
Coalgebraic Derivations in Logic Programming∗

Ekaterina Komendantskaya1 and John Power2

1 Department of Computing,
University of Dundee, UK
katya@computing.dundee.ac.uk

2 Department of Computer Science,
University of Bath, UK
A.J.Power@bath.ac.uk

Abstract
Coalgebra may be used to provide semantics for SLD-derivations, both finite and infinite. We first
give such semantics to classical SLD-derivations, proving results such as adequacy, soundness and
completeness. Then, based upon coalgebraic semantics, we propose a new sound and complete
algorithm for parallel derivations. We analyse this new algorithm in terms of the Theory of
Observables, and we prove soundness, completeness, correctness and full abstraction results.

1998 ACM Subject Classification D.1.6 Logic Programming, F.3.2 Semantics of Programming
Languages, F.1.2 Models of Computation

Keywords and phrases Logic programming, SLD-resolution, Coalgebra, Lawvere theories, Coin-
ductive Logic Programming, Concurrent Logic Programming.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In the standard formulations of logic programming, such as in Lloyd’s book [19], a first-order
logic program P consists of a finite set of clauses of the form A← A1, . . . , An, where A and
the Ai’s are atomic formulae, typically containing free variables, and where A1, . . . , An is
understood to mean the conjunction of the Ai’s: note that n may be 0.

A running example of a logic program in this paper is as follows.

I Example 1.1. Let ListNat denote the logic program

nat(0) ←
nat(s(x)) ← nat(x)

list(nil) ←
list(cons x y) ← nat(x), list(y)

The program involves variables x and y, function symbols 0, s, nil and cons, and predicate
symbols nat and list, with the choice of notation designed to make the intended meaning
of the program clear.

SLD-resolution, which is a central algorithm for logic programming, takes a goal G,
typically written as ← B1, . . . , Bn, where the list of Bi’s is again understood to mean a

∗ We acknowledge EPSRC PDRF EP/F044046/2; and the SICSA distinguished visiting fellowship.

© E.Komendantskaya and J.Power;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Coalgebraic Derivations in Logic Programming

conjunction of atomic formulae, typically containing free variables, and constructs a proof for
an instantiation of G from substitution instances of the clauses in P [19]. The algorithm uses
Horn-clause logic, with variable substitution determined universally to make a selected atom
in G agree with the head of a clause in P , then proceeding inductively. Section 2 recalls the
various definitions.

SLD-resolution is sound and complete with respect to least fixed point semantics [19]. But
the analysis afforded by least fixed point operators pertains only to finite SLD derivations,
whereas infinite SLD derivations are also common in the practice of programming. An
example is as follows.

I Example 1.2. The following program Stream defines the infinite stream of binary bits:

bit(0) ←
bit(1) ←

stream(scons (x,y)) ← bit(x), stream(y)

Programs like Stream can be given declarative semantics via the greatest fixed point of
the semantic operator TP , see also Section 2. But greatest fixed point semantics is incomplete
in general [19] as it fails for some infinite derivations.

I Example 1.3. The program R(x)← R(f(x)) is characterised by the greatest fixed point
of the TP operator, which contains R(fω(a)), but no infinite term is computed by SLD-
resolution.

There have been numerous attempts to resolve the mismatch between infinite derivations
and greatest fixed point semantics, e.g., [2, 11, 13, 19, 20, 22, 25]. But infinite SLD derivations
of both finite and infinite objects have not yet received a uniform semantics, see Figure 1.

In [15, 17], we described an algebraic (fibrational) semantics for logic programming and
proved soundness and completeness results for it with respect to SLD-resolution. Other
forms of algebraic semantics for logic programming have been given in [1, 5]. Here, we give
coalgebraic semantics for both finite and infinite SLD derivations, and prove soundness and
completeness results for it, see Sections 3, 4. That constitutes the first main contribution of
the paper.

Finite
SLD-derivations

Least fixed
point of TP

Algebraic
fibrational
semantics

Finite and Infinite
SLD-derivations

Greatest fixed
point of TP

Coalgebraic
fibrational
semanticsCC

��

[[

��

[[CC

��

Figure 1 Alternative declarative semantics for finite and infinite SLD-derivations. The arrows ↔
show the semantics that are both sound and complete, and the arrow → indicates sound incomplete
semantics. The dotted arrow indicates the sound and complete semantics we propose here.

Another distinguishing feature of logic programming languages is that they allow implicit
parallel execution of programs. The three main types of parallelism used in implementations
are and-parallelism, or-parallelism, and their combination: see [12, 23] for analysis.

E. Komendantskaya and J. Power 3

Or-parallelism arises when more than one clause unifies with the goal: the corresponding
bodies can be executed in or-parallel fashion. Or-parallelism is thus a way of efficiently
searching for solutions to a goal, by exploring alternative solutions in parallel. It has been
exploited in Aurora and Muse, both of which have shown good speed-up results over a
considerable range of applications.

And-parallelism arises when more than one atom is present in the goal. That is, given a
goalG =← B1, . . . Bn, an and-parallel algorithm for SLD resolution looks for SLD derivations
for each Bi simultaneously, subject to the condition that the atoms must not share variables.
Such cases are known as independent and-parallelism. Independent and-parallelism has been
successfully exploited in &-PROLOG.

The coalgebraic models we discuss in this paper exhibit a synthetic form of parallelism:
and-or parallelism. The most common way to express and-or parallelism in logic programs is
via and-or trees [12], which consist of both or-nodes and and-nodes. And-or parallel PROLOG
works best for variable-free logic programs or DATALOG, and was first implemented in
Andorra [7], see also [12]. But many first-order algorithms are P-complete and hence inherently
sequential [8, 14]. This especially concerns first-order unification and variable substitution in
the presence of variable dependencies. So extensions of and-or parallel derivations to the
general case require complicated algorithms that coordinate variable substitution in different
branches of and-or parallel derivation trees [12]. If such synchronisation is omitted, parallel
SLD-derivations may lead to unsound results, see also Section 5.

