
Declarative and Operational Semantics for

Bilattice-based Annotated Logic Programs

Ekaterina Komendantskaya
Department of Mathematics, UCC, Cork, Ireland

e.komendantskaya@mars.ucc.ie

Anthony Seda
Department of Mathematics, UCC, Cork, Ireland

a.seda@ucc.ie

Abstract

We introduce the class of normal bilattice-based annotated first-order
logic programs (BAPs) and develop declarative and operational seman-
tics for them. Thus, we discuss properties of the associated immediate
consequence operators and establish their fixed-point theory. In addi-
tion, SLD-resolution for these programs is defined and its soundness and
completeness established.
Keywords: Annotated logic programming, bilattices, declarative and
operational semantics, semantic operators, fixed points, SLD-resolution.

1 Introduction

Since their introduction by Ginsberg, bilattices have become a well-known alge-
braic structure for reasoning about the sort of inconsistencies which arise when
one formalizes the process of accumulating information from different sources.

We introduce here a declarative and operational semantics for bilattice-based
annotated logic programs (BAPs), which can briefly be described as first-order
logic programs interpreted by arbitrary (possibly infinite) distributive bilattices.

We obtain a continuous semantic operator for BAPs which computes the
least Herbrand models for BAPs and this gives us declarative (fixed-point) se-
mantics.

Further, we establish sound and complete SLD-resolution for BAPs. As far
as we know, this is the first sound and complete proof procedure for first-order
infinitely interpreted (bi)lattice-based annotated logic programs. Compare, for
example, our results with those obtained for constrained resolution for GAPs,
which was shown to be incomplete, see [2], or with sound and complete (SLD)-
resolutions for finitely-interpreted annotated logic programs (these logic pro-
grams do not contain annotation variables and annotation functions), see, for
example,[1].

1

2 Bilattice-Based Logic Programming

We define an annotated bilattice-based language L to consist of individual
variables, constants, functions and predicate symbols together with annotation
terms which can consist of variables, constants and/or functions over a bilattice.
We allow six connectives and two quantifiers, as follows: ⊕,⊗,∨,∧,¬,∼, Σ, Π.

An annotated formula is defined inductively as follows: if R is an n-ary
predicate symbol, t1, . . . , tn are terms, and (µ, ν) is an annotation term, then
R(t1, . . . , tn) : (µ, ν) is an annotated formula (called an annotated atom). An-
notated atoms can be combined to form complex formulae using the connectives
and quantifiers.

A bilattice-based annotated logic program (BAP) P consists of a finite set of
(annotated) program clauses of the form

A : (µ, ν) ← L1 : (µ1, ν1), . . . , Ln : (µn, νn),

where A : (µ, ν) denotes an annotated atom called the head of the clause, and
L1 : (µ1, ν1), . . . , Ln : (µn, νn) denotes L1 : (µ1, ν1) ⊗ . . . ⊗ Ln : (µn, νn) and is
called the body of the clause; each Li : (µi, νi) is an annotated literal called an
annotated body literal of the clause. Individual and annotation variables in the
body are thought of as being existentially quantified using Σ.

In [3], we showed how the remaining connectives ⊕,∨,∧ can be introduced
into BAPs. Let D, v, and J denote respectively a domain of (pre-)interpretation,
a variable assignment and a pre-interpretation for a given language, see [4]. An
interpretation I for L consists of J together with the following mappings. The
first mapping I assigns |R|I,v : Dn −→ B to each n-ary predicate symbol R in
L. Further, for each element 〈α, β〉 of B, we define a mapping χ〈α,β〉 : B −→ B,
where χ〈α,β〉(〈α′, β′〉) = 〈1, 0〉 if 〈α, β〉 ≤k 〈α′, β′〉 and χ〈α,β〉(〈α′, β′〉) = 〈0, 1〉
otherwise. The mapping χ is used to evaluate annotated formulae. Thus, if
F is an annotated atom R(t1, . . . , tn) : (µ, ν), then the value of F is given by
I(F) = χ〈µ,ν〉(|R|I,v(|t1|v, . . . , |tn|v)). Furthermore, using χ we can proceed to
give interpretation to complex annotated formulae in the standard way, see [3].
All the connectives of the language are put into correspondence with bilattice
operations, and in particular quantifiers correspond to infinite bilattice opera-
tions. We call the composition of the two mappings I and χ an interpretation for
the bilattice-based annotated language L and for simplicity of notation denote
it by I.

