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ABSTRACT
Neural networks are increasingly relied upon as components of

complex safety-critical systems such as autonomous vehicles. There

is high demand for tools and methods that embed neural network

verification in a larger verification cycle. However, neural network

verification is difficult due to a wide range of verification properties

of interest, each typically only amenable to verification in spe-

cialised solvers. In this paper, we show how Imandra, a functional

programming language and a theorem prover originally designed

for verification, validation and simulation of financial infrastructure

can offer a holistic infrastructure for neural network verification.

We develop a novel library CheckINN that formalises neural net-

works in Imandra, and covers different important facets of neural

network verification.
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1 MOTIVATION
Machine learning algorithms have recently become a key technol-

ogy underlying complex autonomous systems such as autonomous

cars, chatbots or intelligent trading agents. Neural network (NN)

is an umbrella term for a large family of machine-learning algo-

rithms. Abstractly speaking, a neural network 𝐹 is a function of type
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R𝑚 → R𝑛 . We usually understand that this function is obtained

by fitting the function’s parameters to give an optimal assignment

of the available data (given by points in an𝑚-dimensional space)

to 𝑛 classes. The process of fitting such a function is usually called

training or learning, and the optimisation algorithms used in the

process are called learning algorithms.
Because learning algorithms rely on incomplete and often noisy

data, the solutions they offer are difficult to verify with standard

safety assurance methods. One safety verification scenario is to

prove that a neural network will never misclassify “important”

inputs. This condition has several mathematical approximations [5]:

e.g. draw an 𝜖-ball around each important data point and prove

that all images within those 𝜖-balls are classified correctly [18].

This style of neural network analysis is often called robustness
verification, as we prove a network robust to image change within

𝜖-perturbation. The verification community has proposed several

algorithms for robustness verification, a majority of which are

based on either SMT-solving [18, 21] or abstract interpretation [1,

14, 34]. The main limiting factors for robustness verification are

poor scalability to large or non-linear neural networks, and the

limited scope of robustness as a safety property.

Functional programming (FP) and interactive theorem provers

(ITPs) have so far played only a marginal role in the domain of neu-

ral network verification. There is a library [29] formalising small

rational-valued neural networks in Coq and proving their structural

properties. A more sizeable formalisation called MLCert [2] imports

neural networks from Python, treats floating point numbers as bit

vectors, and proves properties describing the generalisation bounds

for the neural networks. An 𝐹 ∗ formalisation [24] uses 𝐹 ∗ reals

and refinement types for proving robustness of networks trained

in Python. Each approach had its own limitations. For example,

MLCert does not prove neural networks’ robustness, the 𝐹 ∗ for-
malisation only proves robustness; neural networks in [29] are too

small for machine learning applications that we seek to verify.

At the same time, one lesson that successful industrial provers

like Imandra [30, 31] teach us is that real life verification efforts

require a wide range of facilities, such as (a) user-friendly higher-

order syntax, (b) ability to execute the code in order to prototype

the system’s behaviour and study counterexamples, (c) proof au-

tomation for routine proofs, (d) complete techniques for bounded

verification (including counterexample synthesis), and (e) facility

to advance the proofs interactively when they require additional

insight. Traditionally, (a), (b), (e) can be done in ITP, and (c) and (d)

in automated solvers, but often one needs all of them in the same

language. Imandra’s logic is based on a pure, higher-order subset of
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Verification Property Proof Method Type of NN Matrix Representation Numeric choice

Sec. 4 Structural Induction, Imandra Waterfall FNN, CNN Lists Real, Integer

Sec. 5 Reachability (𝜖-ball robustness) SAT-solver Blast FNN, CNN Lists Integer

Sec. 6 Reachability (ACAS Xu) Imandra Waterfall FNN Functions, Records Real, Integer

Figure 1: The range of verification design decisions covered in each section of this paper.

OCaml, and functions written in Imandra are at the same time valid

OCaml code that can be executed, or simulated. Imandra’s mode

of interactive proof development is based on a typed, higher-order

lifting of the Boyer-Moore waterfall [3] for automated induction, in-

tegrated with novel techniques for SMTmodulo recursive functions

and a first-class treatment of counterexamples.

In the present work, our main goal is to capitalise on lessons

learnt by the Imandra team, and propose a library CheckINN [9]

that provides the following four facilities that, to the best of our

knowledge, no single prover has offered together before:

1. The choice of properties of neural networks that we aim
to verify. Ideally, we would like to be able to prove general, higher-

order properties, such as

PS : any neural network 𝐹 that satisfies a property 𝑄1, also satisfies
a property 𝑄2.

Usually, proving such a property requires induction on the structure

of 𝐹 (as well as possibly nested induction on parameters of 𝑄1). As

such proofs rely on structural properties of 𝐹 captured in𝑄1, we will

call verification properties stated in this form structural properties.
However, as this paper will show, finding such structural properties

is by no means an easy task (unless the networks are small [29]).

This is why the verification community often resorts to proving

properties like

PR : for the given neural network 𝐹 , if a property 𝑅1 holds for its
inputs, verify that a property 𝑅2 holds for 𝐹 ’s outputs.

The 𝜖-ball robustness [1, 14, 18, 34] or ACAS Xu challenges [21]

are formulated in this way. Because this kind of verification proof

exploits how a property of inputs 𝑅1 propagates through the given

neural network, we call verification properties stated in this form

reachability properties.
The choice of properties determines the choice of proof meth-

ods, which we will call respectively structural proofs and reacha-
bility proofs. Crucially, Imandra can perform both structural and

reachability proofs, which distinguishes it from neural network

solvers like Marabou [21] or ERAN [14, 34]. Indeed Section 6 shows

that Imandra uses its original proof strategies in the reachability

proofs of the ACAS Xu challenge [21]. However, without any fur-

ther domain-specific heuristics or proved libraries of lemmas, it

does not match the performance of the domain-specific verifiers.

2. The choice of neural network architecture. Convolutional
Neural Networks (CNNs) generalise the standard definition of “fully

connected” neural networks (FNNs) by introducing a range of dif-

ferent layer types with different geometry. They are widely used

in computer vision as more sophisticated layer geometry allows

the network to capture more general features in data. The choice

between CNNs and FNNs does not seem to play a crucial role in

reachability verification, but this paper shows their potential role

in structural verification, as they open new ways of exploring the

structural properties of neural networks.

CNNs are challenging for ITP formalisation, as they work with

images and expect 2D or 3D input data, and assume that different

kinds of “layers” (convolutional, pooling, fully connected) can be

composed flexibly to form a neural network, which at the level

of formalisation requires a generic approach to layer definition.

CheckINN addresses these technical hurdles.

3. The choice of matrix representation. No matter which neu-

ral network architecture is chosen, it still lies with the programmer

to determine how to define matrices and operations over them.

Generally, functional programming languages allow many diverse

approaches to representing matrices. The standard choices are

an inductive list data type [16, 24], functions from indices to ele-

ments [37], or records [29]. This FP feature has already been suc-

cessfully exploited in different applications. The question we ask

is whether, and how, these ideas can be applied in neural network

verification.CheckINN provides code for all three modes of matrix

representation, and explores their consequences for verification.

We find that some matrix representations favour reachability proofs

and others structural proofs.

4. The choice between continuous and discrete number sys-
tems. In theory, modelling neural networks requires working with

real-valued matrices. Real numbers raise difficult design choices

in both functional programming and theorem proving. For con-

structive ITPs, the problem is in defining constructive reals [15];

for SMT solvers – undecidability of real arithmetic in the presence

of transcendental and special functions. For example, Z3 uses Dual

Simplex [12] to solve linear real arithmetic (LRA). It also supports

a fragment of non-linear real arithmetic—specifically, polynomial

(real-closed field) arithmetic—and solves this using a conflict reso-

lution procedure based on cylindrical algebraic decomposition [20].

However, polynomial arithmetic is not enough to cover the non-

linear activation functions used in neural networks. Thus, solvers

usually only support networks with linear activation functions

(such as 𝑟𝑒𝑙𝑢), and sometimes require quantisation [11].

Imandra supports real numbers via two integrated mechanisms.

For the linear case, Imandra makes use of LRA decision procedures

and computation with exact rationals, including in its rewriter (in

the style of Boyer-Moore [4]). For the nonlinear case, Imandra sup-

ports reasoning with real algebraic numbers [8]. Moreover, as Iman-

dra supports recursion and higher-order functions, non-polynomial

real functions may be defined and reasoned about by defining recur-

sive functions which approximate them via, e.g., Cauchy sequences.

CheckINN capitalises on Imandra’s real number facilities and

this paper makes a point of studying where, and how, transitioning

between real-valued and quantised matrices makes a difference for

neural network verification.
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type 'a vector = 'a list
type 'a matrix = 'a vector list

let dot_product (a:real matrix) (b:real matrix) =
let c = map2 ( *. ) a b in map sum c

let safe_dot_product m1 m2 = if (length m1) <> (length m2)
then Error "invalid dimensions" else map sum (dot_product m1 m2)

let activation f w i = (* activation function , weights , input *)
let i' = 1.::i in (* prepend 1. for bias *)
let z = safe_dot_product w i' in map f z

let rec fc f (weights:real Matrix.matrix) (input:real Vec.vector) = match weights with
| [] -> Ok []
| w::ws -> lift2 cons (activation f w input) (fc f ws input)

Listing 1: A representative snapshot of CheckINN code for operations on matrices (as lists) and fully connected layers.

The paper is structured as follows. Section 2 gives necessary

background on neural networks and Imandra syntax. Section 3 in-

troduces an implementation of CNNs in Imandra. Section 4 presents

the first verification task – a proof of a structural property (neural

network monotonicity) for FNN, and at the same time illustrates

Imandra’s waterfall method. It then considers a more difficult sce-

nario of formulating and proving structural properties of CNNs.

Section 5 uses Blast, Imandra’s SAT solver on the matrix-as-list

representation, to prove 𝜖-ball robustness for small networks. But

Blast only works with integers and does not scale well to big neural

networks. Finally, Section 6 uses Imandra’s native automation to

solve the ACAS Xu challenge[21] with integer and real values, but

this comes at the price of working with matrix representations via

maps and records. Section 7 concludes the paper.

The main contribution of this paper is to demonstrate the power

of the “wide range” NN verification methodology in CheckINN.
Fig.1 summarises the combination of methods explored across the

sections. This main contribution builds upon several smaller origi-

nal contributions, e.g. the formalisation of Section 3 is the first ITP

implementation of CNNs we are aware of, the method of structural

verification of CNN proposed in Section 4 is original; Sections 5

and 6 are the first successful attempts to automatically prove reach-

ability properties for common benchmarks in any ITP.

