A Sequent Calculus for Bilattice-Based Logic
and its Many-Sorted Representation

Ekaterina Komendantskaya

Department of Mathematics,
University College Cork,
Ireland
e.komendantskaya@mars.ucc.ie *

Abstract. We introduce a sequent calculus for bilattice-based anno-
tated logic (BAL). We show that this logic can be syntactically and se-
mantically translated into a fragment MSL* of conventional many-sorted
logic MSL. We show deductive equivalence of sequent calculus for BAL
and sequent calculus for MSL™.

1 Introduction

Lattice and bilattice-based logics were originally introduced by several
independent authors, such as Kifer, Lozinskii, Subrahmanian [15, 16],
Fitting [7-9]; Lu, Murray and Rosenthal [20-22] and were further devel-
oped in [13, 24, 25]. See also [14, 1] for a very good survey of many-valued
proof procedures. These logics were seen as a formalism suitable for auto-
mated reasoning about uncertainty. Most of the mentioned approaches
made use of the so-called annotated, or signed, languages, where ele-
ments of a set of truth values are allowed in the syntax of the language.
We will follow the approach of [15,16,13,25] and attach annotations to
first-order formulae, such that a typical annotated atom of the language
will be of the form A : u, where A is a first-order atom, and u represents
some annotation taken from a set of truth-values. Complex formulae can
be built using these atoms.

‘We propose a sequent calculus for a first-order bilattice-based annotated
logic (BAL). Although the papers we mentioned above provided us with
many interesting insights and techniques, the calculus we define here is
the first sequent calculus for a full fragment of bilattice-based annotated
logics we know of.

Syntactically, we follow [16] and allow not only constant annotations,
as in signed logics ([20, 21, 13, 24, 25]), but also annotation variables and
terms. We develop the annotated syntax of [16] and enrich it by new
bilattice connectives and quantifiers and also we allow annotations over
complex first-order formulae, which is a reasonable option for annotated
logics.

* T am grateful to the anonymous referees for their useful comments and suggestions.
I thank the grant ” Categorical Semantics for Natural Methods of Computation” by
the Royal Society/Royal Irish Academy.

Semantically, we work with arbitrary distributive bilattices defined in [10,
11]. We believe that a one-lattice fragment of BAL can be described, with
some syntactical restrictions, in terms of lattice-based annotated logics
[13, 15,16, 24, 25]. However, the second lattice constituting the underly-
ing bilattice of BAL determines some novel and non-trivial properties of
its models and sequent calculus, see Proposition 2.

The many-valued sequent calculus for BAL was not our primary goal,
though. In the second part of the paper we use it for a more general
purpose of receiving a conventional syntactical and semantical repre-
sentation of annotated many-valued logics. Annotated logics are being
criticised for allowing semantics interfere with their syntax. Because of
their complicated syntax, these logics have not yet received a sufficiently
general structural or categorical characterisation, see also [18] for some
discussion of this.

Here we continue the work of Manzano [23] translating different non-
classical logics into conventional many-sorted logic. We show here that
BAL can be semantically, syntactically, and deductively translated into
many-sorted logic of [4,23]. The method of translation can be applied,
with minor modifications, to any many-valued annotated logic we men-
tioned above. Moreover, our results, together with well-known results of
Manzano [23] on translation of dynamic (modal) logic and second-order
logic into many-sorted logic, include many-valued logics into the family of
non-classical logics representable in many-sorted logic. This enables us to
compare some properties of (bi)lattice-based logics and the non-classical
logics just mentioned.

The structure of the paper is as follows. In Section 2, we define bilattices
following [11,10]. In Section 3, we describe Bilattice-Based Annotated
Logic (BAL) and sequent calculus for it. In Section 4, we define a frag-
ment MSL* of the many-sorted logic MSL, which we use for translation
of BAL. In the same section, we show the syntactical, semantical and
deductive equivalence of BAL and MSL*. We summarise the results of
the previous sections and outline the future work in Section 5.

2 Bilattices

In this section we briefly discuss bilattices and their properties, which
will be useful in later sections, where we define bilattice-based language
and theory. Notion of a bilattice generalises the Belnap’s lattice with four
values - true, false, none, both. This lattice of Belnap suggested that we
can compare facts not only from the point of view of them being true
or false, but we can also question how much information about facts is
available to us. This gave rise to the notion of a bilattice - a structure
with two orderings, usually called truth and knowledge ordering.

We use the well-known definition of bilattices due to Ginsberg, see [11]
or [10].

Definition 1. A bilattice B is a sextuple (B,V,A\,®,®,-) such that
(B,V,A) and (B,®,®) are both complete lattices, and = : B — B is a
mapping satisfying the following three properties: =2 = Idg, — is a dual

lattice homomorphism from (B,V,A) to (B,A,V), and — is the identity
mapping on (B, ®, ®).

Let L1 = (£1,<1) and Lz = (L2,<2) be two lattices, let z1, z2 denote
arbitrary elements of the lattice L1, and let yi, y2 denote arbitrary ele-
ments of the lattice La. Let N1, U1 denote the meet and join defined in
the lattice L1, and let N2, Uz denote the meet and join defined in the
lattice L.

Definition 2. Suppose L1 = (£1,<1) and L2 = (L2,<2) are complete
lattices. Form the set of points L1 X L2, and define the two orderings <i
and <y on L1 X L2 as follows.

(1) {z1,y1) <¢ (x2,y2) if and only if z1 <1 x2 and y2 <2 y1.

