Milner type inference,
where does Co-LP come in?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 3 / 26

Recursion and Corecursion in Logic Programming

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

Example

bit(0) ←
bit(1) ←

stream(cons (x,y)) ← bit(x), stream(y)

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 4 / 26

SLD-resolution (+ unification and backtracking) behind
LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 5 / 26

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 6 / 26

SLD-resolution (+ unification) is behind LP derivations.

Example

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x),

list(y)

← list(cons(x, y))

← nat(x), list(y)

← list(y)

← �
The answer is x/O, y/nil , but we can get more substitutions by
backtracking. We can backtrack infinitely many times, but each time
computation will terminate.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 7 / 26

Things go wrong

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 8 / 26

Things go wrong

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.

Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 8 / 26

Things go wrong

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

No answer, as derivation never
terminates.
Semantics may go wrong as well.

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

← bit(x2), stream(y2)

← stream(y2)

...

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 8 / 26

Solution - 1 [Gupta, Simon et al., 2007 - 2008]

Use normal SLD-resolution but add a new rule:

If a formula repeatedly appears as a resolvent (modulo α-conversion), then
conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

The answer is: x/0,
y/cons(x1, y1).

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

�

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 9 / 26

Solution - 1 [Gupta, Simon et al., 2007 - 2008]

Use normal SLD-resolution but add a new rule:

If a formula repeatedly appears as a resolvent (modulo α-conversion), then
conclude the proof.

Example

bit(0) ←
bit(1) ←
stream(scons x y) ←

bit(x), stream(y)

The answer is: x/0,
y/cons(x1, y1).

← stream(scons(x, y))

← bit(x), stream(y)

← stream(y)

← bit(x1), stream(y1)

← stream(y1)

�

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 9 / 26

Drawbacks:

... cannot mix induction and coinduction. — All clauses need to be
marked as inductive or coinductive in advance.

Can deal only with restricted sort of structures — the ones having
finite regular pattern.

Example

0:: 1:: 0:: 1:: 0:: ... may be captured by such programs.
1:: 2:: 3:: 4:: 5:: ... may not
π represented as a stream may not.

the derivation itself is not really a corecursive process.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 10 / 26

Solution - 2. Coinductive LP in [Komendantskaya, Power
CSL’11]

... arose from considerations valid for coalgebraic semantics of logic
programs

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 11 / 26

Algebraic and coalgebraic semantics for LP

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[CC

��

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 12 / 26

Algebraic and coalgebraic semantics for LP

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semantics

Coalgebraic
Logic programming

__

��

KK
88

xx

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 13 / 26

Solution - 2. Coinductive LP in [Komendantskaya, Power
CSL’11]

... arose from considerations valid for coalgebraic semantics of logic
programs
Technically:

features parallel derivations;

it is not a standard SLD-resolution any more, e.g. unification is
restricted to term matching;

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 14 / 26

Coinductive trees

Definition

Let P be a logic program and G =← A be an atomic goal. The
coinductive derivation tree for A is a tree T satisfying the following
properties.

A is the root of T .

Each node in T is either an and-node or an or-node.

Each or-node is given by •.
Each and-node is an atom.

For every and-node A′ occurring in T , there exist exactly m > 0
distinct clauses C1, . . . ,Cm in P (a clause Ci has the form
Bi ← B i

1, . . . ,B
i
ni

, for some ni), such that A′ = B1θ1 = ... = Bmθm,
for some substitutions θ1, . . . , θm, then A′ has exactly m children
given by or-nodes, such that, for every i ∈ m, the ith or-node has n
children given by and-nodes B i

1θi , . . . ,B
i
ni
θi .