In Section 5, we propose an alternative derivation algorithm inspired by our coalgebraic
semantics [18]. It inherently models substitutions in a uniform way, so that additional
techniques for synchronisation of substitutions are not required. We support the algorithm
with soundness, completeness, correctness and full abstraction results with respect to the
coalgebraic semantics. That is the second major contribution of the paper.

The underlying category theory of this paper was developed in [18], but the relationship
with ordinary logic programming syntax was not systematically developed there, in particular
with none of the syntax/semantics results given there.

2 First-order logic programming

We recall some basic definitions from [19].
A signature Σ consists of a set of function symbols f, g, . . . each equipped with a fixed arity.

The arity of a function symbol is a natural number indicating the number of its arguments.
Nullary (0-ary) function symbols are allowed: these are called constants. Given a countably
infinite set V ar of variables, the set Ter(Σ) of terms over Σ is defined inductively: x ∈ Ter(Σ)
for every x ∈ V ar. If f is an n-ary function symbol (n ≥ 0) and t1, . . . , tn ∈ Ter(Σ),
then f(t1, . . . , tn) ∈ Ter(Σ). Variables will be denoted x, y, z, sometimes with indices
x1, x2, x3, A substitution is a map θ : Ter(Σ)→ Ter(Σ) which satisfies θ(f(t1, . . . , tn)) ≡
f(θ(t1), . . . , θ(tn)) for every n-ary function symbol f .

We define an alphabet to consist of a signature Σ, the set V ar, and a set of predicate
symbols P, P1, P2, . . ., each assigned an arity. Let P be a predicate symbol of arity n and
t1, . . . , tn be terms. Then P (t1, . . . , tn) is a formula (also called an atomic formula or an
atom). The first-order language L given by an alphabet consists of the set of all formulae
constructed from the symbols of the alphabet.

Given a substitution θ and an atom A, we write Aθ for the atom given by applying the
substitution θ to the variables appearing in A. Moreover, given a substitution θ and a list of
atoms (A1, ..., Ak), we write (A1, ..., Ak)θ for the simultaneous substitution of θ in each Am.

4 Coalgebraic Derivations in Logic Programming

Given a first-order language L, a logic program consists of a finite set of clauses of the
form A ← A1, . . . , An, where A,A1, . . . , An(n ≥ 0) are atoms. The atom A is called the
head of a clause, and A1, . . . , An is called its body. Clauses with empty bodies are called unit
clauses. A goal is given by ← B1, . . . Bn, where B1, . . . Bn(n ≥ 0) are atoms.

Traditionally, logic programming has been modelled by least fixed point semantics [19].
Given a logic program P , one lets BP (also called a Herbrand base) denote the set of
atomic ground formulae generated by the syntax of P , and one defines TP (I) on 2BP by
sending I to the set {A ∈ BP : A ← A1, ..., An is a ground instance of a clause in P with
{A1, ..., An} ⊆ I}. The least fixed point of TP is called the least Herbrand model of P and
duly satisfies model-theoretic properties that justify that expression [19]. A non-ground
alternative to this semantics was further developed in terms of categorical logic in [1, 5].

The fact that logic programs can be represented naturally by least fixed point semantics led
to the development of logic programs as inductive definitions [22, 13]. Operational semantics
for logic programs is given by SLD-resolution, a goal-oriented proof-search procedure.

Let S be a finite set of atoms. A substitution θ is called a unifier for S if, for any pair of
atoms A1 and A2 in S, applying the substitution θ yields A1θ = A2θ. A unifier θ for S is
called a most general unifier (mgu) for S if, for each unifier σ of S, there exists a substitution
γ such that σ = θγ.

I Definition 2.1. Let a goal G be← A1, . . . , Am, . . . , Ak and a clause C be A← B1, . . . , Bq.
Then G′ is derived from G and C using mgu θ if the following conditions hold:
• θ is an mgu of the selected atom Am in G and A;
• G′ is the goal ← (A1, . . . , Am−1, B1, . . . , Bq, Am+1, . . . , Ak)θ.

A clause C∗i is a variant of the clause Ci if C∗i = Ciθ, with θ being a variable renaming
substitution such that variables in C∗i do not appear in the derivation up to Gi−1 (see the
notation below). This process of renaming variables is called standardising the variables
apart; we assume it throughout the paper without explicit mention.

IDefinition 2.2. An SLD-derivation of P∪{G} consists of a sequence of goalsG = G0, G1, . . .

called resolvents, a sequence C1, C2, . . . of variants of program clauses of P , and a sequence
θ1, θ2, . . . of mgus such that each Gi+1 is derived from Gi and Ci+1 using θi+1. An SLD-
refutation of P ∪ {G} is a finite SLD-derivation of P ∪ {G} that has the empty clause 2 as
its last goal. If Gn = 2, we say that the refutation has length n. The composition θ1, θ2, . . .

is called computed answer.

SLD-resolution is P-complete, and hence inherently sequential [8]. Operationally, SLD-
derivations can be characterised by SLD-trees.

I Definition 2.3. Let P be a logic program and G be a goal. An SLD-tree for P ∪ {G} is a
tree T satisfying the following:
1. each node of the tree is a (possibly empty) goal
2. the root node is G
3. if ← A1, . . . , Am, m > 0 is a node in T , and it has n children, then there exists

Ak ∈ A1, . . . , Am such that Ak is unifiable with exactly n distinct clauses C1 = A1 ←
B1

1 , . . . , B
1
q , ..., Cn = An ← Bn1 , . . . , B

n
r in P via mgus θ1, . . . θn, and, for every i ∈

{1, . . . n}, the ith child node is given by the goal

← (A1, . . . , Ak−1, B
i
1, . . . , B

i
q, Ak+1, . . . , Am)θi

4. nodes which are the empty clause have no children.