(2) {x1,y1) <k (x2,y2) if and only if x1 <1 x2 and y1 <2 y2.

Therefore, (x1,y1) A (z2,y2) = (x1 M1 T2, Y1 U2 y2), (21,41) V (T2, Y2) =
(1 U122, y1 N2y2), (T1,Y1) @ (T2, y2) = (x1 N1 T2, y1 N2y2), and (z1,y1)D
(z2,y2) = (x1 Us @2, 51 Uz y2).

We denote the resulting structure by L1 X Lo = (L1 X L2,<s,<p) =
(B, <t,<g), where B denotes L1 X L.

Infinite meet and join with respect to k- and t-orderings will be denoted
by I 30 A, V-

From the definition of a lattice, it follows that &, ®, V and A are idempo-
tent, commutative, associative, and the absorption laws hold for & and
®, and V and A. See, for example, [12] for more details.

The unary operation —, the complement with respect to the truth or-
dering, is defined in Li X Ls as follows: =(z,y) = (y,x). This particular
definition of negation requires that L1 = L2, and so we make this as-
sumption throughout. There are some alternative definitions of negation
in bilattices, [6,10], but we do not use them here.

Proposition 1. [5, 11] Suppose B is a distributive bilattice. Then there
are distributive lattices L1 and Lo such that B is isomorphic to L1 X Lo.

Therefore, we will consider only logic programs over distributive bilat-
tices and regard the underlying bilattice of any program as a product of
two lattices. Moreover, we always treat each bilattice we work with as
isomorphic to some finite subset of B = L1 x Ly = ([0, 1], <) x ([0, 1], <),
where [0, 1] is the unit interval of reals with the linear ordering defined
on it. Elements of such a bilattice are pairs: the first element of each pair
denotes evidence for a fact, and the second element denotes evidence
against it. We assume that each bilattice we work with has four extreme
elements, (0,0) (none), (0,1) (false), (1,0) (true) and (1,1) (both).

3 Bilattice-Based Annotated Logic

Now we are ready to introduce Bilattice-Based Annotated Logic. We
define its syntax, semantics, and sound and complete sequent calculus
for it, see also [19].

We define the bilattice-based annotated language £ to consist of indi-
vidual variables, individual constants, functions and predicate symbols

together with annotation variables, annotation constants and annotation
functions over some fixed bilattice.

Individual variables, constants, and functions are used to build terms,
while annotation variables, constants and functions are used to build
annotation terms. Typical annotation functions will be &, ®, A, V taken
from a given bilattice.

We allow several connectives to represent operations over a bilattice, and
so we allow five connectives and four quantifiers, as follows: &, ®, A, V, =
X I,3,V.

We use the conventional definition of a first-order term and a first-order
formula. An annotated formula is defined inductively as follows: if R is
an n-ary predicate symbol, t1,...,t, are terms, 7 is an annotation term,
then R(t1,...,tn) : (7) is an annotated formula (called an annotated
atom). If 1, ¢ are annotated formulae, then 1) ® ¢ is an annotated for-
mula, where ® is one of {®,®,A,V}. If Fi and F» are formulae, and
7 is an annotation term, then (F1 ® F») : (1) is an annotated formula,
where © is one of {®,®, A, V}. If ¢ is an annotated formula, then —¢,
XY, I1¢,3¢p and V¢ are annotated formulae. In order to reflect the nature
of annotations taken from the bilattice, we will alternatively use notation
(i, v) instead of (1) when discussing annotation terms.

Note that we use angled brackets () to denote elements of B and round
brackets () to denote annotations of the language L.

Ezample 1. Consider a binary predicate connected, which describes the
fact of existence of an edge in a probabilistic graph. These graphs can
be used to describe the behaviour of internet connections, for exam-
ple. Then connected(a,b) : (3, %) will describe the fact that the prob-
ability of establishing a connection between nodes a and b is equal to

%, while probability of losing this connection is 2. Then, for example,

3
connected(a,b) : (1,2) A (i, v) is also a formula which contains a func-

tion A and two free variables (u,v) in its annotation.

3.1 Interpretations

Let B denote a bilattice underlying the annotated language £; it will
provide the set of truth values for L.

Following the conventional definition of an interpretation (see [3], for ex-
ample), we fix a domain D, where constants and function symbols receive
interpretation. A wariable assignment V is an assignment, to each vari-
able in £, of an element in the domain D. An interpretation of constants,
variables, and function symbols in D will be called a pre-interpretation,
we will denote it by | |. An interpretation T for a (first-order) bilattice-
based annotated language £ consists of a pre-interpretation together with
a mapping |R|z : D" — B for each n-ary predicate symbol R in L.
One further piece of notation we need is as follows: for each element
(a, B) of B, we denote by X(a,3) : B — B the mapping defined by
X (@, B)) = (1,0) if (@, B) <x (@,) and x(a,g) (e, #)) = (0,1)
otherwise.

We will use the two functions Z and x to define interpretation I for
annotated atoms. Given an annotated atom A : (o/,3’) with constant

annotation (o', 3'), an interpretation Z for a first-order formula A, and
a value (o, 8) from B assigned to A, we use x as follows: if the value
(o, B) >k (&,), then I(A : (o/,8")) = (1,0) , and I(A : (¢/,5)) =
(0, 1) otherwise. If the annotated term 7 attached to an annotated atom
A : 7 contains variables 1,7, we use existential quantifier X' when ap-
plying x as follows: x,({(, 3)) = (1,0) if X(,7)(r > {(a,B)). We will
assume this quantification when giving the next definition.