2 BACKGROUND
In this section, we introduce fully connected networks. Typically

one works with neural networks formed by composition of layers.
So, we start with defining layers first. Given two matrices𝑤 and 𝑏

that are called a weight and a bias, a layer 𝐿 is a function defined as:

𝐿(𝑥) = 𝑎(𝑥 ·𝑤 + 𝑏) (1)

where the operator · denotes the dot product between the input

vector 𝑥 and each row of 𝑤 , and 𝑎 : R → R is the activation

function applied pointwise to the elements of the vector obtained

by computing (𝑥 ·𝑤 + 𝑏).
By denoting 𝑎𝑘 ,𝑤𝑘 , 𝑏𝑘 — the activation function, weight and

bias of the 𝑘th layer respectively, a fully-connected network (FNN)
𝐹 with 𝑙 layers is traditionally defined as:

𝐹 (𝑥) = 𝐿𝑙 (𝐿𝑙−1 (. . . 𝐿1 (𝑥) . . .)) (2)

In Imandra, we aim to define NNs as functions that compose

layers:

let cnn input =
layer_0 input >>= layer_1 >>= layer_2 >>= layer_3

Listing 2: Desirable Syntax for NN using monadic bind (cf. Appendix A).

To implement this in FP, we have three key choices:

(1) to represent matrices as lists of lists (and take advantage of

the inductive data type List),

(2) define matrices as functions from indices to matrix elements,

(3) or take advantage of record types, and define matrices as

records with maps.

In the accompanying note [10] we focus specifically on the technical

consequences of taking each of these choices in Imandra. Here, we

will build up our matrix representations gradually, explaining the

consequences of various choices as we go.

We start with lists (cf. Listing 1). Most list manipulation functions

of the OCaml Listmodule are available in Imandra, which opens the

way for library re-use. For example, the definition of a dot product

uses map2 (a straightforward generalisation of list map to matrices)

and the sum function, which in turn applies List.fold_left and + to

vectors. A fully connected layer is then defined as a function fc

which takes as parameters an activation function, a 2-dimensional

matrix of layer’s weights and an input vector. Note that each row

of the weights matrix represents the weights for one of the layer’s

nodes. The bias for each node is the first value of the weights vector,

and 1 is prepended to the input vector when computing the linear

combination of weights and input to account for that.

It is now easy to see that our desired approach to composing

layers given in Listing 2 works as stated. We may define the lay-

ers using the syntax: let layer_i = fc a weights, where i stands for

0,1,2,3, and a stands for any chosen activation function.

Although natural, this formalisation of layers and networks suf-

fers from two problems. Firstly, it lacks the matrix dimension checks

that were readily provided via refinement types in [24]. This is be-

cause Imandra is based on a computational fragment of HOL, and

has no refinement or dependent types. To mitigate this, the library

we present performs explicit dimension checking via a result
monad (indeed the code in Table 1 gives a good idea of dimension
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Figure 2: Sample from the dataset used as a running example. The images
in the top row are labelled as "Happy" and those in the bottom as "Sad".

Figure 3: A feature map resulting from a convolution operation, given an
image. The filter shows a horizontal line pattern. The bottom area of the input
image matches the filter better than the top one, resulting in higher values in
the feature map.

Figure 4: Max pooling operation with a 4 × 4 filter. Each coloured zone is a
region where the filter is applied.

error tracking in this part of CheckINN). Secondly, the matrix def-

inition via the list data types makes unrolling-based [31] proofs of

robustness inefficient, as even accessing matrix elements typically

involves unfolding several layers of recursion. In Section 6 we will

present a more efficient approach that defines matrices as functions,

and alleviates both of these problems. However, we proceed with

this simpler data type definition of matrices for the time being.

3 CNNS IN IMANDRA
We now introduce the CNN part of CheckINN. Unlike their fully-
connected counterparts, CNNs are designed to make use of spatial

information that may be present in data. To illustrate this, consider

the following artificial data set created to serve as a running example

for this paper. It consists of 144 unique images of dimension 9×9×1
(see Fig. 2), in which images are classified as happy or sad faces.

This toy data set makes it easier for us to expose the main ideas

behind CNN verification. In later sections, we will be using ACAS

Xu data set and networks [21] as well.

The best way to recognise a smile or a frown is by considering the

spatial configuration of pixels around the mouth. If these pictures

were flattened into vectors, the spatial information would be lost.

In order to analyse 2D data, layers of different kinds (convolutional,

pooling and fully connected) operate over the submatrices of the

matrix that represents a given data point, as illustrated in Fig. 5. We

first describe how the Imandra library defines each of these layers.

3.1 Convolutional Layer
Convolutional layer weights are given by several multidimensional

matrices, called filters. Each filter captures some distinct “feature”.

For example, given three filters, each can detect respectively diag-

onal, vertical and horizontal lines present in an image. The layer

output is the result of convolution operations between the input

image and each of its filters. For each filter, the layer outputs one

2-dimensional array called a feature map. Fig. 3 shows a convolution
operation between an image and a filter.

Definition 3.1 (Convolution Operation). Let 𝐽 be a 2-dimensional

matrix of size ℎ 𝑗 ×𝑤 𝑗 , and let 𝐾 be a 2-dimensional square filter of
size 𝑘 × 𝑘 , then the feature map 𝑀 is the result of the convolution
operation between 𝐽 and 𝐾 , defined as follows.𝑀 ’s dimensions are

(ℎ 𝑗 − 𝑘 + 1) × (𝑤 𝑗 − 𝑘 + 1), and the value of its elements at the

intersection of the 𝑖𝑡ℎ row and 𝑛𝑡ℎ column is determined by the

equation:𝑀𝑖,𝑛 =
∑𝑘
𝑠=1

∑𝑘
𝑝=1 𝐾𝑠,𝑝 𝐽(𝑖+𝑠),(𝑛+𝑝) .

To make it more amenable to formalisation in Imandra, we will

slightly rewrite this definition. By using 𝑋 [𝑖1, 𝑖𝑠 ;𝑛1, 𝑛𝑡 ] to denote

the submatrix of a matrix 𝑋 formed by the intersection of the rows

𝑖1 to 𝑖𝑠 and columns 𝑛1 to 𝑛𝑡 , we use:

𝑀𝑖,𝑛 = 𝐾 · 𝐽 [𝑖, 𝑖 + 𝑘 ;𝑛, 𝑛 + 𝑘] .

Because filters are intended to represent features, i.e. patterns

characteristic of a class, a convolution operation between filters

and an input matrix can be seen as checking which part of the input

matches the feature present in the filter; hence the name “feature

map” for its result. We formalise the convolutional layer in List-

ing 3. The function convolution implements a convolution operation

between a matrix and a filter; fold_left iterates the operation.

So far, we assumed that the input matrix only has one colour

channel, but images usually have three. To apply a convolution

operation to input with multiple channels, the filters must have the

same number of channels. CheckINN handles such cases.

3.2 Pooling Layer
Pooling layers come after convolutional layers; their input is the

feature maps from the previous layer, and their output is a set of

2-dimensional matrices that reduce feature maps in size. Two main

types of pooling operations are used in CNNs: max pooling and

average pooling. By abuse of terminology, the literature also refers

to filters in the pooling layer (cf. Fig 4), but in fact “filters” here

simply define the submatrix size. Our formal definition clarifies this

point.

Definition 3.2 (Max Pooling Operation). Given a 2-dimensional

input matrix 𝐽 , and the filter of size k, the max pooling operation is

a function that returns a matrix𝑀 , whose elements are defined by

𝑀𝑖,𝑛 =𝑚𝑎𝑥 (𝐽 [𝑖, 𝑖 + 𝑘 ;𝑛, 𝑛 + 𝑘]).

TheCheckINN implementation of pooling layers closelymimics

the style of formalisation of the convolutional layer, except for using
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let rec convolution_row ' input filter (row , col) =
let (row ', col ') = Matrix.dimensions filter in
if col < 0 then Ok [] else
let sub_m = Matrix.sub_matrix input (row , col) (row ', col ') in
let dot_p = Res.bind sub_m (fun x -> Matrix.dot_product x filter) in
let head = convolution_row ' input filter (row , col - 1) in (* col decreases to let imandra prove termination *)
Res.bind2 head dot_p (fun x y -> Ok (x @ [y]))

let convolution_row input filter row =
let (i_rows , i_cols) = Matrix.dimensions input in
let (f_rows , f_cols) = Matrix.dimensions filter in
if i_rows < f_rows then Error "convolution_row: filter 's height is greater than input 's" else
if i_cols < f_cols then Error "convolution_row: filter 's width is greater than input 's" else
let col = (i_cols - f_cols) in
convolution_row ' input filter (row , col)

let convolution (input: real Matrix.t) (filter: real Matrix.t) =
if not (Matrix.is_valid input) || not (Matrix.is_valid filter) then Error "convolution: invalid matrix" else
let (i_rows , _) = Matrix.dimensions input in
let (f_rows , _) = Matrix.dimensions filter in
if i_rows < f_rows then Error "convolution: filter 's size is greater than input 's " else
let acc_fun (i, xs) _ =

if f_rows + i > i_rows then (i + 1, xs) else
let x = convolution_row input filter i in
(i + 1, Res.bind2 x xs (fun x xs -> Ok (xs@[x]))) in

let (_, res) = List.fold_left acc_fun (0, Ok []) input in
res

Listing 3: A representative snapshot of CheckINN code for CNN.

Figure 5: Representation of a CNN’s layers and intermediate outputs with their dimensions.

the 𝑚𝑎𝑥 operation instead of the dot product. Average pooling

layers work the same way, but instead of a𝑚𝑎𝑥 function, they use

an averaging function.

3.3 Assembling All Layers
CNNs alternate between convolutional layers and pooling layers.

This allows them to achieve a “greater level of abstraction” in fea-

ture detection. A typical CNN architecture usually chains several

convolutional layers and pooling layers. The flattening layer flat-
tens the 3D representation into a vector, and several fully connected

layers complete the network.

We can now assemble the network shown in Fig. 5, by using the

syntax of Listing 2. To do this, we need to import a trained neural

network from Python.CheckINN uses Keras to train our networks,

and it contains a Python script to convert a CNN saved in Keras [6]

format into an Imandra module containing each layer’s weights.

The layersmust then be instantiatedwith layer functions. The Layers

module encapsulates the individual layer modules to expose higher-

order functions that instantiate layer functions. The convolution

andmax pooling layers are implemented in their respectivemodules

for a single filter but Layers can hold several filters; all filters are

then flattened together. These functions are partially applied to a

multi-dimensional array of weights, to create layer functions that

can be chained to form a network.

let layer_0 = Layer.convolution Layer0.filters

let layer_1 = Layer.max_pool (2, 2)

let layer_2 = Layer.flatten

let layer_3 = Layer.fc (fun x -> x) Layer3.weights

let model input = layer_0 input >>= layer_1 >>= layer_2

>>= layer_3

As these layer functions are implemented in a generic way, an

arbitrary number of layers of any type can be chained together as

long as the dimensions of each layer’s output match those of the

next expected input. (The dimensions are checked dynamically, and

we will see errors at run time if the dimensions do not match.) For

instance, an FNN can be created by chaining only fully connected

layers. Note that the dimensions of layer inputs and outputs are

not specified in the user interface to the library, they are deduced

from the layer dimensions.