E. Komendantskaya and J. Power 5

list(x)

2
θ4

nat(y), list(z)

list(z)

2
θ2

list(z1)

2 ...

θ1
nat(y1), list(z)

list(z)

2 list(z1)

2 ...

nat(y2), list(z)

list(z1)

2 ...

nat(y3), list(z)

...

θ0

Figure 2 An SLD-tree for ListNat with the goal ← list(x). A possible computed answer is given by
the composition of θ0 = x/cons(y, z), θ1 = y/0, θ2 = z/nil; Another computed answer is θ4 = x/nil.

I Example 2.4. Figure 2 shows an SLD-tree for ListNat (Example 1.1). Note that a similar
goal stream(x) in the logic program Stream from Example 1.2 will produce a very different
SLD-tree in that it will not have leaf nodes. The nodes will infinitely alternate between
stream(x) and bit(y),stream(z), modulo variable renaming.

SLD-resolution is sound and complete with respect to least fixed point semantics. The
classical theorems of soundness and completeness of this operational semantics [19] show that
every atom in the set computed by the least fixed point of TP has a finite SLD-refutation,
and vice versa.

3 Coalgebraic Semantics for SLD-derivations

Logic programs resemble, and indeed induce, transition systems or rewrite systems, hence
coalgebras. That fact has been used to study their operational semantics, e.g., in [4, 6].
In [16], we developed the idea for variable-free logic programs, extending it to first-order
programs in [18]. In this section, we recall the relevant details.

Given a set At of atoms, there is a bijection between the set of variable-free logic programs
over At and the set of PfPf -coalgebra structures on At, i.e., functions p : At −→ PfPf (At),
where Pf is the finite powerset functor: each atom of a logic program P is the head of finitely
many clauses, and the body of each of those clauses contains finitely many atoms.

The endofunctor PfPf necessarily has a cofree comonad C(PfPf) on it as follows.
I Proposition 3.1. Let C(PfPf) denote the cofree comonad on PfPf . For any set At,
C(PfPf)(At) is the limit of a diagram of the form

. . . −→ At× PfPf (At× PfPf (At)) −→ At× PfPf (At) −→ At.

Given p : At −→ PfPf (At), put At0 = At and Atn+1 = At× PfPf (Atn), and consider the
cone defined inductively as follows:

p0 = id : At −→ At (= At0)
pn+1 = 〈id, PfPf (pn) ◦ p〉 : At −→ At× PfPf (Atn) (= Atn+1)

The limiting property determines the coalgebra p : At −→ C(PfPf)(At).
The main result of [16] asserted that if C(PfPf) is the cofree comonad on PfPf , then,

given a logic program P , the induced C(PfPf)-coalgebra structure characterises the parallel
and-or derivation trees (cf. [12]) of P .

6 Coalgebraic Derivations in Logic Programming

I Example 3.2. Consider the variable-free logic program: q(b,a)←; s(a,b)←; p(a)←
q(b,a), s(a,b); q(b,a)← s(a,b).

The program has three atoms, namely q(b,a), s(a,b) and p(a).
So At = {q(b,a), s(a,b), p(a)}. The program can be identified with the PfPf -coalgebra
structure on At given by
p(q(b,a)) = {{}, {s(a,b)}}, where {} is the empty set.
p(s(a,b)) = {{}}, i.e., the one element set consisting of the empty set.
p(p(a)) = {{q(b,a),s(a,b)}}.

Consider the C(PfPf)-coalgebra corresponding to p. It sends p(a) to the parallel
refutation of p(a) depicted on the left side of Figure 3. Note that the nodes of the tree
alternate between those labeled by atoms and those labeled by bullets (•). The set of children
of each bullet represents a goal, made up of the conjunction of the atoms in the labels. An
atom with multiple children is the head of multiple clauses in the program: its children
represent these clauses. We use the traditional notation 2 to denote {}.

Where an atom has a single •-child, we can elide that node without losing any information;
the result of applying this transformation to our example is shown on the right in Figure 3.
The resulting tree is precisely the parallel and-or derivation tree [12] for the atomic goal
← p(a).

← p(a)

q(b, a)

s(a, b)

2

2

s(a, b)

2

← p(a)

q(b, a)

s(a, b)

2

2

s(a, b)

2

Figure 3 The action of p : At −→ C(PfPf)(At) on p(a), and the corresponding parallel and-or
derivation tree [12].

In [18], we extend this to first-order logic programs using Lawvere theories, cf, [1, 4, 5, 15],
modelling most general unifiers (mgu’s) by equalisers. cf, [3]: given a signature Σ, the
Lawvere theory LΣ generated by Σ has objects given by natural numbers and maps from n

to m given by equivalence classes of substitutions θ of m variables by terms generated by the
function symbols in Σ applied to n variables. We shall shortly give an example; for formal
definitions and theorem see [18].

Given a logic program P with function symbols in Σ, we extend the set At of atoms in a
variable-free logic program to the functor from LopΣ to Set sending a natural number n to the
set At(n) of atomic formulae with at most n variables generated by the predicate symbols
in P . One can extend any endofunctor H on Set to the endofunctor [LopΣ , H] on [LopΣ , Set]
that sends F : LopΣ → Set to the composite HF . We would like to model P by the putative
[LopΣ , PfPf]-coalgebra p : At −→ PfPfAt that, at n, takes an atomic formula A(x1, . . . , xn)
with at most n variables, considers all substitutions of clauses in P whose head agrees with
A(x1, . . . , xn), and gives the set of sets of atomic formulae in antecedents, mimicking the
construction for variable-free logic programs.