Definition 3. Let Z be a (first-order) interpretation with domain D for
a first order annotated language £ and let V' be a variable assignment.
Then an annotated formula F in L can be given an interpretation I(F)
(also denoted as |F|1,v) in B as follows.

— If F is an annotated atom R(t1,...,tn) : (u,v) with (u,v) being

Xy (RIz (It £a]):

— If F has the form (—=A) : (u,v), with A being some first-order atom
and (u,v) being an annotation term, then |(=A) : (u,v) =1]4:
vy

— If F has the form —(A : (u,v)), with A being some first-order for-
mula and (u,v) being an annotation term, then |=(A : (u,v))
=*(|A: (u,v)|1,v), where the operation = denotes the restriction of
the bilattice operation — to the set of values {(1,0),(0,1)}.

— If F has the form (F1 ® F»), where Fi and F» are annotated atoms,
then |F1 @ Falr,v = |Fi|r,v ® |Fa|1,v.

Note that on the left hand side of this equation, the symbol ® denotes
a connective in L, and on the right hand side it denotes an operation
of the bilattice B.

— If an annotated formula has the form (A1 ® A2) : (u,v), where A1,
Az are first-order formulae and (u,v) being an annotation term, then
(A1 ® A2) = (1, V) |1,v = X(u) ([A1lzv @ [A2|z,v).

— If a formula has the form Yz R(x) : (u,v), with (u,v) being an an-
notation term, then

|S2R() : (uv)

I,V = X{u,v) (Z |R(d)|Iav>)

deD

where Y is the infinite join with respect to <y, |R(d)|z,v receives
interpretation with respect to I and V (%), where V(%) is V except
that x is assigned d.

We omit the definitions of interpretations for the remaining connectives
and quantifiers, and the reader can easily complete Definition 3. We
simply mention here that the connectives &, ®, A, V and the quantifiers
X, II, 3, V are interpreted by finite and infinite operations defined on
bilattices as in Section 2.

In general, the analogs of the classical truth values true and false are
represented by (1,0) and (0,1) - the greatest and least elements of the
bilattice with respect to <;. Furthermore, the definitions of satisfiable,
unsatisfiable, valid and non-valid formulae and of models are standard if
the classical truth values true and false in these definitions are replaced
by (1,0) and (0, 1).

The following properties of I are very important for the development of
a sequent calculus for BAL.

Proposition 2 (Properties of I). Let F, F1,...F} be first-order for-
mulae, and fix a first-order interpretation Z for them. Then any inter-
pretation I built upon T as in Definition 3 has the following properties:
1 I I(F : (@,B)) = (1,0), then I(F : (o/,#)) = (1,0) for all (', ') <i
(@, B).

2. If I(F : (a,3)) = (0,1), then I(F : (a/,3)) = (0,1), for all (¢/,3")
such that {a, 8) <j <O/,B/).
3. I(F1 : (Ml,Vl) ®...RQ Fk : (,U,k I/k)) = <170> <~ I(Fl : (/J,l,l/1) b
@ Fi s (pk,vR)) = (1,0) <= I(Fy: (p,vi) Ao A Fros (i, ve)) =
(1,0) < I(F;:() =(1,0), for eachze{l .k}

4- I(Fy 2 (pn, 1) @ . @ Fioo (pe,ve)) = (0,1) <= I(F1 @ (pa,11)

SO Frt (k) = (0,1) <= I(Fy: (pa,vn) VooV Fieos (pks vk))

(0, 1) < I(Fi:(=(0,1), for eachze{l kY.

5. IfI(Fy : (p1,11)©...O Fg « (p, i) = (1,0), then I((F1®...®Fk):
((p1, 1)@ O (pr,vr))) = (1,0), where ® is any one of the connectives
®,®,A.

6. IfI((,LL1,1/1)® @Fk:(uk,vk)):@,l), then[((Fl(D...@Fk):
((p1,1) © ... O (uk,vk))) = (0,1), where ® is any one of the connectives
®,®, V.

7. If I(Fy : (p,v)) = (1,0), then I((F1 & F») : (u,v)) = (1,0), for any

formula Fs.

8. IfI(Fl : (M7V)) = <Oa1>7 then I((Fl ®F2) : (M7V)) = <071>: for any

formula F>.

9. I(F s (,v)) = (1,0) <= I(~F: (v,) = {1,
10 I(F < (1.v)) = (0,1) <= I(~F: (v,)) = (0
11. For every formula F, I(F : (0,0)) = (1,0).

&

The proof of this proposition uses the definitions of I and bilattice op-
erations. Not all the statements in the above proposition are immediate.
For example, items 3 — 6 exhibit some non-trivial properties of the bilat-
tice interpretation. The proposition will be useful in the next subsection,
where we introduce a sound and complete sequent calculus for BAL.

3.2 Sequent Calculus for Annotated Logics.

In this section we will use properties of bilattices and interpretation I to
define a sequent calculus for Bilattice-Based Annotated Logic (BAL).
We denote annotated formulae by ¢, 1 and ¢, and conventional first-
order formulae by Fi, F». The symbols {2 and I" will denote arbitrary
finite sequences of annotated formulae.

We allow the following axioms ¢ +— ¢; +— F': (0,0) and rules:

1. Introducing —:

—T ¢
‘907“(2'’]17

0, 2= 1

-L ot
’ Q!—?F,—\(p

—R.

2. Introducing V:

v, Q=T ¢, 02— T
PV, 2= T

N—T e R T

QeTove T 0o ove TR

V-L,

3. Introducing A:

$, 2T 620 .\ QoDe; 20Dy

NG Q=T YN 2T QoA R.