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 15 / 26

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

�

stream(scons(y1, z1))

bit(y1) stream(z1)

Answers for x: cons(z , y) and cons(0, cons(y1, z1)). It’s a different
(corecursive) approach to what a “terminating derivation” is.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 16 / 26

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

�

stream(scons(y1, z1))

bit(y1) stream(z1)

Answers for x: cons(z , y) and cons(0, cons(y1, z1)). It’s a different
(corecursive) approach to what a “terminating derivation” is.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 16 / 26

An Example

stream(x)

θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

�

stream(scons(y1, z1))

bit(y1) stream(z1)

Answers for x: cons(z , y) and cons(0, cons(y1, z1)). It’s a different
(corecursive) approach to what a “terminating derivation” is.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 16 / 26

Solution - 2. Coinductive LP in [Komendantskaya, Power
CSL’11]

... arose from considerations valid for coalgebraic semantics of logic
programs

features parallel derivations;

it is not a standard SLD-resolution any more, e.g. unification is
restricted to term matching;

Advantages

Works uniformly for both inductive and coinductive definitions,
without having to classify the two into disjoint sets;

in spirit of corecursion, derivations may feature an infinite number of
finite structures.

there does not have to be regularity or repeating patterns in
derivations.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 17 / 26

Questions answered

... what is the difference between “normal” LP and coinductive LP?

... what is the role of coinductive LP for type inference?

Why there is no place for Co-LP in type inference by CLP(X)?

... is this role of Co-LP specific to FW-JAVA and object-oriented
languages, or can be extended to functional languages?

... can alternative coinductive LP algorithm [CSL’11] be any better
for type inference?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 18 / 26

Questions answered

... what is the difference between “normal” LP and coinductive LP?

... what is the role of coinductive LP for type inference?

Why there is no place for Co-LP in type inference by CLP(X)?

... is this role of Co-LP specific to FW-JAVA and object-oriented
languages, or can be extended to functional languages?

... can alternative coinductive LP algorithm [CSL’11] be any better
for type inference?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 18 / 26

Questions answered

... what is the difference between “normal” LP and coinductive LP?

... what is the role of coinductive LP for type inference?

Why there is no place for Co-LP in type inference by CLP(X)?

... is this role of Co-LP specific to FW-JAVA and object-oriented
languages, or can be extended to functional languages?

... can alternative coinductive LP algorithm [CSL’11] be any better
for type inference?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 18 / 26

Why is there no place for Co-LP in type inference by
CLP(X)?

The answer is:

CLP(X) uses a restricted form of logic programs - the one that does not
allow recursion.

LP, [Sulzmann, Stuckey 2008]

Head H ::= p(a1, . . . , an)

Atom L ::= p(t1, . . . , tn)

Goal G ::= L | C | G ∧ G

Rule R ::= H ←

Type inference by CLP(X) comes with a proof of termination. (Programs
are not recursive.)
The trick is due to separating derivations in LP stage and constraint
solving stage.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 19 / 26

Example of a LP used for type inference:

Example

g y = let f x = x in (f True, f y)

f (t)← t = tx → t

g(t)← t = ty → (t1, t2)∧ f (tf1)∧ tf1 = Bool → t1 ∧ f (tf2)∧ tf2 = ty → t2

→f t = ty → (t1, t2)∧tf1 = tx → tx∧tf1 = Bool → t1∧f (tf2)∧tf2 = ty → t2

→f t = ty → (t1, t2) ∧ tf1 = tx → tx ∧ tf1 = Bool → t1 ∧ tf2 = t ′x → t ′x∧
tf2 = ty → f2

After solving the constraints,

g‘s type is ∀ty .ty → (Bool , ty)

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 20 / 26

Example of a LP used for type inference:

Example

g y = let f x = x in (f True, f y)

f (t)← t = tx → t

g(t)← t = ty → (t1, t2)∧ f (tf1)∧ tf1 = Bool → t1 ∧ f (tf2)∧ tf2 = ty → t2

→f t = ty → (t1, t2)∧tf1 = tx → tx∧tf1 = Bool → t1∧f (tf2)∧tf2 = ty → t2

→f t = ty → (t1, t2) ∧ tf1 = tx → tx ∧ tf1 = Bool → t1 ∧ tf2 = t ′x → t ′x∧
tf2 = ty → f2

After solving the constraints,

g‘s type is ∀ty .ty → (Bool , ty)

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 20 / 26

Example of a LP used for type inference:

Example

g y = let f x = x in (f True, f y)

f (t)← t = tx → t

g(t)← t = ty → (t1, t2)∧ f (tf1)∧ tf1 = Bool → t1 ∧ f (tf2)∧ tf2 = ty → t2

→f t = ty → (t1, t2)∧tf1 = tx → tx∧tf1 = Bool → t1∧f (tf2)∧tf2 = ty → t2

→f t = ty → (t1, t2) ∧ tf1 = tx → tx ∧ tf1 = Bool → t1 ∧ tf2 = t ′x → t ′x∧
tf2 = ty → f2

After solving the constraints,

g‘s type is ∀ty .ty → (Bool , ty)

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 20 / 26

Example of a LP used for type inference:

Example

g y = let f x = x in (f True, f y)

f (t)← t = tx → t

g(t)← t = ty → (t1, t2)∧ f (tf1)∧ tf1 = Bool → t1 ∧ f (tf2)∧ tf2 = ty → t2

→f t = ty → (t1, t2)∧tf1 = tx → tx∧tf1 = Bool → t1∧f (tf2)∧tf2 = ty → t2

→f t = ty → (t1, t2) ∧ tf1 = tx → tx ∧ tf1 = Bool → t1 ∧ tf2 = t ′x → t ′x∧
tf2 = ty → f2

After solving the constraints,

g‘s type is ∀ty .ty → (Bool , ty)

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 20 / 26

Features of CLP(X) method:

Constraints describe types of expressions;

each rule describes type of a function (hence only 1 rule per function
admitted)

let-bound function names are renamed to guarantee that the rule
heads have distinct predicates;

no explicit type schemes for let-defined functions, only rules;

polymorphism is acheived by replicating the constraints for
let-definitions.

recursion is handled by equating the type of the recursive call with the
type of the function.

Example

f x = (let g y = rec g in λ y. g x in g x)

g(t, l)← t = ty → t1 ∧ l = [tx] ∧ tg = tx → t1 ∧ tg = t.

separation of constraint generation and inference;

flexible and accurate type error diagnosis.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 21 / 26

Role of Co-LP in FW-JAVA [Ancona et al. 2008]

[Since TYPES’08, eight (!) more papers by the authors on the subject.
Also, incorporating some ideas from Sulzman’s CLP(X).]

A general observation

Object-oriented languages make heavy use of inheritance, interfaces, and
method overriding in a word, subtyping. Naively attempting to expand
from Damas-Milners unification to solving a set of subtyping inequality
constraints results in an instance of the semi-unification problem, which is
generally undecidable.

Problem: a general analysis of the method is lacking, e.g. in statements of
adequacy, soundness and completeness.
Method of generating logic programs from typed programs is different
from Sulzmann, which makes direct comparison hard. In paricular, I
suspect [at least some of] (co)recursive LPs shown in [Ancona et al.] are
due to the method difference.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 22 / 26

Role of Co-LP in FW-JAVA [Ancona et al. 2008]

[Since TYPES’08, eight (!) more papers by the authors on the subject.
Also, incorporating some ideas from Sulzman’s CLP(X).]

A general observation

Object-oriented languages make heavy use of inheritance, interfaces, and
method overriding in a word, subtyping. Naively attempting to expand
from Damas-Milners unification to solving a set of subtyping inequality
constraints results in an instance of the semi-unification problem, which is
generally undecidable.

Problem: a general analysis of the method is lacking, e.g. in statements of
adequacy, soundness and completeness.
Method of generating logic programs from typed programs is different
from Sulzmann, which makes direct comparison hard. In paricular, I
suspect [at least some of] (co)recursive LPs shown in [Ancona et al.] are
due to the method difference.

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 22 / 26

Example

invoke (obj(C,R),M,A1 ,RT ET) ← val types (A1 ,A2),

exc types (A1 ,ET), has meth (C,M ,[obj(C,R) | A2],RT).

invoke (obj(C,R),M,A,ET) ← no val types (A), exc types

(A,ET).

invoke (T1 T2 ,M,A,RT1 RT2) ← invoke (T1 ,M,A, RT1), invoke

(T2 ,M,A, RT2).

invoke (ex(C),M,A,ex(C)) ←.