E. Komendantskaya and J. Power 7

list(c(x, cons(y, x)))

nat(x) list(c(y, x))

nat(y) list(x)

→
list(c(s(z), c(s(z), s(z))))

nat(s(z))

nat(z)

list(c(s(z), s(z))

nat(s(z))

nat(z)

list(s(z))

→
list(c(s(0), c(s(0), s(0))))

nat(s(0))

nat(0)

2

list(c(s(0), s(0))

nat(s(0))

nat(0)

2

list(s(0))

Figure 4 The left hand tree represents p̄(list(cons(x, cons(y, x)))) and the second tree represents
p̄At((s, s))(list(cons(x, cons(y, x)))), i.e., p̄(list(cons(s(z), cons(s(z), s(z))))), and the tree on the
right depicts p̄At(0)At((s, s))(list(cons(x, cons(y, x)))) ; cons is abbreviated by c.

In fact, to make the theory work, we need to extend Set to Poset, natural transformations
to lax natural transformations, and replace the outer instance of Pf by Pc - the countable
powerset functor (as recursion generates countability). Subject to those replacements,
p : At −→ PcPfAt behaves as above, giving a Lax(LopΣ , PcPf)-coalgebra structure on
At. Extending Proposition 3.1, p determines a Lax(LopΣ , C(PcPf))-coalgebra structure
p̄ : At −→ C(PcPf)(At).

I Example 3.3. Consider ListNat as in Example 1.1. Suppose we start with A(x, y) ∈ At(2)
given by the atomic formula list(cons(x, cons(y, x))). Then p̄(A(x, y)) is the element of
C(PcPf)At(2) expressible by the tree on the left hand side of Figure 4.

The coalgebraic structure means any substitution, whether determined by an mgu or not,
applies to the whole tree. The lax naturality means a substitution potentially yields two
different trees: one given by substitution into the tree, then pruning to remove redundant
branches, the other given by substitution into the root, then applying p̄.

For example, we can substitute s(z) for both x and y in list(cons(x, cons(y, x))). This
substitution is given by applying At to the map (s, s) : 1 −→ 2 in LΣ. So At((s, s))(A(x, y))
is an element of At(1). Its image under p̄(1) : At(1) −→ C(PcPf)At(1) is the element of
C(PcPf)At(1) expressible by the tree on the right hand side of Figure 4. The laxness of
the naturality of p̄ is indicated by the increased length, in two places, of the second tree.
Observe that, before those two places, the two trees have the same structure: that need not
always be exactly the case, as substitution in a tree could involve pruning if substitution
instances of two different atoms yield the same atom.

Now suppose we make the further substitution of 0 for z. This substitution is given by
applying At to the map 0 : 0→ 1 in LΣ. In Figure 4, we depict p̄(0)At(0)At((s, s))(A(x, y))
on the right. Two of the leaves of the latter tree are labeled by 2, but one leaf, namely
list(s(0)) is not, so the tree does not yield a proof. Again, observe the laxness.

The trees shown in Example 3.3 differ from the corresponding SLD-tree determined by
Definition 2.3. The main reason for this is that the derivations modelled by the coalgebraic
semantics have strong relation to parallel logic programming, [26, 14], while SLD-trees describe
sequential derivation strategies.

In following sections, we shall show how our coalgebraic semantics relates to sequential
derivations, and how it can be used to introduce a new concurrent derivation algorithm.

8 Coalgebraic Derivations in Logic Programming

4 Coalgebraic Semantics and Infinite Derivations

In this section, we state formally the theorems that relate the coalgebraic semantics of the
previous section to first-order (possibly infinite) derivations in logic programming. We start
by introducing a special kind of derivation tree that is suitable for representing derivations
described by the coalgebraic semantics.

I Definition 4.1. Let P be a logic program and G =← A be an atomic goal. The coinductive
derivation tree for A is a possibly infinite tree T satisfying the following properties.

A is the root of T .
Each node in T is either an and-node or an or-node.
Each or-node is given by •.
Each and-node is an atom.
For every and-node A′ occurring in T , there exist exactly m > 0 distinct clauses
C1, . . . , Cm in P (a clause Ci has the form Bi ← Bi1, . . . , B

i
ni
, for some ni), such that

A′ = B1θ1 = ... = Bmθm, for some substitutions θ1, . . . , θm, then A′ has exactly m

children given by or-nodes, such that, for every i ∈ m, the ith or-node has n children
given by and-nodes Bi1θi, . . . , Bini

θi.

I Example 4.2. Examples of coinductive derivation trees are given in Figures 3 and 4.

Note that, comparing this with the SLD-resolution algorithm and the corresponding
SLD-trees, the definition of coinductive derivation tree restricts unification to the case of
term matching, i.e., the substitution θ unifying atoms A1 and A2 is applied only to one atom,
e.g. A1 = A2θ, whereas traditionally mgus satisfy A1θ = A2θ. The term-matching algorithm
is parallelisable, in contrast to the unification algorithm, which is inherently sequential [8].

We define the depth of a coinductive tree inductively as follows. The root of a coinductive
tree has depth 0. For an and-node x, if its immediate parent and-node has depth d, then x
has depth d+ 1. The depth of a tree is defined to be the depth of its deepest branch.

For all the running examples we use in this paper, there will be only one coinductive tree
for every goal. However, this will not be the case for programs containing clauses in which
not all the variables appearing in the body appear in the head.

I Example 4.3. In [16] we analyse the program determining whether two nodes in a graph
are connected. It contains the clause connected(x, y)← edge(x, z), connected(z, y), note
the appearance of z.

According to Deginition 4.1 such clauses may induce a family of coinductive trees - as
there can be a countable number of substitutions θ′i, . . . , θ′′i that match a given goal with the
clause Ci, each of these substitutions differing only with respect to assignment to z.