We introduce a semantic operator TP for BAPs, prove its continuity and
show that it computes at its least fixed point the least Herbrand model for a
given BAP. Indeed, we define TP next.

Definition 2.1. We define the mapping TP : HIP,B → HIP,B as follows: TP (HI)
denotes the set of all A : (µ, ν) ∈ BP such that either

1. There is a strictly ground instance of a clause A : (µ, ν) ← L1 : (µ1, ν1), . . . ,
Ln : (µn, νn) in P such that there exist annotations (µ′1, ν

′
1), . . . , (µ

′
n, ν′n)

satisfying {L1 : (µ′1, ν
′
1), . . . , Ln : (µ′n, ν′n)} ⊆ HI, and one of the following

conditions holds for each (µ′i, ν
′
i):

(a) (µ′i, ν
′
i) ≥k (µi, νi),

(b) (µ′i, ν
′
i) ≥k ⊕j∈Ji(µj , νj), where Ji is the finite set of those indices

such that Lj = Li

2

or

2. there are annotated strictly ground atoms A : (µ∗1, ν
∗
1), . . . , A : (µ∗k, ν∗k) ∈

HI such that 〈µ, ν〉 ≤k 〈µ∗1, ν∗1 〉 ⊕ . . .⊕ 〈µ∗k, ν∗k〉.1

3 SLD-Resolution for BAPs

We propose a sound and complete proof procedure for BAPs.Like the resolution
procedures given in [1] for lattice-based logics, the SLD-resolution for BAPs is
enriched with additional rules reflecting the properties of the extended semantic
operator for BAPs, and is an alternative to the constrained resolution for the
general annotated logic programs of Kifer and Subrahmanian, see [2] and to
resolutions for logics which are interpreted by linearly ordered sets and/or finite
sets [2].

We adopt the following terminology. Let P be a BAP and let G be a goal
← A1 : (µ1, ν1), . . . , Ak : (µk, νk). An answer for P ∪ {G} is a substitution θλ
for individual and annotation variables of G. We say that θλ is a correct answer
for P ∪ {G} if Π((A1 : (µ1, ν1), . . . , Ak : (µk, νk))θλ) is a logical consequence of
P .

Definition 3.1 (SLD-derivation). Let Gi be the annotated goal
← A1 : (µ1, ν1), . . . , Ak : (µk, νk), and let C, C∗1 , . . . , C∗l be the annotated clauses
A : (µ, ν) ← B1 : (µ′1, ν

′
1), . . . , Bq : (µ′q, ν

′
q), A∗1 : (µ∗1, ν

∗
1) ← body∗1, . . . , A

∗
l :

(µ∗l , ν
∗
l) ← body∗l . Then the set of goals G1

i+1, . . . , G
m
i+1 is derived from Gi and

C (and C∗1 , . . . , C∗l) using mgu2 θλ if the following conditions hold.

1. Am : (µm, νm) is an annotated atom, called the selected atom, in G.

2. θ is an mgu of Am and A, and one of the following conditions holds:

(a) λ is an mgu of (µm, νm) and (µ, ν);

(b) (µm, νm)λ and (µ, ν)λ are constants and (µ, ν)λ ≥k (µm, νm)λ;

(c) there are clauses C∗1 , . . . , C∗l of the form A∗1 : (µ∗1, ν
∗
1) ← body∗1, . . . , A

∗
l :

(µ∗l , ν
∗
l) ← body∗l in P , such that θ is an mgu of A, Am and A∗1, . . . , A

∗
l ,

λ is an mgu of (µm, νm), (µ, ν) and (µ∗1, ν
∗
1), . . . , (µ∗l , ν

∗
l) or (µm, νm)λ,

(µ, ν)λ and (µ∗, ν∗)λ, . . . , (µ∗l , ν
∗
l)λ are constants such that (µm, νm)λ ≤k

((µ, ν)λ⊕ (µ∗1, ν
∗
1)λ⊕ . . .⊕ (µ∗l , ν

∗
l)λ).