4. Introducing @:

Y, 2= 1 ¢, 21T oy 21y
Yoo, 2—1T =T ey
The rule ©-L is identical to V-L; but the rule ®-R is identical to N-R.
Cf. Definition 2 and Proposition 2.(3-4).
5. Introducing ®:
V2T 9, Qs T Qe Tp; Qe Iy
YR, 22— T =T oR1¢
The rule ®-R is identical to N-R; but ®-L is identical to V-L. Cf. Defi-
nition 2 and Proposition 2.(3-4).
Similarly, because quantifiers I1, X are modelled by infinite analogues of

® and @, rules for introducing IT are identical to the rules for X
6. Introducing O = X, IT in the antecedent (X-L/ II-L):

S¥ip, 2,— T
Ozip, 22— T
7. Introducing O = X, II in the consequent (X-R/ II-R):
I T
02— I''Ozip
10. Introducing 3 in the antecedent (3-L):
Sy 2T
drip, 2 — I

@-L, @-R.

®-R.

®-L,

,Yi ¢ FREE(Q2 U {Xx0,I'}).

,Yi ¢ FREE(Q2U{Xxz0,1'}).

,¥i ¢ FREE(2 U {3zip, I'}).

11. Introducing 3 in the consequent (3-R):

Q2—T,5;¢

Q2= I3z
The rules for quantifier V are given dually to those for 3, as in conven-
tional classical sequent calculi.

The next block of rules will give an account of annotations:
12. Increasing values in annotations (IA), (¢f. Proposition 2.(1)):

R—TI,F: (uv)
R—T,F:(u,v)

, for all (u',v") <g (u,v).

13. Descending values in annotations (DA) (cf. Proposition 2.(2)):

F:(p), 2T
Fi(iv), Q1"

for all (.U‘7 V) <k (/J“/7 V/)'
14. Introducing @ inside annotated formulae in the antecedent (I®I -L)
(¢f. Proposition 2.(7)):

Fi:(u,v),2—1T; Fo:(u,v),2— 1T
(L@ F): (uv),R2—1T '

15. Introducing @ inside annotated formulae in the consequent (HI-R)
(¢f. Proposition 2.(7)):
QHFaFl:(/“LvV) Q'_)F7F2:(/'L7V)
=T, (F®F): ()’ QT (F®F): (uy)

16. Introducing ® inside annotated formulae in the antecedent (®I-L)
(¢f. Proposition 2.(8)):

Fl:(luay)wg'_’[‘ FQI(,LL,Z/),.QI—)F
(FL@F2): (nv),R—1T" (M F): (bv),2—T"

17. Introducing ® inside annotated formulae in the consequent (I ® I-R)
(¢f. Proposition 2.(8)):

Q1T F:(p,v); 2— L F:(u,v)
T (FQF): (1) '

18. Combining annotations in the antecedent (CAL) (c¢f. Proposition
2.(6)):
Fi:(p1,11) @ Fo: (p2,12),2— T
(F1 O F) : ((p1,11) © (p2,12)), 2 — I

19. Combining annotations in the consequent (CAR) (cf. Proposition
2.(5), see also Example 2):

Q)—>F,F1 N (/.Ll,Vl)@FQ : (MQ,VQ)
Q=1 (Fr O F2) : (g1, 01) © (p2, v2))

20. Introducing — inside annotations (cf. Proposition 2.(11)):

By (vp), 2T Q= Iy (v,)
(=F) : (p,v), 2— T NI, (-F): ()

We allow the structural rules interchange, contraction and weakening.
These structural rules can be defined to be either primitive or admissi-
ble, in style of G3. The latter option seems to be more appropriate for
automated reasoning, but we shall not discuss this issue here.

All the annotation functions ®, @, A and V are defined in B, and
one is allowed to operate with them accordingly. That is, for exam-
ple, one can think of F : ((3,2) ® (2,1)) as of F : (3,3). Also, be-
cause in both lattices constituting a bilattice, operations &, ®, A and
V are idempotent, commutative, associative, and distributive, one can
treat equally F : (u,v) and F : ((u,v) © (,v)) (O = &, ®,A,V),
for example, or write F : ((p1,v1) V ((p2,v2) A (13,v3))) instead of
F o (((p1,v1) V (p2,v2)) A ((p1,v1) V (us,v3))), and so on. All these
properties can be stated directly as sequent rules, or, as we do here, just
assumed throughout. In fact, the latter way seems to be more natural:
®,®, A\ and V appearing in annotations are not connectives, but they
are annotation functions. And, in the same way as we ignore properties
of functions appearing in individual terms when defining conventional
sequent rules, we may wish to ignore properties of annotation functions
when defining sequent calculus for BAL.

In general, all the classical tautologies reformulated with annotated for-
mulae are provable in this calculus. But additionally, we can prove the-
orems concerning properties of annotations.

, where © is either @, ® or V.

, where ® is either @, ® or A.

-I-R .

LL,

Ezample 2. The formula (Fi A F2) : (0,1) is a logical consequence of F; :
(1,0)AF> : (0,1). One can use the rule CAR and the fact that annotation
terms (1,0) A (0,1) and (0, 1) are equal to prove this sequentially.

Cut elimination theorem can be proven for BAL, if cut rule is defined.
But we will not discuss this issue here.

Theorem 1 (Soundness). For any annotated formula ¢, if ¥ & ¢ then
V.

Proof. Proof follows along the lines of conventional proof of soundness
for classical first-order sequent calculus. We additionally make use of
Proposition 2.