I Definition 4.4. Let P be a logic program and G =← A be an atomic goal. The coinductive
forest F for A is a set of all coinductive derivation trees for A. We say that the forest has
depth n if the deepest tree in F has length n. A coinductive forest F has breadth k if at most
k distinct variables appear in all and-nodes of all of its trees together.

I Theorem 4.5 (Adequacy). For any logic program P and for any atom A generated by
the predicate symbols of P and k distinct variables x1, . . . , xk, p̄(k)(A) expresses precisely
the same information as that given by a coinductive forest F for the goal A. That is, the
following holds:

pn(k)(A) is isomorphic to the coinductive forest of depth n and breadth k.
F has the finite depth n if and only if p̄(k)(A) = pn(k)(A).

E. Komendantskaya and J. Power 9

F has infinite depth if and only if p̄(k)(A) is given by the element of the limit of the
infinite chain given by (the extension of) Proposition 3.1.

Proof. By (the extension of) Proposition 3.1, for every atomic formula A:
p0(k)(A) = A

p1(k)(A) = (A, {{B1θ, . . . , Bmθ}, such that B ← B1, . . . , Bm is a clause in P with
Bθ = A and B1θ, . . . , Bmθ have variables among x1, . . . , xk.})
p2(k)(A) = (A, {{(B1θ, {{C1

1θ1θ, . . . , C
m1
1 θ1θ} such that C ← C1

1 , . . . , C
m1
1 is a clause in

P with Cθ1 = B1}), . . . and C1
1θ1θ, . . . , C

m1
1 θ1θ have variables among x1, . . . , xk.}})

etc.
The limit of the sequence is precisely (the extension of) the structure described by Proposition
3.1. For each atomic formula A, p0(k)(A) corresponds to the root of a coinductive derivation
tree, and, more generally, each pn(k)(A) corresponds to the coinductive forest of breadth k,
as far as depth n. J

I Example 4.6. Infinite coinductive trees arise in programs similar to that in Example 1.3.
The infinite tree arising from this program contains a chain of alternating •’s and atoms R(x),
R(f(x)), R(f(f(x))), etcetera. Note that infinite terms are not nodes of the tree. Programs
like Stream and ListNat in Examples 1.1 and 1.2, do not give rise to infinite coinductive
derivation trees, see Figures 4 and 6. But they do give rise to infinite SLD-trees, see Figure
2. This is because substitution, determined by term-matching, is applied only to clauses,
and not to goals, when a coinductive derivation tree is built. Infinite derivations in these
programs may be modelled by infinite chains of derivation trees.

We can express Theorem 4.5 in terms of a traditional-style soundness and completeness
result that relates the semantics to SLD-refutations. For this purpose, we define success
subtrees of coinductive derivation trees, as follows.

I Definition 4.7. Let P be a logic program, A be a goal, and T be the coinductive derivation
tree determined by P and A. A subtree T ′ of T is called a success subtree of T if it satisfies
the following conditions:

the root of T ′ is the root of T ;
if an and-node belongs to T ′, and the node has k children in T given by or-nodes, only
one of these or-nodes belongs to T ′.
if an or-node belongs to T ′, then all its children given by and-nodes in T belong to T ′.
all the leaves of T ′ are and-nodes represented by 2.

I Theorem 4.8 (Soundness and Completeness of SLD-resolution relative to coinductive derivation
trees.). Let P be a logic program, and G be a goal.
1. Soundness. If there is an SLD-refutation for G in P with computed answer θ, then there

exists a coinductive derivation tree for Gθ that contains a success subtree.
2. Completeness. If a coinductive derivation tree for Gθ contains a success subtree, then

there exists an SLD-refutation for G in P , with computed answer λ such that there exists
substitution σ such that λ = σθ.

Proof. The proof is given by induction on the length of the SLD-refutations and the depth
of the coinductive trees. Part 2 also requires some analysis of computed answers. If a
program does not contain clauses similar to Example 4.3, then σ is an identity substitution
or a variable renaming, otherwise σ is determined by all the substitutions computed by the
SLD-derivations that involved assigning terms to the variables appearing in the body but
not the head of clauses in P . J

10 Coalgebraic Derivations in Logic Programming

I Corollary 4.9 (Soundness and Completeness of SLD-resolution relative to coalgebraic se-
mantics). Given a logic program P , SLD-refutations in P are sound and complete with respect
to the Lax(LopΣ , PcPf)-coalgebra determined by P .

Proof. Follows from Theorems 4.5 and 4.8. J

Our coalgebraic analysis relates to the Theory of Observables for logic programming
developed in [6]. In that theory, the traditional characterisation of logic programs in terms of
input/output behavior and successful derivations is not sufficient for the purposes of program
analysis and optimisation. One requires more complete information about SLD-derivations,
e.g., the sequences of goals, most general unifiers, and variants of clauses. Moreover, infinite
derivations can be meaningful. The following four observables are the most important for
the theory [9, 6].

I Definition 4.10. 1. Partial answers are the substitutions associated to a resolvent in any
SLD-derivation; correct partial answers are substitutions associated to a resolvent in any
SLD-refutation.

2. Call patterns are atoms selected in any SLD-derivation; correct call patterns are atoms
selected in any SLD-refutation.

3. Computed answers are the substitutions associated to an SLD-refutation.
4. A successful derivation is the observation of successful termination.

As argued in [9, 6], a key goal of semantics to logic programs is to observe equal behavior
of logic programs and to distinguish logic programs with different computational behavior.
The choice of observables and semantic models is closely related to the choice of equivalence
relation defined over logic programs [9].

I Definition 4.11. Let P1 and P2 be logic programs. Put P1 ≈ P2 if and only if, for a goal
G, the following four conditions hold:
1. G has a refutation in P1 if and only if G has a refutation in P2
2. G has the same set of computed answers in P1 as in P2
3. G has the same set of (correct) partial answers in P1 as in P2
4. G has the same set of call patterns in P1 as in P2.