4 STRUCTURAL PROPERTIES
When proving structural properties of neural networks, we are

interested in showing how a certain feature present in a network’s
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architecture influences its behaviour as a function. As a conse-

quence, such proofs quantify over all neural networks with said

architectural features; and usually require induction on the net-

work’s structure. This style of proof matches best with Imandra’s

original design, as a higher-order inductive theorem prover.

We start with a simple example of a monotonicity property for a

FNN and use it to also illustrate Imandra’s Waterfall proof method.

We then investigate structural properties of CNNs that may be

useful in verification.

4.1 Monotonicity and Inductive Proofs
There has been some interest in monotone networks in the litera-

ture [33, 36]. We will emulate a monotonicity property as follows:

any fully connected network with positive weights is monotone, in
the sense that, given increasing positive inputs, its outputs will also

increase.

For the sake of this section, we somewhat simplify the code for

FNNs. Taking list of real numbers for input i, 2D and 3D matrices

(as lists) for the weights (ws) and biases (bs), we define:

let rec layer ws bs i = match (ws, bs) with

| (_, []) | ([], _) -> []

| (w::ws, b::bs) -> (perceptron ' w b i) :: (layer ws

bs i)

let rec network ws bs i = match (ws, bs) with

| (_, []) | ([], _) -> i

| (w::ws, b::bs) -> network ws bs (layer w b i)

The monotonicity theorem is then stated simply as:

theorem network_monotonicity ws bs i i' =

positiv_3d ws && positiv_2d bs && positiv i && gte i' i

==> gte (network ws bs i') (network ws bs i)

where the positivity conditions at the top are for vectors, matrices

and 3D matrices respectively; and gte stands for “greater or equal”

applied pointwise to list elements. Note that the theorem above

quantifies over FNNs of any size.

Imandra’s proofs are based on the Boyer-Moore waterfall [3]
strategy, which automates induction, by generating plausible induc-

tion principles, and also applying several heuristics to discharge

intermediate goals. The waterfall ([@@auto]) proceeds in five steps:

(1) simplificationmakes use of all enabled rewrite and forward-

chaining rules, decision procedures for algebraic data types

and arithmetic, and case-splits,

(2) definition unrolling searches for counterexamples up to a

certain unrolling depth (not unlike say in QuickCheck [7]),

(3) destructor elimination transforms all expressions of in-

ductive types from a destructor form (e.g a = List.hd x and

b = List.tl x) into a constructor form (e.g. x = a::b),

(4) fertilisation performs rewriting on terms in the goal using

equivalent terms defined in the lemma assumptions,

(5) generalisation generalises the given conjecture.

Then Imandra generates an induction scheme for the generalised

goal and restarts the search for a proof from item 1. Although much

of this process is automated, Imandra switches to an interactive

mode when the proof search fails and suggests missing lemmas.

Let us see Imandra’s waterfall in action (see also Appendix B

for full user dialogue). The proof of monotonicity does not succeed

Figure 6: Heatmaps of 2× 2× 1 filters: human-imposed on the left; learnt by
the CNN on the right.

Figure 7: A filter propagated through CNN layers.

immediately by [@@auto]. On the first attempt, Imandra realises it

has to use induction, and finds six possible ways to proceed by

induction. It however manages to simplify the six to two, and finds

a clear winner among the two, with induction on the structure of

ws and bs. To finish the proof, we prove two lemmas (derived by

analysing Imandra’s “simplification checkpoints” for the goal):

lemma positive_push_2d bs ws i =

positive bs && positive_2d ws && positive i

==> positive (layer ws bs i) [@@auto] [@@rw]

lemma layer_monotonicity ws bs i i' =

positive_2d ws && positive bs && positive i && gte i' i

==> gte (layer ws bs i') (layer ws bs i) [@@auto ][@@rw]

The first lemma shows that positivity is inherited from layer inputs

to layer outputs; and the second asserts the monotonicity property

for individual layers. Then Imandra completes the inductive proof

by [@@auto]. Automation of inductive proofs is a strength of Imandra.

Similar Coq proofs in [29] required more tactic guidance.

4.2 Structural Properties of CNNs
It may seem that general structural properties like monotonicity are

not very useful for practical verification tasks, especially in CNN

verification. In this section, we present an example that shows a

structural approach to CNN verification and exposes how general

mathematical properties like monotonicity can play a role in the

process. We continue to work with the same toy image data set and

the CNN 𝐹 (of Fig. 5). But we highlight the general pattern in the

approach that can be extrapolated to other CNNs.

1. Filter Adequacy.We assume that filters bear some structural

meaning. For example, a set of CNN filters that would agree with

the human definition of a smile could give rise to heatmaps that
show diagonal lines, as on the left of Fig. 6. These diagonals are

then detected in the later layers of the CNNs, as Fig. 7 shows.
1

In reality, the situation is a bit more complicated. When we train

a 100% accurate CNN on this data set and examine heatmaps of

the filters it learnt, we notice that in fact it learnt the filters shown

on the right of Fig. 6. It is not immediately clear how to interpret

1
Recall that filters are real matrices; heatmaps are visualisations of such matrices,

where intensity of colours corresponds to values of matrix elements. In particular, in

Fig. 6, black stands for 0 and white for 1.
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what the CNN thinks a smile is. However, digging deeper into the

layers, we found that both manually constructed and learnt filters

give rise to a well-defined pattern in the pooling layer, so it seems

that analysis of the pooling layer is crucial. We thus want to define

a filter to be adequate for recognition of a smile if it gives rise to a
well-defined pattern in the pooling layer, if given a smiling face as

an input. The pattern is given by two small diagonals in the bottom

corners of the matrix:

let has_pattern (m: (('a Matrix.t) Vec.t)): (bool , 'b)

result = Ok (max_bottom_left_corner (Vec.nth 0 m) &&

max_bottom_right_corner (Vec.nth 1 m))

2. Definition of Verification Property. Next, we assume that

a definition of a smiling face is a specification that can be written by

a human. Such a specification usually captures idealised structure

and abstracts away from any exceptions. For example, for the given

data set, CheckINN defines a happy face as the one that smiles,

and a smile as a shape with a left diagonal and a right diagonal on
either side of the mouth region, connected by a horizontal line.

The need for neural networks arises when we want to imple-

ment systems that deal with noise and exceptions. For example, the

picture may be distorted or taken from a wrong angle. In such cases,

an idealised rule would fail, whereas a neural network may still

succeed. In our verification scenario, we want to ensure some form

of soundness, i.e. prove that all cases that fall under the human

specification of a happy face are classified as happy: given a CNN
F with adequate filters and a well-tuned fully-connected layer, any
image that satisfies the specification of a happy face will always be
classified by F as happy.

The theoremmisses the definition of awell-tuned fully-connected

layer. From the engineering point of view, the weights of that layer

must be tuned to higher values exactly where the “hot” pattern in

the pooling layer of an adequate filter is expected. And this is the

point that requires a more general mathematical reasoning.

3. Extreme Values Lemma. To understand the problem recall

the role of the fully connected layer in a CNN. Let 𝑥 and𝑦 denote the

two neurons of the output layer 𝑜𝑢𝑡 , standing for classes “Happy”

and “Sad”. Each of these neurons represents the score for a class for

a given input image. The weights associated with 𝑥 and𝑦 are respec-

tively denoted by𝑤𝑥 = (𝑤𝑥
0
,𝑤𝑥

1
, ...,𝑤𝑥

𝑛 ) and𝑤𝑦 = (𝑤𝑦

0
,𝑤

𝑦

1
, ...,𝑤

𝑦
𝑛 ).

After a certain pattern in a (happy) image is detected in the pooling

layer, the pooling layer is flattened into a vector of weights which

are used to compute the vector that the units 𝑥 and 𝑦 receive. So,

ultimately, it is now up to neurons 𝑥 and 𝑦 to classify the pooling

layer pattern into one of the two classes.

Let 𝑎 denote the input vector of the layer 𝑜𝑢𝑡 and 𝑎∗ – the mean

value of 𝑎. Without loss of generality, let us ignore the activation

function of the layer 𝑜𝑢𝑡 , and just concentrate on its dot products.

For unit 𝑥 , it calculates (𝑎1𝑤𝑥
1
+...+𝑎𝑛𝑤𝑥

𝑛 ) and for unit𝑦 it calculates
(𝑎1𝑤𝑦

1
+ ... + 𝑎𝑛𝑤𝑦

𝑛 ). It then decides on the class of the CNN input

based on checking

(𝑎1𝑤𝑥
1
+ ... + 𝑎𝑛𝑤𝑥

𝑛 ) > (𝑎1𝑤𝑦

1
+ ... + 𝑎𝑛𝑤𝑦

𝑛 )

We are almost led to believe that we simply need some mono-

tonicity property that shows that𝑤𝑥 > 𝑤𝑦
. However, this property

would not apply to CNNs we find in practice. In reality, each of

the weight vectors𝑤𝑥
and𝑤𝑦

has higher values for certain indices

(and lower for others) depending on which features are charac-

teristic of which class. Intuitively, if we know that a smile means

high values in the bottom corners of the pooling layer, then it is

specifically for these regions that𝑤𝑥
will have higher values than

𝑤𝑦
. So, the general property that we need should describe how well

the fully-connected layer is tuned to these “extreme values”.

Let 𝑎𝑚𝑎𝑥 and 𝑎𝑚𝑖𝑛 be the max and min values in 𝑎. We define

extreme values of 𝑎 as

𝑎𝑒𝑥 = {𝑎𝑖 : 𝑎𝑖 > 𝑎∗ +
𝑎𝑚𝑎𝑥 − 𝑎∗

2

} (3)

We say a vector 𝑎 has a distinct pattern if all values of 𝑎 are either
extreme or below 𝑎∗.

Lemma 4.1 (Extreme Values). Let 𝑎 be a vector 𝑎1, . . . , 𝑎𝑛 with
distinct pattern and extreme values 𝑎1, . . . , 𝑎𝑚 . If for𝑤𝑥 and𝑤𝑦 , we
have

𝑤𝑥
1
> 𝑤

𝑦

1
∧ ... ∧𝑤𝑥

𝑚 > 𝑤
𝑦
𝑚,

then

(𝑎1𝑤𝑥
1
+ ... + 𝑎𝑛𝑤𝑥

𝑛 ) > (𝑎1𝑤𝑦

1
+ ... + 𝑎𝑛𝑤𝑦

𝑛 ) .