3. in case 2(a), 2(b), Gi+1 = (← A1 : (µ1, ν1), . . . , Am−1 : (µm−1, νm−1), B1 :
(µ′1, ν

′
1), . . . , Bq : (µ′q, ν′q), Am+1 : (µm+1, νm+1), . . . , Ak : (µk, νk))θλ.

4. in case 2(c), Gi+1 = (← A1 : (µ1, ν1), . . . , Am−1 : (µm−1, νm−1), B1 :
(µ′1, ν

′
1), . . . , Bq : (µ′q, ν

′
q), body

∗
1, . . . , body

∗
l , Am+1 : (µm+1, νm+1), . . . , Ak :

(µk, νk))θλ.
In this case, Gi+1 is said to be derived from Gi, C and C∗1 , . . . , C∗l using
θλ.

1Note that whenever F : (µ, ν) ∈ HI and (µ′, ν′) ≤k (µ, ν), then F : (µ′, ν′) ∈ HI. Also,
for each formula F , F : (0, 0) ∈ HI.

2Throughout this section, mgu stands for “most general unifier”.

3

5. The goals G1
i+1, . . . , G

m
i+1 can be obtained using the following rules: in

case there are atomic formulae Fi : (µi, νi), Fi+1 : (µi+1, νi+1), . . . , Fj :
(µj , νj) in Gi such that Fiθ = Fi+1θ = . . . = Fjθ, form the next goal
G1

i+1 = Fiθ : ((µi, νi) ⊗ (µi+1, νi+1)), . . . , Fj : (µj , νj), then G2
i+1 = Fi :

(µi, νi), Fiθ : ((µi+1, νi+1) ⊗ (µi+2, νi+2)), . . . , Fj : (µj , νj) and so on for
all possible combinations of these replacements. Form the set of goals
G1

i+1, . . . , G
m
i+1, which is always finite and can be effectively enumerated by,

for example, enumerating goals according to their leftmost replacements
and then according to the number of replacements.

6. Whenever a goal Gi
j contains a formula of the form F : (0, 0), then remove

F : (0, 0) from the goal and form the next goal Gi
j+1.

Definition 3.2. Suppose that P is a BAP and G0 is a goal. An SLD-derivation
of P ∪ {G0} consists of a sequence G0, G

i
1, G

j
2 . . . of BAP goals, a sequence

C1, C2, . . . of BAP clauses and a sequence θ1λ1, θ2λ2, . . . of mgus such that
each Gk

i+1 is derived from Gj
i and Ci+1 using θi+1λi+1.

An SLD-refutation of P ∪{G0} is a finite SLD-derivation of P ∪{G} which
has the empty clause ¤ as the last goal of the derivation. If Gi

n = ¤, we say
that the refutation has length n.

The success set of P is the set of all A : (µ, ν) ∈ BP such that P ∪ {∼ A}
has an SLD-refutation.

Theorem 3.1 (Soundness and completeness of SLD-resolution). The
success set of P is equal to its least annotation Herbrand model. Alternatively,
soundness and completeness can be stated as follows. Every computed answer
for P ∪ {G} is a correct answer for P ∪ {G}, and for every correct answer θλ
for P ∪ {G}, there exist a computed answer θ∗λ∗ for P ∪ {G} and substitutions
ϕ, ψ such that θ = θ∗ϕ and λ = λ∗ψ.

References

[1] M. Kifer and E. L. Lozinskii. Ri: A logic for reasoning with inconsistency.
In Proceedings of the 4th IEEE Symposium on Logic in Computer Science
(LICS), pages 253–262, Asilomar, 1989. IEEE Computer Press.

[2] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic
programming and its applications. Journal of logic programming, 12:335–
367, 1991.

[3] E. Komendantskaya, A. K. Seda, and V. Komendantsky. On approxima-
tion of the semantic operators determined by bilattice-based logic programs.
In Proceedings of the Seventh International Workshop on First-Order Theo-
rem Proving (FTP’05), pages 112–130, Koblenz, Germany, September 15–17
2005.

[4] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd
edition, 1987.

4