Using the terminology of [9, 6], we can state the following correctness result that relates
the traditional sequential SLD-derivations of Section 2 to our coalgebraic semantics. In the
next theorem, we assume that there is a common algorithm that assigns terms to variables
appearing only in the bodies of clauses as explained in Example 4.3.

I Theorem 4.12 (Correctness). For logic programs P1 and P2, if for every atomic goal ← A,
the coinductive forest for P1 and A is equal to the coinductive forest for P2 and A, then
P1 ≈ P2.

The converse of Theorem 4.12, the full abstraction result, does not hold. That is, there
can be observationally equivalent programs that have different coinductive derivation trees.

I Example 4.13. Consider the logic programs P1 and P2, whose clauses are the same, with
the exception of one clause: P1 contains A ← B1, . . . , Bi, false, . . . , Bn; and P2 contains
the clause A← B1, . . . Bi, false instead. The atoms in the clauses are such that B1, . . . , Bi
have refutations in P1 and P2, and false is an atom that has no refutation in the programs.
In this case, assuming a left-to-right sequential evaluation strategy, all derivations that
involve the two clauses in P1 and P2 will always fail on false, and P1 will be observationally
equivalent to P2. However, their coinductive derivation trees give account to all atoms in the
clause.

E. Komendantskaya and J. Power 11

The results of this section show that parallel trees arising from the coalgebraic semantics
of Section 3 naturally model finite and infinite derivations. The nature of the failure of the
full abstraction result suggests that the coalgebraic semantics of Section 3 more naturally
supports concurrent computation, rather than sequential SLD-derivations. For this reason,
we introduce a novel algorithm for concurrent derivations in the next section.

5 Applications in Concurrent Logic Programming

In this section, we exploit the concurrent nature of our coalgebraic semantics, equivalently
coinductive derivation trees. Operationally, the major difference between coinductive trees
and SLD-trees lies in the concurrent versus sequential modes of execution, which are crucial
for the computation of call patterns, (correct) partial answers and soundness of computations.

We first consider a concurrent computational model already in the literature: and-or-
parallel trees [12].

I Definition 5.1. [12] Let P be a logic program and let ← A be an atomic goal (possibly
with variables). The and-or parallel derivation tree for A is the possibly infinite tree T
satisfying the following properties.

A is the root of T .
Each node in T is either an and-node or an or-node.
Each or-node is given by •.
Each and-node is an atom.
For every node A′ occurring in T , if A′ is unifiable with only one clause B ← B1, . . . , Bn
in P with mgu θ, then A′ has n children given by and-nodes B1θ, . . . Bnθ.
For every node A′ occurring in T , if A′ is unifiable with exactly m > 1 distinct clauses
C1, . . . , Cm in P via mgu’s θ1, . . . , θm, then A′ has exactly m children given by or-nodes,
such that, for every i ∈ m, if Ci = Bi ← Bi1, . . . , B

i
n, then the ith or-node has n children

given by and-nodes Bi1θi, . . . , Binθi.

An example of an and-or tree is given in Figure 3. Example 3.2 demonstrates and [16]
formally proves that coinductive trees and and-or trees produce the same results in the
variable-free case. However, a naive extension of Definition 5.1 to the first-order case yields
inconsistent derivations.

I Example 5.2. Figure 5 shows the and-or parallel tree that finds a refutation θ =
{x/0, y/0, x/nil} for the goal list(cons(x,cons(y,x))), although this answer is not sound.

A solution proposed in [12] was given by composition (and-or parallel) trees. Construction
of composition trees involves additional algorithms that synchronise substitutions in the
branches of and-or trees. Composition trees contain a special kind of composition nodes used
whenever both and- and or-parallel computations are possible for one goal. A composition
node is a list of atoms in the goal. If, in a goal G = ← B1, . . . Bn, an atom Bi is unifiable
with k > 1 clauses, then the algorithm adds k children (k composition nodes) to the node
G; similarly for every atom in G that is unifiable with more than one clause. Every such
composition node has the form B1, . . . Bn, and n and-parallel edges. Thus, all possible
combinations of all possible or-choices at every and-parallel step are given.

Here, we propose coinductive trees of Definition 4.1 as an alternative to composition
trees. Comparing coinductive derivation trees with and-or trees, coinductive trees are more
intrinsic: and-or parallel trees have most general unifiers built into a single tree, whereas,

12 Coalgebraic Derivations in Logic Programming

list(cons(x, cons(y, x)))

nat(x)

2 nat(x1)

...

list(cons(y, x))

nat(y)

2 nat(x1)

...

list(x)

2 nat(z1)

...

list(z2)

...

Figure 5 Unsound refutation by and-or parallel tree, with θ = {x/0, y/0, x/nil} .

mgus determine only tree transformations for coinductive trees. Taking unification issues
from the level of individual leaves to the level of trees affects computations at least in two
ways. Parallel proof-search in branches of a coinductive tree does not require synchronisation
of variables in different branches. Moreover, for programs that are guarded by constructors -
such as ListNat and Stream, we avoid having infinite branches or infinite number of variables
in a single tree. We shall illustrate with our leading example.

I Example 5.3. The coinductive trees from Figure 4 agree with the first part of the and-or
parallel tree for list(cons(x, cons(y, x))) in Figure 5. But the coinduction tree has leaves
nat(x), nat(y) and list(x), whereas the and-or tree follows those nodes, using substitutions
determined by mgu’s. Moreover, those substitutions need not be consistent with each other:
not only are there two ways to unify each of nat(x), nat(y) and list(x), but also there is
no consistent substitution for x at all. In contrast, the coinduction trees capture such cases.