The calculus for BAL is also complete. But we avoid to state Com-
pleteness until the last section, when we obtain it as a corollary of the
completeness theorem for many-sorted logic.

4 Many-Sorted Representation of BAL

The sequent calculus for BAL introduced in the previous section reflects
rigorously the semantic properties of the logic. But it may be criticised for
having a difficult rule representation and allowing semantics to interfere
with its syntax. In the second part of this paper we will show how this
calculus can equivalently be transformed into the elegant conventional
sequent calculus for many-sorted logic, introduced in [4]. The latter is
proven to be sound and complete, see, for example [4, 23].

In this section we draw inspiration from the work of Manzano [23] who
showed how second-order and dynamic logic can be translated into frag-
ments of many-sorted logic MSL. We define the syntax and semantics of
its fragment MSL* and use it for translation of BAL.

We follow the notation of Manzano when working with many-sorted se-
mantics. We hope that the uniformity of our notation with that of [23]
will make it easier to consider our results in one context with the similar
results of Manzano concerning second-order and dynamic logic.

4.1 Many-Sorted Language MSL* of Signature X*

We start by defining the many-sorted language MSL* of signature X*.

Definition 4. We define a signature ¥* = (SORT, RANK), where
n—1
—
SORT(X*) = SORT = {0,1,2,< 0,1,...,1,2 >} (representing boolean,
individual, bilattice universes and a universe of n-ary relations on indi-
viduals and bilattice elements); and RANK is described in Df. 5.

We will continue defining RANK in the next Definition, and will pause
for a while to explain the significance of the particular choice of SORT

n—1

—
for MSL*. The sorts 2 and < 0,1,...,1,2 > are specific for MSL*, if

we compare them with the general definition of a many-sorted signature
in [23]. The sort 2 represents universe of bilattice elements. The sort
n—1

<0,1,...,1,2 > will be used when we give a formal account of the in-
terpretation function I for BAL, which will be formalised by relations
I* of different arities in MSL*. As in second-order logic, the relations
interpreted in this universe will be quantified. Moreover, they will have
both individual and annotation terms as arguments. As any other rela-
tions, they can be evaluated as true, if some elements in the underlying
structure satisfy this relation, or false otherwise.
We define S.,(SORT) to be the set of all finite sequences of elements of
SORT.
RANK is a function whose values are in S, (SORT).
We denote Dom(RANK) as OPER.SYM(X*) = OPER.SYM and call its
elements operation symbols. We allow the following operation symbols
in the language:

— —,V, A - the classical connectives;

— fi', f3, ..., for any n € N, - function symbols of different arities over
individual terms;

— 97,95, ..., for any n € N, - bilattice function symbols of different
arities;

— R, Ry, ..., for any n € N, - predicates over individual terms;

— <y - bilattice binary relation;

— I, I3, ...,, for any n € N, - relation symbols of different arities;

— € - membership relation.
Then RANK is defined for each of them as follows.

Definition 5 (Df. 4 continued).
For —~,V, A € OPER.SYM, RANK(V) = RANK(A) = (0,0, 0),
RANK(—=) = (0,0).
/—’L
We define RANK(f™(x1,...,2zn)) = (1,1,...,1), where f" is n-ary func-

tion over terms of sort 1; and
n

——
RANK®™ ((p1,v1), - -, (n, vn))) = (2,2, ..., 2), where 9™ is n-ary func-

tion over terms of sort 2;
n

— . .
RANK(R"(z1,...,zn)) = (0,1,...,1), where R" is n-ary relation over
individual terms of sort 1;
For the binary bilattice relation <p, RANK(<;) = (0,2,2).

—N—
RANK{I"((z1,...,2n), (,v))) = (0,1,...,1,2), where I"™ is an n-ary
relation over terms of sorts 1 and 2.
And, finally, for membership relations ey,

n n

—— —
RANK(e,) = (0,1,...,1,2<0,1,...,1,2 >).

Note that each annotation term of the form (u;, v;) is interpreted by one
element of a bilattice, and thus each annotation term has a single sort
2, and not (2,2) as one might expect.

Definition 6. We define a many-sorted structure
S = (A1, Aa, A5, f21, £22), (for each n € N),

where A1, A2 and A% are universes for variables of sorts < 1>, < 2 >,
n—1

—
<0,1,...,1,2>; f4 C AY and f42 C AL,

A many-sorted language £ consists of symbols from OPER.SYM, quan-
tifier 3 and the set of variables V = V' : ¢ € SORT — {0}. That is, the
superscript of a variable denotes its sort.

Definition 7. Ezpressions of the language are defined inductively as fol-
lows:
1. Fach variable of a sort i is an expression of the same type.
2. If f™ € OPER.SYM and €1, . .., em are expressions of the single type
1, then f™(e1,...,€em) is an expression of type 1.
If 9™ € OPER.SYM and €1, ..., €em are expressions of type 2, then
J(e1,...,em) is an expression of type 2.
If R™ € OPER.SYM , then for all the expressions € of the single
type 1, the string R(e1,...,€em) is an expression of type 0.
If <€ OPER.SYM, then for all expressions €1, €2 of the single type
2, the string €1 <y €2 is an expression of type 0.
IfI™*1 € OPER.SYM, €1, ..., em are expressions of the single type 1
and € is an expression of the single type 2, then I ((e1,...,em), €)
is an expression of type 0.
3. Ife is an expression of type 0 and z* is a variable of sort i, then Iz‘e
is an expression of type 0 as well.
No other string is an expression.