Just as in the case of monotonicity, we note that the lemma is

stated in full generality, and does not depend on a specific network

architecture or a data set. Without further constraining the vectors

𝑎,𝑤𝑥
and𝑤𝑦

, the lemma does not hold. Defining necessary restric-

tions on these vectors ultimately gives possible definitions of the

“well-tuned fully-connected layer”. Indeed, Imandra’s facility for

counter-example generation may serve as an aide in formulating

the new conditions.

In particular, the lemma holds for the following two special cases

(see the proofs in Appendix C or in CheckINN ):

R1. 𝑎 is a binary vector, and 𝑎𝑚𝑖𝑛 ≠ 𝑎∗, 𝑎𝑚𝑎𝑥 ≠ 𝑎∗;
R2. 𝑎 has positive values, 𝑤𝑥

and 𝑤𝑦
are binary vectors, and

𝑚 ≥ 𝑛
1.5+ 𝑎𝑚𝑎𝑥

2𝑎∗
.

Manual proofs of these two cases are short (see Appendix C), but

assume some facts about the relations between 𝑎∗, 𝑎𝑚𝑎𝑥 , 𝑎𝑚𝑒𝑎𝑛 ,

𝑎𝑒𝑥 , which would be laborious to formalise. Our methodological

interest here is to show that Imandra can ease one’s verification

tasks, rather than complicate them. For R1, we can formalise the

lemma in a way that will guide Imandra’s inductive proof in the

right direction. In particular, we can incorporate our knowledge of

extreme values into definition of the dot product:

type value =

| Extreme of (real * real * real)

| Normal of (real * real * real)

type vecs = value list

let rec dot_products vs =

let open Real in

match vs with

| [] -> 0., 0.

| Extreme (x_i , y_i , a_i) :: vs

| Normal (x_i , y_i , a_i) :: vs

->

let (p1, p2) = dot_products vs in

(x_i *. a_i +. p1,

y_i *. a_i +. p2)
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lemma extreme_value_lemma_r2_len_8 x1 x2 x3 x4 x5 x6 x7 x8 y1 y2 y3 y4 y5 y6 y7 y8 a1 a2 a3 a4 a5 a6 a7 a8 =
let w_x , w_y , a = [x1; x2; x3; x4; x5; x6; x7; x8],

[y1; y2; y3; y4; y5; y6; y7; y8],
[a1; a2; a3; a4; a5; a6; a7; a8]

in
extreme_value_precondition_r2 w_x w_y a ==> extreme_value_postcondition w_x w_y a

[@@unroll 200]

Listing 4: Imandra’s proof of the bounded version of Extreme Values Lemma, Case R2

let is_valid_r1 vecs =

let rec aux seen_ex vecs =

let open Real in

match vecs with

| [] -> seen_ex

| Extreme (x_i , y_i , a_i) :: vs ->

a_i = 1.0

&& x_i > y_i

&& aux true vs

| Normal (x_i , y_i , a_i) :: vs ->

a_i = 0.0

&& aux seen_ex vs in

aux false vecs

lemma main vs = is_valid_r1 vs ==>

let (p1,p2) = dot_products vs in p1 >. p2

[@@auto]

Imandra’s proof of the main lemma (see Appendix C) is long but

elegant: Imandra is able to automatically discover an inductive

proof scheme that relates the vector size and extreme values!

For R2, there is no easy way to play a similar trick, and we

need to formalise all lemma preconditions in full generality. They

are fairly straightforward albeit lengthy, and can be found in the

appendix. However, this time Imandra cannot complete the proof

automatically. Once again, we will try to avoid burdensome aux-

iliary lemmas, and instead showcase yet another useful Imandra

tactic: [@@unroll].

We already mentioned that unrolling in Imandra plays a role

of a counterexample finder. But, since it is based on the idea of

symbolic bounded model checking modulo ground decision proce-

dures, there is another way it can be used in proofs: we can prove

results over bounded structures, even if these structures contain,

e.g., unbounded reals or integers. The key point is that with a fixed

explicitly given list structure, all recursive functions can be com-

pletely unrolled and eliminated by Imandra, and what is left is a

ground SMT problem which is amenable to decision procedures.

Listing 4 shows the full interaction with Imandra for provingR2 for
vectors of dimension 8, which is the maximal dimension we were

able to verify with a 300-second timeout. This form of bounded ver-

ification is very useful for analyzing concrete conjectures, and may

suffice for many verification scenarios in which the architecture of

networks is known in advance.

From the methodological point of view, conditions like R1 and

R2 give us a way to construct CNNs that can in principle be proved

sound. For example, to obtain CNNs that satisfyR1, we would need
to apply a binary threshold function on activations of the pooling

layer. To obtain R2, we would need to use algorithms that binarise

the weights when training. Having these conditions, assembling

the other components of the soundness theorem is trivial.

It is out of the scope of this paper to seek more liberal restric-

tions to the Extreme Values Lemma; however, this would be the

future line of work for any scalable project on structural verifica-

tion of CNNs that follows the described verification scenario. The

restrictions above suggest that the key to extending the lemma’s ap-

plicability is to find more sophisticated formulae that characterise

the relationship between the magnitude and the number of extreme

values.

5 REACHABILITY AND SYMBOLIC
EXECUTION

Wewill now applyCheckINN to reachability verification problems.

The most popular reachability property in neural network verifica-

tion is robustness. Informally, a CNN’s robustness is its ability to

correctly classify an input to which a small perturbation is applied.

More specifically, a CNN is 𝜖-ball robust for an image if, whenever
the distance between the perturbed image and the original is no

more than 𝜖 , the CNN classifies the perturbed image correctly.

Different techniques exist to ensure network robustness dur-

ing training: data augmentation [32], adversarial training [28], or

training with logical constraints [13]; and [5] shows that these

different methods give rise to different formal definitions of robust-

ness, which we summarise in Fig. 8. All properties can be written

in first-order logic, and in general are amenable to SMT solvers.

Imandra can also express these properties, with the benefit of a

somewhat more intuitive syntax than the solvers admit. For ex-

ample, this is CheckINN definition of standard robustness (using

𝐿0-norm distance function on vectors):

let sr model input delta epsilon ?( constraint=true) x =

let y = model input in

let fx = model x in

let dist = bind2 y fx L0 in

constraint && (L0 x input) <=? epsilon ==> dist <=? delta

We refer the reader to CheckINN code for the remaining three

robustness definitions, which use similar syntax. We note the addi-

tion of a parameter constraint on admissible CNN inputs, which we

often use as a validity check for the type of input images that the

network accepts, as will be illustrated later in this section.

Robustness is best amenable to proofs by arithmetic manipu-

lation. This explains the interest of the SMT-solving community

in the topic, which started with using Z3 directly [18], and has

resulted in highly efficient SMT solvers specialised in robustness

proofs for neural networks [21, 23].

In Imandra, [@@blast], a tactic for SAT-based symbolic execution

modulo higher-order recursive functions, can be applied to these

problems. However, blast currently does not support real arithmetic.

This requires us to quantise the neural networks we use (i.e. convert
them to integer weights) and results in a quantised CNN library
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Property Formal definition

Classification robustness (CR) ∀𝑋 : | |𝑋 − 𝑋 | | ≤ 𝜖 =⇒ 𝑎𝑟𝑔𝑚𝑎𝑥 𝑓 (𝑋 ) = 𝑐
Standard robustness (SR) ∀𝑋 : | |𝑋 − 𝑋 | | ≤ 𝜖 =⇒ ||𝑓 (𝑋 ) − 𝑓 (𝑋 ) | | ≤ 𝛿
Lipschitz robustness (LR) ∀𝑋 : | |𝑋 − 𝑋 | | ≤ 𝜖 =⇒ ||𝑓 (𝑋 ) − 𝑓 (𝑋 ) | | ≤ 𝐿 | |𝑋 − 𝑋 | |
Approximate CR (ACR) ∀𝑋 : | |𝑋 − 𝑋 | | ≤ 𝜖 =⇒ 𝑓 (𝑋 )𝑐 ≥ 𝜂

Figure 8: Definitions of neural network robustness [5], given a neural network 𝑓 . The definitions assume given constant values for 𝜖 , 𝛿 , 𝜂, 𝐿 and some defined
distance metric | |. | |, such as e.g. Euclidean distance (or 𝐿2 norm) or 𝐿0 norm. (Approximate) classification robustness refers to a classifier 𝐶 (applied to 𝑓 ) that will
classify 𝑋 as 𝑐 where 𝑐 is �̂� ’s class in the input data.

in CheckINN . Quantisation is a common technique in machine

learning and NN verification: quantised neural networks take less

computational resources to run, are more amenable to verification,

and often can be trained to be as accurate as floating point net-

works [11, 25, 26]. Modulo this hurdle, verification of the CNNs

goes in a straightforward way, and requires just one line of code.

For example, for standard robustness, this line looks like this:

verify (fun x -> sr model input 1 epsilon

~constraint :( is_valid x) x) [@@blast]

Note that the code includes the validity check for input images;

for example, we may require that all input matrices are of size

9 × 9 and have binary inputs. This reduces the search space and

gives more tractable results. This is also the first instance when we

use the tactic syntax [@@blast]. Imandra’s mode of interaction is by

supplying proof details and hints to the user, and taking additional

lemmas and tactics like [@@blast] as input. In this case, just calling

[@@blast] completes the proof.

To illustrate the usual pattern of robustness verification, we select

images from the data set, for example those shown in Fig. 2 and use

the module that holds all verification calls as in the code above. We

obtain the results shown in Fig. 9. We can see that all the properties

terminated and Imandra gives a “proved" or “refuted" result. In the

latter case, Imandra gives an executable counterexample which is a

benefit of the language.

The execution times given in Fig. 9 are reasonable, but the ex-

ample network and images are rather small. Already (a quantised

version of) the ACAS Xu challenge [21] is out of reach for [@@blast],

which we will try to repair in the next section.

Our conclusions are two-fold. Firstly, we notice the payoff of

implementing a large general library for CNNs: we can now imple-

ment and verify robustness properties in just a few lines of code, in a

clear syntax. This shows Imandra’s ease of use as a verification tool.

Secondly, we managed to experimentally confirm the suggestion

by [5] that verifying different definitions of robustness on the same

network yields different results; this speaks for the importance of

distinguishing between formal definitions of robustness, and for

the future usability of our Imandra library that provides all these

definitions in a generic way. And finally, this points to a future re-

search direction – connecting Imandrawith neural network-specific

solvers like Marabou, in which case a call of a procedure similar

to [@@blast] could perhaps deal with the queries more efficiently;

moreover, it would open the way for such proofs in the real-valued

version of our CNN library.