We can go further and introduce a new derivation algorithm that allows proof search
using coinduction trees. We modify the definition of a goal by taking it to be a pair < A, T >,
where A is an atom, and T is the coinduction tree determined by A, as in Definition 4.1, in
which we restrict the choice of substitutions θ1, . . . θm to the most general unifiers only, in
which case T is uniquely determined by A.

I Definition 5.4. Let G be a goal given by an atom← A and the coinductive tree T induced
by A, and let C be a clause H ← B1, . . . , Bn. Then goal G′ is coinductively derived from G

and C using mgu θ if the following conditions hold:
• A′ is a leaf atom, called the selected atom, in T .
• θ is an mgu of A′ and H.
• G′ is given by the atom ← Aθ and the coinduction tree T ′ determined by Aθ.

I Definition 5.5. A coinductive derivation of P ∪ {G} consists of a sequence of goals
G = G0, G1, . . . called coinductive resolvents and a sequence θ1, θ2, . . . of mgus such that
each Gi+1 is derived from Gi using θi+1. A coinductive refutation of P ∪ {G} is a finite
coinductive derivation of P ∪ {G} such that its last goal contains a success subtree. If Gn
contains a success subtree, we say that the refutation has length n.

Coinductive derivations resemble tree rewriting. In applying SLD-derivation, one’s primary
interest lies in derivations of atomic goals. But in order to make the induction work, one
must generalise goals from being atoms to being lists of atoms, see Definition 2.1. In
coinductive tree, this information would be represented by a list of nodes in a truncation of

E. Komendantskaya and J. Power 13

stream(x)
θ1→

stream(scons(z, y))

bit(z) stream(y)

θ2→ . . .
θ3→

stream(scons(0, scons(y1, z1)))

bit(0)

2

stream(scons(y1, z1))

bit(y1) stream(z1)

Figure 6 Coinductive derivation of length 3 for the goal G = stream(x) and the program Stream,
with θ1 = x/cons(z, y) and θ2 = z/0, θ3 = y/cons(y1, z1).

the coinductive tree. To analyse coinductive derivations, we generalise the definition of a
goal a little further, extending it from being an atom A to being the coinductive derivation
tree for A, see Definition 4.1. For every goal G =< A, T >, there can be several transitions
to a new goal, and these transitions can be made concurrently.

I Example 5.6. Figure 6 shows a coinductive derivation of length 3 for the goal G =
stream(x) and the program Stream from Example 1.2.

I Theorem 5.7 (Soundness and Completeness of coinductive resolution relative to coalgebraic
semantics.). Let P be a program built over the signature Σ, and G =< A(t), T > be a goal.
1. Soundness. If there is a coinductive derivation of length n of P ∪ {G} with an answer

θ = θ1 ◦ . . . ◦ θn, and if Gn =< An(tn), Tn >, tn having k distinct variables, then tn = tθ

and p̄(k)(At(θ))(A(t)) is isomorphic to the coinductive forest F of breadth k determined
by An.

2. Completeness. Given the Lax(LopΣ , PcPf)-coalgebra structure p̄ generated by P , let θ
be a map in LopΣ , and let C be the structure determined by evaluating p̄ : At(θ) −→
C(PcPf)(At) at a natural number k and applying it to an atomic formula A(x1, . . . , xk).
Then there exists a derivation from G =< A(x1, . . . , xk), T > to Gn =< An, Tn >, with
An = A(x1, . . . xk)σ, such that there exists a substitution ρ such that θ = σρ and the
coinductive forest for Anρ is isomorphic to C.

Proof. The proof proceeds by induction on the length of derivations, using the constructions
of Theorem 4.5. J

Theorem 5.7 characterises all derivations, not only finite ones, although it can be restricted
to coinductive refutations. In general, there are two levels of computation at which both
infinity and concurrency can be implemented in coinductive derivations. One level is that
of the coinduction trees given by the goals; and the second level is the transitions between
the goals. Depending on the applications and resources for parallelisation, the coinductive
derivation algorithm above offers several choices as follows.

Every coinductive tree in a goal is necessarily concurrent, but transitions between
coinduction trees can be done in a sequential or a concurrent manner. That is, if there
are several non-empty leaves in a tree, any such leaf can be unified with some clause
in P . Such leaves can provide substitutions for sequential or concurrent tree transitions.
In Figure 6, the substitution θ′ = θ2θ3 is derived by considering mgus for two leaves in
G1 =< stream(scons(z,y)), T1 >; but, although two separate and-leaves were used to
compute θ′, θ′ was computed by composing the two substitutions sequentially, and only one

14 Coalgebraic Derivations in Logic Programming

tree, T3, was produced. However, we could concurrently derive two trees from T2 instead,
G′2 =< stream(scons(O,y)), T2 > and G′′2 =< stream(scons(z,scons(y1,z1))), T ′2 >.

There are choices concerning how to treat infinite coinductive trees arising in derivations.
As Example 4.6 shows, some definitions of infinite objects do not give rise to infinite
coinduction trees, e.g., Stream gives rise to an infinite sequence of finite coinduction trees, cf.
Figure 6. This applies equally to any (potentially) infinite data defined using constructors,
such as scons in Stream or cons and nil in ListNat. So one may view infinite coinduction
trees as “bad" cases, in which (co)recursion is not guarded by constructors. In this case, one
might decide to halt any derivation of this kind, and amend the program before proceeding.
Alternatively, one may decide to prune infinite branches, and continue to look for derivations
in other or-branches for the same unchanged logic program.

Finally, as Figure 6 shows, coinductive programs such as Stream may give rise to infinite
derivations of coinduction trees, in which case implementation may prune the chain of
derivations as [11, 25] suggest, or, if infinite production of new streams is desirable, let the
coinductive derivations run.