Terms are expressions of single non-zero type ¢ = 1,2. Formulae are
expressions of type 0.

Note that in our setting, the relations I of different arities can be viewed
as variables and can be quantified. This is why, we handle these relations
uniformly with the way how [23] treated second order relations and for-
mulae within many-sorted language. We require €tq, ..., tn, u, 1", with
e being the membership relation, to replace I"™((t1,...,tn), (4, v)); and
we define expressions of the former type to be formulae, but expressions
of the latter type - not, and amend Definition 7 accordingly.

We define D and V using -, V and 3 in the usual way.

Interpretation We define the interpretation function I for the many-
sorted language, following closely [23], but making a substantial adapta-
tion to the particular language MSL* we have defined.
We define Assignment

M : U Vi —

i€SORT—{0} icSORT—{0}’
in such a way that M[V;] C A;.

Definition 8. An interpretation I over a structure S is a pair (S, M),
where M is an assignment on S. In particular, for i € SORT,

~

I(z') = M(«),
2. 1(f(er. o sen)) = F5(Aer), . Xen)).
As particular cases of item 2, we have:
I(ai) = (ai)S ;

3 I(f(tr, o stn)) = (f)SS(I(h% I(tn));

4. I(ﬁ(Tl’ 77-”1)) = (19) (I(Tl)v '71(7-”));
I(R(t1,...,tn)) = (R S(g(tl), L I(t); .
I((t1, ... tn), (T)el) = e”((I(t1), - . -, I(tn), I(7)), ((1)7));
I(—y) = =%(L(y));

Iy v ¢) = (I(y)) VZ (1(¢)); I(¥ A ¢) = (I(1)) A (I(9)).

5. I(3z'p) = True if and only if {z* € A;|I% (¢) = True} # 0 (where
1% = (S, M%) and M¥ = (M — {< &', M(z") >}) U{< 2%, 27 >}).

Note that the interpretation of MSL* is two-valued: atomic formulae
are interpreted as true if the relations they formalise are satisfied in the
structure S, and they are interpreted false otherwise. Complex formulae
are interpreted respective to this interpretation of atomic formulae.
Now, when the many-sorted language MSL*, its underlying structure,
and the interpretation function I are defined, we will show that BAL
can be translated into MSL*, and so we give syntactical and semantical
translation for BAL.

4.2 Translation of BAL into MSL*

In the subsequent sections we lighten the notation, and instead of using
upper indices to denote sorts of variables, will use symbols x and y with
lower indices to denote variables of sort 1, and u, v with lower indices to
denote variables of sort 2.

Syntactical Translation The syntactical translation from BAL to
MSL* leaves all individual terms and atomic non-annotated formulae as
they are, and gives the following translation to the atomic annotated
formulae: TRANSLpar—msL* (R(Z) : (u,v)) =

VI V) (R@) A @, (1, v)eD) A (1) i (1, 0))).

We will abbreviate TRANSLBar—MmsL* as TRANSL*.
TRANSL*(—(R(Z) : (i,v))) = TRANSL*(R(Z) : (v, i)).

Let ¢1 and 2 be annotated atomic formulae. Then

TRANSL*(=¢1) = “TRANSL" (¢1);
TRANSL* (41 A ¥2) = TRANSL* (1) A TRANSL* (¢)2);
TRANSL" (¢1 V 1b2) = TRANSL" (1) V TRANSL" (t2);

Because our final goal is to translate sequent calculus for BAL into
the conventional sequent calculus for many-sorted logics, the translation
function TRANSL" is sensitive to the position of a translated formula in
a sequent:

TRANSL* (11 ® th2) = TRANSL* (¢1) A TRANSL* (1)2),

if 91 ® 92 appears in the consequent of a sequent; and
TRANSL" (¢1 ® 12) = TRANSL" (¢01) V TRANSL" (2),

if 91 ® 2 appears in the consequent of a sequent.
TRANSL* (41 @ 12) = TRANSL" (¢1) A TRANSL™ (¢)2),

if 11 ® 92 appears in the antecedent of a sequent; and
TRANSL* (41 @ 12) = TRANSL" (¢01) V TRANSL" (¢2),

if 91 ® Y2 appears in the antecedent of a sequent.

For complex formulae under a single annotation we introduce the follow-
ing translation:

TRANSL" (R1(7) © Ra(y) : (a, 8)) = VI[3(pa, 1), (p2, v2) (R () A Ra(Y)
/\(Ev (/1/17 Vl)EI) A (?7 (M27 VQ)EI) A (a7ﬁ) <k ((Mlv Vl) © (MQ’ VQ))))]? for
O=6,8,V,A.

Finally, we give a translation for the existential quantifiers:

TRANSL*(3a¢)) = 32TRANSL* ().

TRANSL*(Yz¢) = FzTRANSL*(¢), if Yxe is in the antecedent of
a sequent; and TRANSL* (Xzy) = VaTRANSL*(¢), if XYzt is in the
consequent of a sequent.

Ezample 3. The ground formula (F1 A F3) : (0,1) from Example 2 can be
translated into VI[3(p1, v1), (u2, v2) (FA AF2 A((p1,v1)el) A ((pe, v2)el) A
((0,1) <k ((pa, 1) A (p2,12))))]-

Semantical translation. We are ready now to compare model prop-
erties of BAL and MSL*.