Happy Sad
Property Result Time (s) Result Time (s)
𝐶𝑅(𝜖) Refuted 96.36 Refuted 89.35

𝑆𝑅(𝜖, 𝛿) Proved 107.12 Proved 108.37

𝐿𝑅(𝜖, 𝐿) Proved 110.74 Proved 117.43

𝐴𝐶𝑅(𝜖, 𝜂) Refuted 90.47 Proved 89.00

Figure 9: CNN robustness verification results, for 𝜖-balls in the vicinity of
the two given images. The parameters are: 𝜖 = 1, 𝛿 = 1, 𝐿 = 2, 𝜂 = 1.

6 MATRIX REPRESENTATIONS
In this section, we address limitations discovered in the previous

section, and extend CheckINN to construct reachability proofs

with real numbers and larger networks. In particular, we put to the

test Imandra’s native automation procedures. We take the ACAS

Xu verification benchmark [21]. An ACAS Xu neural network has

inputs that model an input state of an aeroplane composed of five

components: distance from ownship to an intruder, angle to the

intruder, speed of ownship (vown), speed of the intruder (vint).

The network’s output is a vector whose elements represent ac-

tions: clear-of-conflict (COC), weak right, strong right, weak left,

or strong left. In line with Section 2, a function like 𝑎𝑟𝑔𝑚𝑎𝑥 can

classify the network’s input into one of these classes based on the

top value in the network’s output. In [21], we find 45 ACAS Xu

networks; each has 5-6 layers, of up to a dozen of neurons in each,

all layers are fully connected and have 𝑟𝑒𝑙𝑢 activation functions

(𝑟𝑒𝑙𝑢 (𝑥) = 𝑥 if 𝑥 ≥ 0 else 0).

Ten safety properties are defined for these networks in [21].

For example, property 𝜙1 states: “If the intruder is distant and

is significantly slower than the ownership, the score of a COC

advisory will always be below a certain fixed threshold". Taking

specific constants from [21], the left side of the implication can be

defined in Imandra as:

let condition1 (dist , vown , vint) =

(dist >= 55948) && (vown >= 1145) && (vint <= 60)

Similarly to robustness properties, this verification property could

be handled by general-purpose SMT solvers; however, as [21] points

out, they do not scale. Indeed, when we use the CheckINN on

quantised ACAS Xu neural networks, [@blast] does not terminate.

This is why the algorithm Reluplex was introduced in [21] as an

additional heuristic to SMT solver algorithms; Reluplex has since

given rise to a domain specific solver Marabou [23].



PPDP ’22, September 2022, Georgia Desmartin, et al.

6.1 Leveraging Imandra’s Native Automation:
Matrices as Functions

We start with keeping the integer values for weights but redefining

matrices as functions (from indices to values), which gives constant-

time (recursion-free) access to matrix elements:

type arg =

| Rows

| Cols

| Value of int * int

type 'a t = arg -> 'a

let nth (m: 'a t) (i: int) (j: int): 'a = m (Value (i,j))

Note the use of the arg type, which treats a matrix as a function

evaluating “queries” (e.g., “how many rows does this matrix have?”

or “what is the value at index (𝑖, 𝑗)?”). This formalisation technique

is used as Imandra’s logic does not allow function values inside of

algebraic data types. We thus recover some functionality given by

refinement types in [24].

Furthermore, we can map over a matrix, map2 over a pair of

matrices, transpose a matrix, construct a diagonal matrix etc. with-

out any recursion, since we work point-wise on the elements. At

the same time, we remove the need for error tracking to ensure

matrices are of the correct size: because our matrices are total func-

tions, they are defined everywhere (even outside of their stated

dimensions), and we can make the convention that all matrices we

build are valid and sparse by construction (with default 0 outside

of their dimension bounds).

For full definitions of matrix operations and layers, the reader

is referred to CheckINN , but we will give some definitions here,

mainly to convey the general style (and simplicity!) of the code.

A script transforms the original ACAS Xu networks into a sparse

functional matrix representation. For example, layer 5 of one of

the networks we used is defined as follows (fc stands for a fully-

connected layer):

let layer5 = fc relu (

function

| Rows -> 50

| Cols -> 51

| Value (i,j) -> Map.get (i,j) layer5_map)

let layer5_map =

Map.add (0,0) (1) @@

Map.add (0,10) (-1) @@

Map.add (0,29) (-1) @@

...

Map.const 0

Networks are compressed in order to reduce the number of compu-

tations using two well-known compression methods. On one hand,

they are quantised, i.e. the real-valued weights are converted into in-

tegers using static quantisation [26]. On the other hand, the weights

are pruned using magnitude as a pruning criterion, meaning that

weights with the lowest absolute value are removed.

We can model the resulting neural network via a function run:

let run (dist , angle , angle_int , vown , vint) =

let m = mk_input (dist , angle , angle_int , vown , vint) in

layer0 m |> layer1 |> layer2 |> layer3 |> layer4 |>

layer5 |> layer6

Note that we no longer need to use monadic binds, as we no longer

track dimension errors. We can now define the first ACAS Xu

property [21]:

let property1 x =

let output = run x in

let coc = Matrix.nth output 0 0 in

coc <= 1500

theorem acas_xu_phi_1 x =

is_valid x && condition1 x ==> property1 x

The only help Imandra needs to prove this automatically are the

forward-chaining rules about the 𝑟𝑒𝑙𝑢 function:

lemma relu_pos x =

x >= 0 ==> (relu x) [@trigger] = x

[@@auto] [@@fc]

lemma relu_neg x =

x <= 0 ==> (relu x) [@trigger] = 0

[@@auto] [@@fc]

And then we disable 𝑟𝑒𝑙𝑢 expansion for all of the proofs using the

tactic [@@disable]. This way, 𝑟𝑒𝑙𝑢 induces no simplification case-

splits, while all relevant information about 𝑟𝑒𝑙𝑢 values is propa-

gated, per instance, on demand to our simplification context. Now

Imandra’s engine takes care of the proof automatically (when we

use the tactic [@@auto]), and takes just under 1.5 minutes. In Appen-

dix D we give a representative evaluation of Imandra’s performance

on several ACAS Xu networks and properties. We set the timeout

time to 5 minutes, and approximately half of the cases terminate

within the time limit. Execution time is orders of magnitude faster

thanMarabou’s time on full ACAS Xu networks, whichmay suggest

that combining pruning and verification [27] is a good direction for

Imandra. We live a thorough investigation of this for future work.

Several factors played a role in automating the proof. Firstly,

Imandra being a higher-order functional language opened the way

for us to experiment with alternative matrix representations in

the first place. By using maps for the large matrices, we eliminate

all recursion (and large case-splits) except for matrix folds (which

now come in only via the dot product), which allowed Imandra to

expand the recursive matrix computations “on demand.” Finally,

Imandra’s native simplifier contributed to the success. It works on

a DAG representation of terms and speculatively expands instances

of recursive functions, only as they are (heuristically seen to be)

needed. Incremental congruence closure and simplex data struc-

tures are shared across DAG nodes, and symbolic execution results

are memoised. Moreover, forward-chaining rules (such as those

characterising 𝑟𝑒𝑙𝑢) are only applied on demand. Informally speak-

ing, Imandra works lazily expanding out the linear algebra as it is

needed, and eagerly with sharing information over the DAG. Con-

trast this approach with that of reluplex which, informally, starts

with the linear algebra fully expanded, and then works to derive

laziness and sharing.

6.2 Extension to Reals
Section 2 defined matrices as lists of lists; and that definition in prin-

ciple worked for both integer and real-valued matrices. However,

we could not use [@@blast] to automate proofs when real values

were involved; this meant we were restricted to verifying integer-

valued networks. The matrix-as-function implementation can be
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extended to proofs with real-valued matrices; however, it is not

a trivial extension. In Section 6.1, the matrix’s value was of the

same type as its dimensions. Thus, if the matrix elements are real-

valued, then in this representation the matrix dimensions will be

real-valued as well. But this complicates termination guarantees

for functions which do recursion along matrix dimensions.

To simplify the code and the proofs, three potential solutions

were considered:

1. Use an algebraic data type for results of matrix queries: this intro-

duces pattern matching in the implementation of matrix operations,

which reduces proof search efficiency.

2. Define a matrix type with real-valued dimensions and values:

this poses the problem of proving the function termination when

using matrix dimensions in recursion termination conditions.

3. Use records to provide polymorphism and allow matrices to use

integer dimensions and real values.

In an accompanying note and in Appendix E, we provide further

details on each of the three implementations in CheckINN . But

the second option was a clear winner when it came to evaluating

it on ACAS Xu. We therefore only highlight its features here. The

implementation is symmetric to the one using integers:

type arg =

| Rows

| Cols

| Value of real * real

type 'a t = arg -> 'a

A problem arises in recursive functions where matrix dimensions

are used as decrementors in stopping conditions, for instance in

the fold_rec function used in the implementation of the folding

operation. Imandra only accepts definitions of functions for which it

can prove termination. The dimensions being real numbers prevents

Imandra from being able to prove termination without providing a

custommeasure. In order to define this measure, we need to connect

the continuous world of reals with the discrete world of integers

(and ultimately ordinals) for which we have induction principles.

We chose to develop a floor function that allows Imandra to prove

termination with reals.

To prove termination of our fold_rec function recursing along

reals, we define an int_of_real : real -> int function in Imandra,

using a subsidiary floor : real -> int -> int which computes an

integer floor of a real by “counting up” using its integer argument.

In fact, as matrices have non-negative dimensions, it suffices to only

consider this conversion for non-negative reals, and we formalise

only this. We then have to prove some subsidiary lemmas about

the arithmetic of real-to-integer conversion, such as:

lemma floor_mono x y b =

Real.(x <= y && x >= 0. && y >= 0.)

==> floor x b <= floor y b

lemma inc_by_one_bigger_conv x =

Real.(x >= 0. ==> int_of_real (x + 1.0) > int_of_real x)

Armed with these results, we can then prove termination of fold_rec

and admit it into Imandra’s logic via the ordinal pair measure below:

[@@measure Ordinal.pair

(Ordinal.of_int (int_of_real i))

(Ordinal.of_int (int_of_real j))]

Extending the functional matrix implementation to reals was

not trivial, but it did have a real payoff. Using this representation,

we were able to verify real-valued versions of the pruned ACAS

Xu networks! In both cases of integer and real-valued matrices,

we pruned the networks to 10% of their original size. So, we still

do not scale to the full ACAS Xu challenge. However, the positive

news is that the real-valued version of the proofs uses the same

waterfall proof tactic of Imandra, and requires no extra effort from

the programmer to complete the proof. Moreover, as preliminary

evaluation in Appendix D shows, the real values do not substantially

increase verification times. This result is significant bearing in mind

that many functional and higher-order theorem provers are known

to have significant drawbacks when switching to real numbers.