Most of such clauses would not be allowed in previous CLP(X)
approach, and would be reformulated:

E.g. the highlighted clause would be invoke(t, l)← t = t1 ∨ t2,

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 23 / 26

Example

invoke (obj(C,R),M,A1 ,RT ET) ← val types (A1 ,A2),

exc types (A1 ,ET), has meth (C,M ,[obj(C,R) | A2],RT).

invoke (obj(C,R),M,A,ET) ← no val types (A), exc types

(A,ET).

invoke (T1 T2 ,M,A,RT1 RT2) ← invoke (T1 ,M,A, RT1), invoke

(T2 ,M,A, RT2).

invoke (ex(C),M,A,ex(C)) ←.

Most of such clauses would not be allowed in previous CLP(X)
approach, and would be reformulated:

E.g. the highlighted clause would be invoke(t, l)← t = t1 ∨ t2,

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 23 / 26

Doubts summarised

Two major accounts [Ancona & Sulzmann] of LP for type inference

present general approaches to formulating a LP + constraints from
function definitions. They could be cross applied, subject to careful
description of suitable fragments of type systems.

I am not entirely convinced that type inference in FW Java cannot be
done using Sulzmann’s method (terminating LPs); at any rate, this
issue is not analysed in the literature;

If indeed coinductive LPs cannot be avoided for CLP(X) type
inference for certain type systems, I am not convinced co-LPs [Simon,
Gupta] are expressive enough to handle this – especially, they do not
allow to mix inductive and coinductive predicates in one clause and
can work only with finite regular patterns (which has to be
determined in advance of inference);

chance for our new coindutive LPs?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 24 / 26

Conclusions. Coinductive LP [KP’11] could be useful:

when delayed/partial type inference may be welcome (on place of
infinitary term rewriting? for some mixture of static and dynamic
inference?)
[akin reconciliation of static and dynamic inference mentioned by
G.Gonthier yesterday?]
[Another yesterday’s talk Type Classes: instance resolution cannot
handle cyclic instances]

OR where concurrency and parallelism are important;

in case combining inductive and coinductive propositions in clauses is
important;

in case a regular pattern in an infinite structure described by a LP
either does not exist or is too expensive to observe in advance.

Research question

Where this could be applied, and how can it be implemented?
Personal question: Is the RQ worth investigating?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 25 / 26

Conclusions. Coinductive LP [KP’11] could be useful:

when delayed/partial type inference may be welcome (on place of
infinitary term rewriting? for some mixture of static and dynamic
inference?)
[akin reconciliation of static and dynamic inference mentioned by
G.Gonthier yesterday?]
[Another yesterday’s talk Type Classes: instance resolution cannot
handle cyclic instances]

OR where concurrency and parallelism are important;

in case combining inductive and coinductive propositions in clauses is
important;

in case a regular pattern in an infinite structure described by a LP
either does not exist or is too expensive to observe in advance.

Research question

Where this could be applied, and how can it be implemented?

Personal question: Is the RQ worth investigating?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 25 / 26

Conclusions. Coinductive LP [KP’11] could be useful:

when delayed/partial type inference may be welcome (on place of
infinitary term rewriting? for some mixture of static and dynamic
inference?)
[akin reconciliation of static and dynamic inference mentioned by
G.Gonthier yesterday?]
[Another yesterday’s talk Type Classes: instance resolution cannot
handle cyclic instances]

OR where concurrency and parallelism are important;

in case combining inductive and coinductive propositions in clauses is
important;

in case a regular pattern in an infinite structure described by a LP
either does not exist or is too expensive to observe in advance.

Research question

Where this could be applied, and how can it be implemented?
Personal question: Is the RQ worth investigating?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 25 / 26

Any Questions?
or, better, Any Answers?

Katya (Dundee) Coinductive Logic Programming for Type Inference TYPES’11 26 / 26

	Introduction
	Coinductive Logic Programming
	Coinductive Lp for type inference.