Lemma 1. Let F be an annotated formula of BAL. Let X* and S be a
signature respectively a structure of MSL*, with I being a many-sorted
interpretation in S. And let | |1 be an interpretation for BAL as defined
in Section 3. Then the following holds:

|F|r = (1,0) in BAL <= I(TRANSL"(F)) = True in MSL" .
Proof. The proof proceeds by two routine induction arguments on com-

plexity of formulae in BAL and MSL*; we use definitions of I in BAL
and interpretation I over the many-sorted structure S.

Corollary 1. = F in BAL if and only if = TRANSL"(F') in MSL".

We have given the syntactical and semantical translation of BAL into
MSL*. It remains to show their deductive equivalence.

4.3 Sequent Calculus for MSL*

We define a theory which will be proven to be deductively equivalent to
BAL. In fact, sequent calculus for MSL* is just a conventional many-
sorted sequent calculus MSL of [4,23], but with several simple rules
added in order to reflect particular properties of bilattice structures’:
We add — (i, v) >k (0,0) to the set of axioms.

The rules we add to MSL are:
1. Transitivity of < in the consequent:

2= T, (u1, 1) <g (p2,v2), (B2, v2) <i (p3,v3)

Tr-R.
Q2 I, (p,v1) <k (ps,v3)
2. Transitivity of <j in the antecedent:
(n2,v2) <k (pa,11), (s, vs) <k (po,v2), @ = I o o

(13, v3) <k (p1,11), 92— T
3. Introduction of @ in the antecedent:

(1, v) < (p1,11), 2= T (p,v) <p (p2,12), 2= T

®-L.
(1,v) < ((p1,11) ® (p2,12)), 2 — T’
4. Introduction of @ in the consequent:
Qi—)F,(,U/,V)Sk (,LL1,I/1) o-R
Q2= I (p,v) < ((p1,01) & (p2,v2)) '
5. Introduction of ® in the antecedent:
(Ml,l/l) <k (/‘7”)79’_)[' ®-L
((H1,v1) ® (p2,12)) <k (,v), 21
6. Introduction of @ in the consequent:
QHF,(/A,I/) <k (/“Ll?yl); QHF,(/%”) <k (ﬂg,VQ) ®-R
2T, () <k ((H1,01) @ (p2,12)) ’ '
7. Introduction of ®, @, V in the antecedent:
(1“‘171/1) <k (:u‘/ayl)v (/u27l/2) <k (/L/lvl//)v‘QHF o-L
(1, p2) © (p2,12)) <k (W, v") © (W' 0")), 2= T =7
where ® is one of ®, @, V.
8. Introduction of ®, @, A in the consequent:
21T (/“L17V1) <k (:u‘/v’/l)v(:u’%VQ) <k (‘u//’V//) ®-R

Q2= I, ((p, p2) © (p2,v2)) <k (W, v) © (W', 0"))

where ® is one of ®, B, A.

All the properties of bilattice operations we assumed when working with
sequent calculus for BAL are assumed here too. For example, (%, %) ®
(%, %) can be substituted by (é, %) throughout the proof. This includes
all the lattice axioms and distributivity.

! We use a multi succedent reformulation of a single succedent calculus of [4,23].

Ezample 4. A many-sorted version of Example 2 can be proven using
the sequent rules of MSL and the rule 8 above. That is, we can prove
that VI[3(p1, v1), (p2, v2) (Fr A F2 A ((pa, v1)el) A((pz, v2)el) A((0,1) <k
((p1, 1) A (p2,12))))] follows from [VI3(p1, 1) (Fi A ((p1, v1)el)A

((1,0) <k (1, v1))]A VI3 (p2, v2) (Fa A ((p2, v2)el) A((0,1) <g (p2,v2))].

Now we can prove that BAL and MSL* are deductively equivalent.
Theorem 2. For any annotated formula ¢ the following holds:

Fear ¢ iff FmsL- TRANSL®(¢).

Proof. The proof that Fysp TRANSL*(¢) implies Fpar ¢ is trivial.
The ”if” part of the proof proceeds by considering translations of ax-
ioms of BAL into proofs in MSL*, and rules for BAL into proofs in
MSL*. Namely, for each rule in BAL, we translate the lower sequent of
this rule into MSL*, and then show how the translation of the upper
sequent(s) of the BAL rule can be derived in MSL*. For example, we
take the rule DA from the sequent calculus for BAL. We fix F' from
the rule to be R(Z). The lower sequent of this rule can be translated
into VI3(u",v")(R(@) A I(Z, (1", V")) A (1, v") < (', V"), 2 — . We
also assume that ((u,v) <p (¢',v")) is added to the right hand side of
each sequent: this is needed because the condition ((u,v) <g (¢',v')) is
attached to the rule DA in BAL. Being put into antecedent of a lower
sequent, this translated formula will receive a derivation from the three
upper sequents: 2, R(T) — ¢; (T, (1", v")el), 2 — ¢; and (u,v) <g
(1", V"), 22 — . To obtain this, one would need to apply, one after an-
other, MSL™* rules V-L, 3-L, A-L, and Tr-L. The three upper sequents
will also give a proof for VI3(u", v")(R(EZ) A I(Z, (1, v")) A (1, v) <i
(1", V"), 2 — o, that is, the translation of the upper sequent of the DA
rule R(T) : (i, v), 2 — ¢. We consider similarly all the rules in BALL.

We are ready to state completeness of the sequent calculus for BAL as a
corollary from the Soundness and Completeness Theorem for MSL [23].

Corollary 2. For every formula ¢ in BAL, if EgaL ¢, then FraL ¢.

Proof. Follows from Corollary 1, Theorem 2, and Soundness and Com-
pleteness Theorem for MSL, the latter theorem is proven in [23].