7 CONCLUSIONS AND FUTUREWORK
CheckINN defined, as broadly as possible, the design space for

neural network verification in ITP. As far as we know, no other

single existing tool [1, 14, 18, 23, 34] or library [2, 29, 35] has yet

managed to cover such a wide range of verification tasks. We have

taken advantage of both the wide range of choices for matrix repre-

sentation available in Imandra when it came to reachability proofs,

and the facility to combine first-order and higher-order object defi-

nitions, proofs by induction, simplification and decision procedures

in the structural proofs.

7.1 Contributions with respect to related work.
CNN formalisation and formulation of structural properties of CNN

are both original contributions. We are not aware of any prior

similar results in any ITP.

Matrix Representations.We showed that the choice of matrix

representation favours certain kinds of proofs. Matrices as lists are

well-amenable to structural proofs by induction, while matrices as

functions or records help to scale reachability proofs. Flexibility

with matrix choices proved to be a useful feature. Real numbers in

Imandra allowed for smooth transitions from integer to real parts

of the library, especially in inductive proofs.

FP literature gives a selection of different matrix representation

methods. Matrices as lists are considered in [17] (in the context of

dependent types in Coq), in [24] (in the context of refinement types

of F
∗
) and in [16] (for sparse matrix encodings in Haskell). The

difference between the list and function approaches was discussed

in [37] (in Agda, but with no neural network application in mind).

Our main contribution here is to trace the connection between

matrix representations and the automation of different kinds of

proofs.

Structural Verification of NN. De Maria et al. [29] formalise

in Coq “neuronal archetypes” for biological neurons. Each archetype
is a specialised kind of perceptron (a small, typically single-unit,

neural network), in which additional functions are added to amplify

or inhibit the perceptron’s outputs. The paper collects a rich variety

of structural properties and proofs characterising these archetypes,

formalised in Coq. In this paper, we worked with neural networks

used in classification, and unlike [29] had to work with matrices.

Defining structural properties for such networks wasmore challeng-

ing. While the monotonicity proofs of Section 4 do not differ much

in their complexity from [29] (we may only note the greater power
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of inductive proof automation that Imandra offers), the proofs of

Extreme Values Lemma would have been hard to replicate in Coq as

simply as we did it with Imandra. In particular, the bounded model

checking tactic used in that section is unique to Imandra.

ReachabilityVerification ofNN.Although Imandra’s simplifier-

based automation did not scale to the original dense ACAS Xu net-

work verified by Reluplex [22], we are encouraged that the obtained

proofs were achieved without tuning Imandra’s generic proof au-

tomation strategies. No other ITP we know of would be able to

achieve that much using its native tactics. We are hopeful that the

development of neural-network specific tactics will help Imandra

scale to bigger networks in the future. Indeed, directly connecting

Imandra with Marabou or other similar solvers is also a possible

future direction.

7.2 Future Work
Some other considerations were left for future work. This paper

draws a wide range of NN verification methods, without aiming at

any single verification challenge in partucular. Our next step is to

apply these methods to some significant verification task. In this

respect, extending structural verification of CNN to real-life data

sets and scenarios, and further automation of reachability proofs

have high priority.

There is an important question of the numerical types used
in neural networks, that still awaits a successful resolution by

the theorem proving communities. We used real and integer-valued

networks. Mainstream work in Python works with floats, most

SMT-based solvers use rationals or restricted reals [21, 23], abstract

interpretation tools can use floating points [34] and some ITPs

are amenable to formalisations with reals [24] and even floating

points [2]. But it is known that transition from one to another may

render sound proofs unsound [19], and so the choices cannot be

taken lightly.

This paper only addresses the problem of analysing and veri-

fying already trained neural networks. There may be demand for

verification of machine learning algorithms (as was done e.g.
in [35] for decision stumps), which is worth exploring in the future.
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A MONADIC OPERATIONS ON RESULTS
In the matrix as list implementation, we checkmatrix size for matrix

operations. In some operations, such as dot product, the dimension

checks are important. When matrix sizes do not match, we use

OCaml’s result type in order to model the error.

The result type is simply defined as

let type ('a, 'b) result =

| Ok of 'a

| Error of 'b

The result type is accompanied by the bind and return functions,

which make it a monad, as well as common monadic operations.

As Imandra is a pure language where side-effects are not possible,

the monadic operations lets us propagate errors.

The bind function allows to chain functions that may fail, i.e.

functions that take as input a “plain” value and return a result. If

the input is an error, the error is propagated, otherwise, the function

is applied to the value contained within the result. It is defined as:

let bind (f: 'a -> ('b, 'c) result) (x: ('a, 'c) result

) : ('b, 'c) result = function

| Ok x' -> f x'

| Error e -> Error e

For instance, in the matrix-as-function implementation (which

does not use result), a network is formed by chaining the output

of a layer as input to the next layer. For this, the standard OCaml

operator |> is used:

let run (dist , angle , angle_int , vown , vint) =

let open Weights in

let m = mk_input (dist , angle , angle_int , vown , vint)

in

layer0 m |> layer1 |> layer2 |> layer3 |> layer4 |>

layer5 |> layer6

;;

When using result, we have to use the (>>=) (bind) operator. With

this operator, if an error occurs in layer1, all subsequent layers will

pass this error to the next until the output:

let model input = layer_0 input >>= layer_1 >>= layer_2

>>= layer_4 >>= arg_max ;;

From the bind function and the return function, we can define a

series of helper functions that improve code readability and main-

tainability. For instance, lift applies a function over “plain” values

to a result; bind2 and lift2 are equivalents of bind and lift for func-

tions that take two arguments instead of one; flatten reduces nested

result type to a simple result type (e.g. Ok (Ok (Ok 2)) is simplified

to Ok 2), etc.

Comparison operators between result are also implemented to be

used in verification properties. Thus, to compare two (int, string)

result, the operators (<=?), (=?) (>=?) are used instead of the “plain”

operators (<=), (=), (>=)

B FULL INTERACTION CYCLE FOR
INDUCTIVE PROOF OF MONOTONICITY IN
IMANDRA

The full proof of the Monotonicity Lemma, generated by Imandra,

is given in Listing 5. Of notable interest are the inductive schemes

it generated and discarded, and automated proof search by simplifi-

cation.

C PROOF OF THE EXTREME VALUE
THEOREM

C.1 Manual Proofs
In this section, we provide proofs for the Extreme Values Lemma

presented in the main text 4.1 in the two specific cases R1 and

R2. We re-use the same notation as in the lemma’s definition(cf.

Section 4.2).

Lemma C.1 (Extreme Values). Let 𝑎 be a vector 𝑎1, . . . , 𝑎𝑛 with
a distinct pattern and extreme values 𝑎1, . . . , 𝑎𝑚 . If for 𝑤𝑥 and 𝑤𝑦 ,
we have

𝑤𝑥
1
> 𝑤

𝑦

1
∧ . . . ∧𝑤𝑥

𝑚 > 𝑤
𝑦
𝑚, (4)

then

(𝑎1𝑤𝑥
1
+ . . . + 𝑎𝑛𝑤𝑥

𝑛 ) > (𝑎1𝑤𝑦

1
+ . . . + 𝑎𝑛𝑤𝑦

𝑛 ). (5)

C.1.1 Case 1: Binary Pooling Layer Output. Condition R1: 𝑎 is a
binary vector, and 𝑎𝑚𝑖𝑛 ≠ 𝑎∗, 𝑎𝑚𝑎𝑥 ≠ 𝑎∗

For 𝑎1, ..., 𝑎𝑚 ∈ 𝑎𝑒𝑥 we need to have

𝑎1 = . . . = 𝑎𝑚 = 1

as 𝑎∗ ≠ 𝑎𝑚𝑎𝑥 ≠ 𝑎𝑚𝑖𝑛

For 𝑎𝑚+1, . . . , 𝑎𝑛 we need to have

𝑎𝑚+1 = . . . = 𝑎𝑛 = 0

as 𝑎∗ ≠ 𝑎𝑚𝑎𝑥 ≠ 𝑎𝑚𝑖𝑛 .

Then we have

𝑤𝑥
1
+ . . . +𝑤𝑦

𝑚 > 𝑤
𝑦

1
+ . . . +𝑤𝑦

𝑚

as (5). This holds because by (4),𝑤𝑥
𝑖
> 𝑤

𝑦

𝑖
for 𝑖 ∈ [1,𝑚].
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val network_monotonicity :
real vector vector vector ->
real vector vector -> real vector -> real vector -> bool = <fun >
Goal:

positive_3d ws && positive_2d bs && positive i && gte i' i
==> gte (network ws bs i') (network ws bs i).

1 nontautological subgoal.

Subgoal 1:

H0. positive_3d ws
H1. positive_2d bs
H2. positive i
H3. gte i' i
|---------------------------------------------------
gte (network ws bs i') (network ws bs i)

Must try induction.

The recursive terms in the conjecture suggest 6 inductions.
Subsumption and merging reduces this to 2.

However , scheme scoring gives us a clear winner.
We shall induct according to a scheme derived from network.

Induction scheme:

(not (ws <> [] && bs <> []) ==> phi bs i i' ws)
&& (bs <> []
&& ws <> []
&& phi (List.tl bs) (layer (List.hd ws) (List.hd bs) i)
(layer (List.hd ws) (List.hd bs) i') (List.tl ws)
==> phi bs i i' ws).

2 nontautological subgoals.

Subgoal 1.2:

H0. positive_3d ws
H1. positive_2d bs
H2. positive i
H3. gte i' i
|---------------------------------------------------
C0. ws <> [] && bs <> []
C1. gte (network ws bs i') (network ws bs i)

But simplification reduces this to true , using the definition of network.

Subgoal 1.1:

H0. positive_3d ws
H1. positive_2d bs
H2. positive i
H3. gte i' i
H4. bs <> []
H5. ws <> []
H6. (( positive_3d (List.tl ws) && positive_2d (List.tl bs))
&& positive (layer (List.hd ws) (List.hd bs) i))
&& gte (layer (List.hd ws) (List.hd bs) i')
(layer (List.hd ws) (List.hd bs) i)
==> gte
(network (List.tl ws) (List.tl bs)
(layer (List.hd ws) (List.hd bs) i'))
(network (List.tl ws) (List.tl bs)
(layer (List.hd ws) (List.hd bs) i))
|---------------------------------------------------
gte (network ws bs i') (network ws bs i)

But simplification reduces this to true , using the definitions of network ,
positive_2d and positive_3d , and the rewrite rules layer_monotonicity and
positive_push_2d.

Rules:
(:def network)
(:def positive_2d)
(:def positive_3d)
(:rw layer_monotonicity)
(:rw positive_push_2d)
(:fc gte_preservation)
(:fc pos_tl_2d)
(: induct network)

Theorem proved.

