A Type Theoretic Approach to Structural
Resolution

Peng Fu, Ekaterina Komendantskaya

University of Dundee
School of Computing

Logic programming and Proof

» k1 : Connect (x, y), Connect(y, z) => Connect(x, z)
k2 : => Connect (N1, N2)
k3 : => Connect (N2, N3)

» Are there any proof of Connect (x, N3) for some x?
Answer 1: (k1 k2 k3) with [N1/x]
Answer 2: k3 with [N2/x]

/15

Logic programming and Proof

Type Class in Functional Language(e.g. Haskell)

> k1 : Eg(x) => Eg(List(x))
k2 : => Eg(Int)

eq : Egq(x) => x -> x —-> Bool

test = eq d [1,3] [1,2, 3]
» What is the proof of Eq (List (Int))?
» d = (k1 k2) isaproofof Eq(List (Int))!

/15

Resolutions

k : Stream(y) => Stream(cons(x, Vy))
Query stream(cons (x,v))

» SLD-resolution:

{Stream(cons (x,y))} ~ {Stream(y) } ~
{Stream(y2)} ~ ...

Matcher: ot = 1, Unifier: oty = ot

15

Resolutions

k : Stream(y) => Stream(cons(x, Vy))
Query stream(cons (x,v))

» SLD-resolution:

{Stream(cons (x,y))} ~ {Stream(y) } ~
{Stream(y2)} ~ ...

» Resolution by Term matching:
{Stream(cons(x,y))} — {Stream(y)}

Matcher: ot = 1, Unifier: oty = ot

15

Resolutions

k : Stream(y) => Stream(cons(x, Vy))
Query stream(cons (x,v))

» SLD-resolution:
{Stream(cons (x,y))} ~ {Stream(y) } ~
{Stream(y2)} ~ ...

» Resolution by Term matching:
{Stream(cons(x,y))} — {Stream(y)}

» Structural Resolution(Matching + Unification):
{Stream(cons (x,y))} — {Stream(y) }
< {Stream(cons (x1,yl))} — {Stream(yl)}
— {Stream(cons (x2,y2))} — {Stream(y2)}

}

— {Stream(cons (x3,y3)) } = {Stream(y3) }...

’ Matcher: ot = 1, Unifier: oty = ot ‘

15

A Few Definitions

» Term-matching reduction:
P+ {Al, ...,Ai, ,An} — K {Al, ...,O‘Bl, cens O’Bm, ...,An}, if
there exists s : By, ...,B,, = C € ® such that oC = A,.

15

A Few Definitions

» Term-matching reduction:
P+ {Al, ...,Ai, ,An} —k {Al, ...,O‘Bl, cens O’Bm, ...,An}, if
there exists s : By, ...,B,, = C € ® such that oC = A,.

» Unification reduction:
Ol {Al, ...,A,’, ,An} ey {’}/Al, ...,’}/Bl, ...,’)/Bm, ...,’}/An},
if there exists « : By, ..., B, = C € ® such that vC = ~A,.

15

A Few Definitions

» Term-matching reduction:
P+ {Al, ...,Ai, ...,An} —k {Al, ...,O’Bl, cens O’Bm, ...,An}, if
there exists s : By, ...,B,, = C € ® such that oC = A,.

» Unification reduction:
P+ {Al, ...,A,’, ,An} ey {’}/Al, ...,’}/Bl, ...,’)/Bm, ...,’)/An},
if there exists « : By, ..., B, = C € ® such that vC = ~A,.

» Substitutional reduction:
D {AL, o Aiy s An} i {VAL, ooy YA, o YA), i there
exists k : By, ..., B, = C € ® such that vC = ~A,.

15

A Few Definitions

Term-matching reduction:

P+ {Al, ...,Ai, ...,An} —k {Al, ...,O’Bl, cens O’Bm, ...,An}, if
there exists s : By, ...,B,, = C € ® such that oC = A,.
Unification reduction:

Ol {Al, ...,A,’, ,An} ey {’}/Al, ceny ’)/Bl, ceny ’)/Bm, ...,’)/An},
if there exists « : By, ..., B, = C € ® such that vC = ~A,.
Substitutional reduction:

D {AL, o Aiy s An} i {VAL, ooy YA, o YA), i there
exists k : By, ..., B, = C € ® such that vC = ~A,.