We can now remedy the full abstraction result that we have proven to fail for the SLD-
derivations, see Section 5. We once again characterise coinductive derivations from the point
of view of the Theory of Observables. In particular, we can routinely adapt Definitions
4.10 and 4.11 to coinductive derivations using substitutions and call patterns determined by
coinductive derivations rather than by SLD-derivations. Then the following correctness and
full abstraction results hold.

I Theorem 5.8. P1 ≈ P2 if and only if the Lax(LopΣ , PcPf)-coalgebra structure generated by
P1 is equivalent to the Lax(LopΣ , PcPf)-coalgebra structure generated by P2.

Proof. (Sketch.) Proof proceeds by induction on constructions described in Theorems 4.5
and 5.7. J

6 Conclusions and Further Work

The analysis of this paper can be extended to more expressive logic programming languages,
such as [10, 24, 21], also to functional programming languages in the style of [22, 2]. We de-
liberately chose our running examples to correspond to definitions of inductive or coinductive
types in such languages.

The key fact driving our analysis has been the observation that the implication ← acts
at a meta-level, like a sequent rather than a logical connective. That observation extends to
first-order fragments of linear logic and the Logic of Bunched Implications [10, 24]. So we
plan to extend the work in the paper to logic programming languages based on such logics.

The situation regarding higher-order logic programming languages such as λ-PROLOG
[21] is more subtle. Despite their higher-order nature, such logic programming languages
typically make fundamental use of sequents. So it may well be fruitful to consider modelling
them in terms of coalgebra too, albeit probably on a sophisticated base category such as a
category of Heyting algebras.

References
1 G. Amato, J. Lipton, and R. McGrail. On the algebraic structure of declarative program-

ming languages. Theor. Comput. Sci., 410(46):4626–4671, 2009.
2 D. Ancona, G. Lagorio, and E. Zucca. Type inference by coinductive logic programming.

In TYPES 2008, volume 5497 of LNCS, pages 1–18. Springer, 2009.

E. Komendantskaya and J. Power 15

3 A. Asperti and S. Martini. Projections instead of variables: A category theoretic interpret-
ation of logic programs. In ICLP, pages 337–352, 1989.

4 F. Bonchi and U. Montanari. Reactive systems, (semi-)saturated semantics and coalgebras
on presheaves. Theor. Comput. Sci., 410(41):4044–4066, 2009.

5 R. Bruni, U. Montanari, and F. Rossi. An interactive semantics of logic programming.
TPLP, 1(6):647–690, 2001.

6 M. Comini, G. Levi, and M. C. Meo. A theory of observables for logic programs. Inf.
Comput., 169(1):23–80, 2001.

7 V. S. Costa, D. H.D. Warren, and R. Yang. Andorra-I: A parallel prolog system that
transparently exploits both and- and or-parallelism. In PPOPP, pages 83–93, 1991.

8 C. Dwork, P.C. Kanellakis, and J.C. Mitchell. On the sequential nature of unification.
Journal of Logic Programming, 1:35–50, 1984.

9 M. Gabrielli, G. Levi, and M.C. Meo. Observable behaviors and equivalnences of logic
programs. Information and Computation, 122(1):1–29, 1995.

10 J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
11 G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coinductive logic programming

and its applications. In ICLP 2007, volume 4670 of LNCS, pages 27–44. Springer, 2007.
12 G. Gupta and V.S. Costa. Optimal implementation of and-or parallel prolog. In Conference

proceedings on PARLE’92, pages 71–92, New York, NY, USA, 1994. Elsevier North-Holland.
13 M. Jaume. On greatest fixpoint semantics of logic programming. J. Log. Comput.,

12(2):321–342, 2002.
14 P. C. Kanellakis. Logic programming and parallel complexity. In Foundations of Deductive

Databases and Logic Programming., pages 547–585. M. Kaufmann, 1988.
15 Y. Kinoshita and A. J. Power. A fibrational semantics for logic programs. In Proceedings

of the Fifth International Workshop on Extensions of Logic Programming, volume 1050 of
LNAI. Springer, 1996.

16 E. Komendantskaya, G. McCusker, and J. Power. Coalgebraic semantics for parallel de-
rivation strategies in logic programming. In Proc. of AMAST’2010 - 13th Int. Conf. on
Algebraic Methodology and Software Technology, volume 6486 of LNCS, 2010.

17 E. Komendantskaya and J. Power. Fibrational semantics for many-valued logic programs:
Grounds for non-groundness. In JELIA, volume 5293 of LNCS, pages 258–271, 2008.

18 E. Komendantskaya and J. Power. Coalgebraic semantics for derivations in logic program-
ming. In CALCO’11, 2011.

19 J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
20 Zoran Majki? Coalgebraic semantics for logic programming. In 18th Workshop on (Con-

straint) Logic Programming, WLP 2004, March 04-06, 2004.
21 D. Miller and G. Nadathur. Higher-order logic programming. In ICLP, pages 448–462,

1986.
22 L.C. Paulson and A.W. Smith. Logic programming, functional programming, and inductive

definitions. In ELP, pages 283–309, 1989.
23 E. Pontelli and G. Gupta. On the duality between or-parallelism and and-parallelism in

logic programming. In Euro-Par, pages 43–54, 1995.
24 D.J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26

of Applied Logic Series. Kluwer Academic Publishers, 2002.
25 L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Extending logic

programming with coinduction. In ICALP, volume 4596 of LNCS, pages 472–483. Springer,
2007.

26 J.D. Ullman and A.V.Gelder. Parallel complexity of logical query programs. Algorithmica,
3:5–42, 1988.

	Introduction
	First-order logic programming
	Coalgebraic Semantics for SLD-derivations
	Coalgebraic Semantics and Infinite Derivations
	Applications in Concurrent Logic Programming
	Conclusions and Further Work