Listing 5: Imandra’s proof of Monotonicity Lemma, Part 1
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C.1.2 Case 2: Binary Pooling Layer Output. Condition R2:𝑤𝑥 and

𝑤𝑦 are binary vectors, 𝑎∗ ≠ 0

We suppose that 𝑎1, . . . , 𝑎𝑚 are the smallest possible, i.e. close to

𝑎∗ + 𝑎𝑚𝑎𝑥−𝑎∗
2

and 𝑎𝑚+1, . . . , 𝑎𝑛 are the greatest possible, i.e. close

to 𝑎∗

since 𝑤𝑥
and 𝑤𝑦

are binary, and 𝑤𝑥
1
> 𝑤

𝑦

1
, . . . ,𝑤𝑥

𝑚 > 𝑤
𝑦
𝑚 , we

know that

𝑤𝑥
1
= . . . = 𝑤𝑥

𝑚 = 1

𝑤
𝑦

1
= . . . = 𝑤

𝑦
𝑚 = 0

We need to prove that

𝑚

(
𝑎∗ + 𝑎𝑚𝑎𝑥 − 𝑎∗

2

)
> (𝑛 −𝑚)𝑎∗

1.5𝑚𝑎∗ + 𝑚𝑎𝑚𝑎𝑥

2

> 𝑛𝑎∗

1.5𝑚 + 𝑚𝑎𝑚𝑎𝑥

2𝑎∗
> 𝑛

𝑚

(
1.5 + 𝑎𝑚𝑎𝑥

2𝑎∗

)
> 𝑛

We know that 𝑚 < 𝑛, so the condition is 𝑚 has to be at least
𝑛

1.5+ 𝑎𝑚𝑎𝑥
2𝑎∗

C.2 Details of Imandra proofs
C.2.1 Extreme Values Lemma – Case R1. We provide full proof

produced automatically by Imandra. We split it into Listings 6, 7, 8

and 9. Of notable interest is the automatically generated inductive

scheme, as well as auxiliary lemmas that completed the proof.

C.2.2 Extreme Values Lemma – Case R2. This case needs a full

formalisation of all lemma pre-conditions, as follows:

let rec dot_product l1 l2 = match (l1, l2) with

| ([], _) | (_, []) -> 0.

| (h1::t1, h2::t2) -> (h1 *. h2) +. (dot_product t1 t2)

let rec len_real = function

| [] -> 0.

| hd::tl -> 1. +. (len_real tl)

let rec sum = function

| [] -> 0.

| hd::tl -> hd +. (sum tl)

let mean l = (sum l) /. (len_real l)

let rec max ' l max_val = match l with

| [] -> max_val

| (hd::tl) -> let max_val ' = if hd >. max_val then hd

else max_val in

max ' tl max_val '

let rmax (l: real list): real = match l with

| [] -> 0.

| (hd::tl) -> max ' tl hd

let rec min ' l min_val = match l with

| [] -> min_val

| (hd::tl) -> let min_val ' = if hd <. min_val then hd

else min_val in

min ' tl min_val '

let rmin (l: real list): real = match l with

| [] -> 0.

| (hd::tl) -> min ' tl hd

let extreme_threshold l =

let l_max = rmax l in

let l_mean = mean l in

l_mean +. ((l_max -. l_mean) /. 2.)

let rec num_extreme xs e_t =

match xs with

| [] -> 0.

| x::xs ->

(if x >. e_t then 1. else 0.)

+. num_extreme xs e_t

They are then assembled into R2-specific conditions:

let rec r2_properties xs ys a_vals ex_threshold mean_a

=

let open Real in

match xs, ys, a_vals with

| [], [], [] -> true

| x::xs, y::ys, a:: a_vals ->

(* x>y for extreme indices *)

(a > ex_threshold ==> x>y)

(* a is non -negative *)

&& a >=. 0.

(* w_x and w_y are binary vectors *)

&& (x = 0. || x = 1.)

&& (y = 0. || y = 1.)

(* a has a distinct pattern *)

&& (a > ex_threshold || a < mean_a)

&& r2_properties xs ys a_vals ex_threshold mean_a

| _ -> false

let extreme_value_precondition_r2 w_x w_y a =

let mean_a = mean a in

let e_t_a = extreme_threshold a in

let m = num_extreme a e_t_a in

let n = len_real a in

let a_max = rmax a in

r2_properties w_x w_y a e_t_a mean_a

&& Real.(m >= (n / (1.5 + (a_max / (2.0 * mean_a)))))

&& mean_a <> 0.

let extreme_value_postcondition w_x w_y a =

(dot_product w_x a) >. (dot_product w_y a)

The fully general version of the lemma (for lists of any length)

could not be produced by Imandra automatically. But taking any

bounded case (a list of given finite size) allows Imandra’s unrolling

procedure to turn the goal into, effectively, an SMT-solving task.

This is achieved by using the tactic [@unroll]. For example:

(* Bounded verification of Lemma 4.1 R2 for dimension 8

*)

lemma extreme_value_lemma_r2_len_8 x1 x2 x3 x4 x5 x6 x7

x8

y1 y2 y3 y4 y5 y6 y7 y8

a1 a2 a3 a4 a5 a6 a7 a8 =

let w_x , w_y , a = [x1; x2; x3; x4; x5; x6; x7; x8],

[y1; y2; y3; y4; y5; y6; y7; y8],

[a1; a2; a3; a4; a5; a6; a7; a8]

in

extreme_value_precondition_r2 w_x w_y a

==> extreme_value_postcondition w_x w_y a

[@@unroll 200]
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# lemma main vs =
is_valid_r1 vs
==>
let (p1,p2) = dot_products vs in
p1 >. p2

[@@auto]
;;

val main : value list -> bool = <fun >
Goal:

is_valid_r1 vs ==> let (p1 , p2) = dot_products vs in p1 >. p2.

1 nontautological subgoal.

Subgoal 1:

H0. rec_fun.is_valid_r1.aux.0 false vs
H1. (dot_products vs).0 <=. (dot_products vs).1

|---------------------------------------------------------------------------
false

Must try induction.

The recursive terms in the conjecture suggest 2 inductions.
Subsumption and merging reduces this to 1.

We shall induct according to a scheme derived from dot_products.

Induction scheme:

(not (not Is_a(Extreme , List.hd vs) && vs <> [])
&& not (Is_a(Extreme , List.hd vs) && vs <> []) ==> 𝜙 vs)

&& (vs <> []
&& Is_a(Extreme , List.hd vs) && 𝜙 (List.tl vs) && 𝜙 (List.tl vs)
==> 𝜙 vs)

&& (vs <> []
&& not Is_a(Extreme , List.hd vs)

&& 𝜙 (List.tl vs) && 𝜙 (List.tl vs)
==> 𝜙 vs).

3 nontautological subgoals.

Subgoal 1.3:

H0. rec_fun.is_valid_r1.aux.0 false vs
H1. (dot_products vs).0 <=. (dot_products vs).1
H2. not (not Is_a(Extreme , List.hd vs) && vs <> [])
H3. not (Is_a(Extreme , List.hd vs) && vs <> [])

|---------------------------------------------------------------------------
false

But simplification reduces this to true , using the definitions of
dot_products and rec_fun.is_valid_r1.aux.0.

Subgoal 1.2:

H0. rec_fun.is_valid_r1.aux.0 false vs
H1. (dot_products vs).0 <=. (dot_products vs).1
H2. vs <> []
H3. Is_a(Extreme , List.hd vs)
H4. not (rec_fun.is_valid_r1.aux.0 false (List.tl vs))

|| not (( dot_products (List.tl vs)).0 <=. (dot_products (List.tl vs)).1)
|---------------------------------------------------------------------------
false

This simplifies , using the definitions of dot_products and
rec_fun.is_valid_r1.aux.0 to:

Listing 6: Imandra’s proof of Extreme Value Lemma, Part 1
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Subgoal 1.2':

H0. (( Destruct(Extreme , 0, List.hd vs)).0
*. (Destruct(Extreme , 0, List.hd vs)).2
+. (dot_products (List.tl vs)).0)

<=.
(( Destruct(Extreme , 0, List.hd vs)).1
*. (Destruct(Extreme , 0, List.hd vs)).2
+. (dot_products (List.tl vs)).1)

H1. Is_a(Extreme , List.hd vs)
H2. rec_fun.is_valid_r1.aux.0 false vs
H3. vs <> []

|---------------------------------------------------------------------------
rec_fun.is_valid_r1.aux.0 false (List.tl vs)

We can eliminate destructors by the following substitution:
vs -> vs1 :: vs2

This produces the modified subgoal:

Subgoal 1.2'':

H0. rec_fun.is_valid_r1.aux.0 false (vs1 :: vs2)
H1. Is_a(Extreme , vs1)
H2. (( Destruct(Extreme , 0, vs1)).0 *. (Destruct(Extreme , 0, vs1)).2

+. (dot_products vs2).0)
<=.
(( Destruct(Extreme , 0, vs1)).1 *. (Destruct(Extreme , 0, vs1)).2
+. (dot_products vs2).1)

|---------------------------------------------------------------------------
rec_fun.is_valid_r1.aux.0 false vs2

This simplifies , using the definition of rec_fun.is_valid_r1.aux.0 to:

Subgoal 1.2''':

H0. rec_fun.is_valid_r1.aux.0 true vs2
H1. (Destruct(Extreme , 0, vs1)).2 = 1
H2. Is_a(Extreme , vs1)
H3. (( Destruct(Extreme , 0, vs1)).0 *. (Destruct(Extreme , 0, vs1)).2

+. (dot_products vs2).0)
<=.
(( Destruct(Extreme , 0, vs1)).1 *. (Destruct(Extreme , 0, vs1)).2
+. (dot_products vs2).1)

|---------------------------------------------------------------------------
C0. (Destruct(Extreme , 0, vs1)).0 <=. (Destruct(Extreme , 0, vs1)).1
C1. rec_fun.is_valid_r1.aux.0 false vs2

This further simplifies to:

Subgoal 1.2'''':

H0. rec_fun.is_valid_r1.aux.0 true vs2
H1. (Destruct(Extreme , 0, vs1)).2 = 1
H2. (( Destruct(Extreme , 0, vs1)).0 +. (dot_products vs2).0) <=.

(( Destruct(Extreme , 0, vs1)).1 +. (dot_products vs2).1)
H3. Is_a(Extreme , vs1)

|---------------------------------------------------------------------------
C0. (Destruct(Extreme , 0, vs1)).0 <=. (Destruct(Extreme , 0, vs1)).1
C1. rec_fun.is_valid_r1.aux.0 false vs2

We can eliminate destructors by the following
substitution:
vs1 -> Extreme vs11

This produces the modified subgoal:

Listing 7: Imandra’s proof of Extreme Value Lemma, Part 2
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Subgoal 1.2''''':

H0. rec_fun.is_valid_r1.aux.0 true vs2
H1. vs11.2 = 1
H2. (vs11.0 +. (dot_products vs2).0) <=. (vs11.1 +. (dot_products vs2).1)

|---------------------------------------------------------------------------
C0. vs11.0 <=. vs11.1
C1. rec_fun.is_valid_r1.aux.0 false vs2

Must try induction.