LP-TM: (o, —)

LP-Unif: (®,~)

LP-Struct: (&, =+ - —1)

15

LP-Unif and LP-Struct

Question 1. What is the relation between LP-Unif and
LP-Struct?

» Again, the graph example

k1l : Connect(x, y), Connect(y, z) => Connect(x, z)
k2 : => Connect (N1, N2)
k3 : => Connect (N2, N3)

» Connect (N1, N3) in LP-Unif has a finite path.

» For LP-Struct:
{Connect (N1, N3)} —,, v /xnNs/4
{Connect (N1, y), Connect(y, N3)} = v /xy/d
{Connect (N1, yl), Connect(yl, y), Connect(y, N3)}

—hp e

A Notion of Productivity

» We say a logic program is productive if — is terminating

» Productive programs allow finite observation, e.g. stream
{Stream(cons (x,y)) }—{Stream(y) }
— {Stream(cons (x1,y1l)) }—{Stream(yl)}
— {Stream(cons (x2,y2)) }—>{Stream(y2)}
— {Stream(cons (x3,y3)) }—={Stream(y3) }...

» There are nonproductive programs, e.g. graph

LP-Unif and LP-Struct

Question 2. Given — is terminating, what is the relation
between LP-Unif and LP-Struct?

> k1 : => P(c)
k2 : Q(x)=> P(x)

> LP-Unif: P (x) ~ 0
» LP-Struct: P (x) — Q(x)

/15

Realizability Transformation

Reflecting proofs into formulas

k1 : Connect(x, y, ul), Connect(y, z, u2)
=> Connect (x, z, kl(ul, u2))

k2 : => Connect (N1, N2, k2)

k3 : => Connect (N2, N3, k3)

LP-Struct:

{Connect (N1, N3, u)} < {Connect (N1, N3, k1(ul, u2))}—
{Connect (N1, y, ul), Connect(y, N3, u2)} <

{Connect (N1, N2, k2), Connect (N2, N3, u2)}—

{Connect (N2, N3, u2)} < {Connect (N2, N3, k3)}—=10

Final Answer: [k1(k2,k3)/u]

/15

Realizability Transformation

kl : => P(c, kl)
k2 : Q(x, ul)=> P(x, k2 (ul))

LP-Struct: P (x, u) < P(c, k1) =0

Question 3: How to justify the realizatibility transformation?

10/15

Use a Type System

» Girard’s observation on atomic intuitionistic sequent

calculus
A-D B DFC . BEC b .
Aaﬁl_ C cu O'E}_ O'C Subst Eil_A axiom
» Q07
» Internalized “+” as “=”
(k:Vx.F)ed e:F oo
K Vx.F axtom e:Vx.F
e:Vx.F e1:A=D e :B,D=C

———— inst

e: [t/x]F AaXb.(e; b) (e1a) : A,B=C "

11/15

Some Results

» Soundness of LP-Unif
If & - {A} ~* 0, then there exists a proof e : = A given
axioms &.

» Soundness of LP-TM
If @ - {A} —* 0, then there exists a proof ¢ : = A given
axioms &.
New! Completeness for LP-Unif
If there exists a proof e : = A given axioms ®, then
® = {A} ~2 () for some 1.

12/15

Realizability Transformation

Realizability transformation F on normal proofs

> F(k:Al,...,An = B) i=

KA, s Amym] = Blfic 1y s Yim)]
» F(Aa.n:Ay, .., A, = B):=

Aa.n :Al[yl], ,Am[m] = B[[[n]]wg]]

For A = P(x), we write A[y] = P(x,y). Similarly, Alt] = P(x, 1)

13/15

Realizability Transformation

v

Preserve Provability

®+n:A= Bimplies F(®)+ F(n:A = B)

Preserve Behavior of LP-Unif

O {A} ~* Diff F(D) F {A]y]} ~* 0

Operational Equivalence of LP-Unif and LP-Struct

F(®) - {A[]} ~* 0 iff F(®) - {A[y]}(—=H - —1)*0.

Helps to identify productive and non-overlapping programs

v

v

v

14/15

Summary and Future Work

» We define a type system to model LP-TM, LP-Unif and
LP-Struct

» We formalize realizability transformation and show it
preserves the proof content

» We show that LP-Unif and LP-Struct are operationally
equivalent after the tranformation

» Future work: towards analyzing type class inference in
Haskell

» Thank you!

15/15