The recursive terms in the conjecture suggest 3 inductions.
Subsumption and merging reduces this to 1.

We shall induct according to a scheme derived from dot_products.

Induction scheme:

(not (not Is_a(Extreme , List.hd vs2) && vs2 <> [])
&& not (Is_a(Extreme , List.hd vs2) && vs2 <> []) ==> 𝜙 vs11 vs2)

&& (vs2 <> []
&& Is_a(Extreme , List.hd vs2)

&& 𝜙 vs11 (List.tl vs2) && 𝜙 vs11 (List.tl vs2)
==> 𝜙 vs11 vs2)

&& (vs2 <> []
&& not Is_a(Extreme , List.hd vs2)

&& 𝜙 vs11 (List.tl vs2) && 𝜙 vs11 (List.tl vs2)
==> 𝜙 vs11 vs2).

3 nontautological subgoals.

Subgoal 1.2'''''.3:

H0. rec_fun.is_valid_r1.aux.0 true vs2
H1. vs11.2 = 1
H2. not (not Is_a(Extreme , List.hd vs2) && vs2 <> [])
H3. not (Is_a(Extreme , List.hd vs2) && vs2 <> [])
H4. (vs11.0 +. (dot_products vs2).0) <=. (vs11.1 +. (dot_products vs2).1)

|---------------------------------------------------------------------------
C0. vs11.0 <=. vs11.1
C1. rec_fun.is_valid_r1.aux.0 false vs2

But simplification reduces this to true , using the definitions of
dot_products and rec_fun.is_valid_r1.aux.0.

Subgoal 1.2'''''.2:

H0. rec_fun.is_valid_r1.aux.0 true vs2
H1. vs11.2 = 1
H2. vs2 <> []
H3. Is_a(Extreme , List.hd vs2)
H4. (((not (vs11.2 = 1)

|| not
((vs11.0 +. (dot_products (List.tl vs2)).0) <=.
(vs11.1 +. (dot_products (List.tl vs2)).1)))

|| rec_fun.is_valid_r1.aux.0 false (List.tl vs2))
|| vs11.0 <=. vs11 .1)

|| not (rec_fun.is_valid_r1.aux.0 true (List.tl vs2))
H5. (vs11.0 +. (dot_products vs2).0) <=. (vs11.1 +. (dot_products vs2).1)

|---------------------------------------------------------------------------
C0. vs11.0 <=. vs11.1
C1. rec_fun.is_valid_r1.aux.0 false vs2

But simplification reduces this to true , using the definitions of
dot_products and rec_fun.is_valid_r1.aux.0.

Listing 8: Imandra’s proof of Extreme Value Lemma, Part 3
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Subgoal 1.2'''''.1:

H0. rec_fun.is_valid_r1.aux.0 true vs2
H1. vs2 <> []
H2. not Is_a(Extreme , List.hd vs2)
H3. (((not (vs11.2 = 1)

|| not
((vs11.0 +. (dot_products (List.tl vs2)).0) <=.
(vs11.1 +. (dot_products (List.tl vs2)).1)))

|| rec_fun.is_valid_r1.aux.0 false (List.tl vs2))
|| vs11.0 <=. vs11 .1)

|| not (rec_fun.is_valid_r1.aux.0 true (List.tl vs2))
H4. vs11.2 = 1
H5. (vs11.0 +. (dot_products vs2).0) <=. (vs11.1 +. (dot_products vs2).1)

|---------------------------------------------------------------------------
C0. vs11.0 <=. vs11.1
C1. rec_fun.is_valid_r1.aux.0 false vs2

But simplification reduces this to true , using the definitions of
dot_products and rec_fun.is_valid_r1.aux.0.

Subgoal 1.1:

H0. rec_fun.is_valid_r1.aux.0 false vs
H1. (dot_products vs).0 <=. (dot_products vs).1
H2. vs <> []
H3. not Is_a(Extreme , List.hd vs)
H4. not (rec_fun.is_valid_r1.aux.0 false (List.tl vs))

|| not (( dot_products (List.tl vs)).0 <=. (dot_products (List.tl vs)).1)
|---------------------------------------------------------------------------
false

But simplification reduces this to true , using the definitions of
dot_products and rec_fun.is_valid_r1.aux.0.

Rules:
(:def dot_products)
(:def rec_fun.is_valid_r1.aux.0)
(: induct dot_products)

Theorem proved.

Listing 9: Imandra’s proof of Extreme Value Lemma, Part 4

Imandra informs us that the unrolling tactic managed to produce

the full proof. Moreover, if there was a counterexample up to this

bound, Imandra would present it to us (and reflect it in the runtime).

In fact, this is precisely howwe strengthened some of the conditions

for our proofs.

# lemma extreme_value_lemma_r2_len_2 x1 x2 y1 y2 a1 a2 =

let w_x , w_y , a = [x1; x2],

[y1; y2],

[a1; a2]

in

extreme_value_precondition_r2 w_x w_y a

==> extreme_value_postcondition w_x w_y a

;;

val extreme_value_lemma_r2_len_2 :

real -> real -> real -> real -> real -> real -> bool =

<fun >

Theorem proved.

D RESULTS ON PRUNED ACAS XU
BENCHMARK

Fig. 10 shows some indicative experiments running CheckINN on

the properties and networks from the ACAS Xu benchmark [22].

Note that the networks were pruned at 90% of their weights using

static pruning by weight magnitude. The verification was ran on

virtual machines with four 2.6 GHz Intel Ice Lake virtual processors

and 16GB RAM. Timeout was set at 5 minutes.

E ALGEBRAIC DATA TYPES AND RECORDS
FOR MATRICES

E.1 Algebraic Data Types for Real-Valued
Matrices

The first alternative is to introduce an algebraic data type that

allows the matrix functions to return either reals or integers.

type arg =

| Rows

| Cols

| Value of int * int

| Default
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Property Result Pruned and

Quantised

ACAS Xu

Networks #

Imandra

Time

(s)

Prunned ACAS

Xu Networks #

Imandra

Time

(s)

Original ACAS

Xu Networks #

Reluplex

Time

(s)

𝜙1 SAT 4 258 7 880 0

UNSAT 0 0 41 394517

TIMEOUT 5 9 4

𝜙4 SAT 16 1422 8 1089 0

UNSAT 1 114 0 32 12475

TIMEOUT 18 3 0 0

𝜙5 SAT 1 57 1 128 0

UNSAT 0 0 1 19355

𝜙6 SAT 1 196 1 130 0

UNSAT 0 0 1 180288

𝜙7 TIMEOUT 1 1 1

𝜙8 SAT 0 0 1 40102

TIMEOUT 1 1 0

𝜙9 SAT 1 66 1 109 0

UNSAT 0 0 1 99634

𝜙10 SAT 1 116 0 0

TIMEOUT 0 1 0

UNSAT 0 0 1 19944

Figure 10: Results of experiments ran on the properties and networks from the ACAS Xu benchmark [22]. The verifications
were run on virtual machines with four 2.6 GHz Intel Ice Lake virtual processors and 16GBRAM. Timeout was set at 5minutes

type 'a res =

| Int of int

| Val of 'a

type 'a t = arg -> 'a res

This allows a form of polymorphism, but it also introduces pat-

tern matching each time we query a value from the matrix. For

instance, in order to use dimensions as indices to access a matrix

element we have to implement the following nth_res function:

let nth_res (m: 'a t) (i: 'b res) (j: 'c res): 'a res =

match (i, j) with

| (Int i', Int j') -> m (Value (i', j'))

| _ -> m Default

The simplicity and efficiency of the functional implementation

is lost, and some indicative runs on the ACAS Xu challenge show

reduction in performance.

E.2 Records
Standard OCaml records are available in Imandra, though they do

not support functions as fields. This is because all records are data

values which must support a computable equality relation, and in

general one cannot compute equality on functions. Internally in

the logic, records correspond to algebraic data types with a single

constructor and the record fields to named constructor arguments.

Like product types, records allow us to group together values of

different types, but with convenient accessors and update syntax

based on field names, rather than position. This offers the possibility

of polymorphism for our matrix type.

The approach here is similar to the one in Section 6: matrices are

stored as mappings between indices and values, which allows for

constant-time access to the elements. However, instead of having

the mapping be implemented as a function, here we implement it

as a Map, i.e. an unordered collection of (key;value) pairs where each

key is unique, so that this “payload” can be included as the field of

a record.

type 'a t = {

rows: int;

cols: int;

vals: ((int*int), 'a) Map.t;

}

We can then use a convenient syntax to create a record of this

type. For instance, a weights matrix from one of the ACAS Xu

networks can be implemented as:

let layer6_map =

Map.add (0,10) (0.05374) @@

Map.add (0,20) (0.05675) @@

...

Map.const 0.

let layer6_matrix = {

rows = 5;

cols = 51;

vals = layer6_map;

}
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Note that the matrix dimensions (and the underlying map’s keys)

are indeed encoded as integers, whereas the weights’ values are

reals.

Similarly to the previous implementations, we define a number

of useful matrix operations which will be used to define general

neural network layer functions. For instance, the map2 function is

defined thus:

let rec map2_rec (m: 'a t) (m': 'b t) (f: 'a -> 'b -> 'c)

(cols: int) (i: int) (j: int) (res: ((int*int), 'c)

Map.t): ((int*int), 'c) Map.t =

let dec i j =

if j <= 0 then (i-1, cols) else (i,j-1)

in

if i <= 0 && j <= 0 then (

res

) else (

let (i',j') = dec i j in

let new_value = f (nth m (i',j')) (nth m' (i', j'))

in

let res ' = Map.add ' res (i',j') new_value in

map2_rec m m' f cols i' j' res '

)

[@@adm i,j]

let map2 (f: 'a -> 'b -> 'c) (m: 'a t) (m': 'b t) : 'c t

=

let rows = max (m.rows) (m'.rows) in

let cols = max (m.cols) (m'.cols) in

let vals = map2_rec m m' f cols rows cols (Map.const

0.) in

{

rows = rows;

cols = cols;

vals = vals;

}

Compared to the list implementation, this implementation has

the benefit of providing constant-time access to matrix elements.

However, compared to the implementation of matrices as functions,

it uses recursion to iterate over matrix values which results in a

high number of case-splits. This in turn results in lower scalability.

Compared to the previous section’s results, none of the verifica-

tion tests on pruned ACAS Xu benchmarks that terminated with

the functional matrix implementation terminated with the records

implementation.

Moreover, we can see in the above function definition that we

lose considerable conciseness and readability.

In the end, the main interest of this implementation is its offering

polymorphism. In all other regards, the functional implementation

seems preferable.
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