The results we have described in this section can be obtained, with mi-
nor modifications, for most of lattice and bilattice based annotated lan-
guages, such as [13,15, 16, 22, 24, 25].

The many-sorted logic MSL* we defined here is in fact just a fragment
of a very general many-sorted logic MSL, [23]. It is curious that the
structure of MSL* is similar to the structure of the fragment of MSL
which gave a translation for a second-order logic in [23]. This shows that
annotated first-order many-valued logics can be equivalently represented
by conventional second-order logic with sorts.

Furthermore, the way of introducing higher-order relations I in MSL* is
similar to the way how [23] introduced first-order relations when translat-
ing propositional dynamic logic into many-sorted logic. It is likely that a
many-sorted representation of a multimodal logic of [2], for example, will
bring into the light a close connection between annotated many-valued
and multimodal logics.

5 Conclusions and Further Work

We have built a sequent calculus for a very general annotated logic BAL.
We used this generality to show, using the example of BAL, that anno-
tated many-valued logics can be syntactically, semantically, and deduc-
tively translated into conventional many-sorted logic in the style of Man-
zano [23]. The resulting many-sorted sequent calculus has a simpler and
clearer rule representation and works within conventional many-sorted
language with no semantical annotations, and hence in the future may
yield some conventional structural (e.g., categorical) analysis.

The uniform framework of MSL allowed us to compare properties of
BAL with other non-classical logics (second order, dynamic) which have
been translated into many-sorted logics already. In the future, it may be
fruitful to find a many-sorted representation of a multimodal logic of [2]
and show its relations with many-valued annotated logics. This would
link nicely modal and many-valued logics.

Some work has been done on practical implementation of many-sorted
translation to Bilattice-based Annotated Logic Programs (BAPs), see
[17]. The translation made in [17] helped to simplify certain resolution
rules for BAL. A rigorous analysis of efficiency of BAPs comparing with
their many-sorted analogues is to be done in the future.

The further work may include the similar analysis of other many-valued
annotated logics, such as logics of [7,13,15, 16,21, 22,24, 25], and some
other lattice or bilattice based logics. This may lead to establishing a nice
uniform framework for analysing different annotated lattice and bilattice
based logics, their model and deductive properties.

References

1. Matthias Baaz, Christian G. Fremuller, and Gernot Sazler. Au-
tomated deduction for many-valued logics. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 2,
pages 1355 — 1402. Elsevier, 2001.

2. M. Baldoni. Normal Multimodal Logics: Automatic Deduction and

Logic Programming extension. PhD thesis, Torino, Italy, 2003.

Alonzo Church. Introduction to Mathematical Logic. Princeton, 1944.

4. H.D. Ebbinghaus, J.Flum, and W.Thomas. Mathematical Logic.
Springer-Verlag, Berlin, 1984.

5. Melvin Fitting. Bilattices in logic programming. In G. Epstein,
editor, The twentieth International Symposium on Multiple- Valued
Logic, pages 238-246. IEEE, 1990.

6. Melvin Fitting. Bilattices and the semantics of logic programming.
Journal of logic programming, 11:91-116, 1991.

7. Melvin Fitting. Many-valued modal logics. Fundamenta informati-
cae, 15:235-234, 1992.

8. Melvin Fitting. Kleene’s three-valued logics and their children. Fun-
damenta informaticae, 20:113-131, 1994.

9. Melvin Fitting. Tableaus for many-valued modal logic. Studia Logica,
55:63-87, 1995.

w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Melvin Fitting. Bilattices are nice things. Self-Reference, pages 53—
77, 2006.

Mathew L. Ginsberg. Multivalued logics: a uniform approach to
reasoning in artificial intelligence. Computational Intelligence, 4:265—
316, 1988.

George Gréatzer. General Lattice Theory. Birkauser Verlag, Basel,
Switzerland, 1978.

Reiner Hahnle. Commodious axiomatizations of quantifiers in
multiple-valued logic. Studia Logica, 61(1):101-121, 1998.

Reiner Hahnle and Ganzalo Escalado-Imaz. Deduction in many-
valued logics: a survey. Mathware and soft computing, IV(2):69-97,
1997.

Michael Kifer and Eliezer L. Lozinskii. RI: A logic for reasoning with
inconsistency. In Proceedings of the 4th IEEE Symposium on Logic
in Computer Science (LICS), pages 253-262, Asilomar, 1989. IEEE
Computer Press.

Michael Kifer and V. S. Subrahmanian. Theory of generalized an-
notated logic programming and its applications. Journal of logic
programming, 12:335-367, 1991.

Ekaterina Komendantskaya. A many-sorted semantics for many-
valued annotated logic programs. In Proceedings of the Fourth Irish
Conference on the Mathematical Foundations of Computer Science
and Information Technology (MFCSIT), pages 225-229, Cork, Ire-
land, August 1— August 5 2006.

Ekaterina Komendantskaya and John Power. Fibrational semantics
for many-valued logic programs, 2007. Submitted.

Ekaterina Komendantskaya, Anthony Karel Seda, and Vladimir
Komendantsky. On approximation of the semantic operators de-
termined by bilattice-based logic programs. In Proceedings of the
Seventh International Workshop on First-Order Theorem Proving
(FTP’05), pages 112-130, Koblenz, Germany, September 15-17
2005.

James J. Lu. Logic programming with signs and annotations. Jour-
nal of Logic and Computation, 6(6):755-778, 1996.

James J. Lu, Neil V. Murray, and Erik Rosenthal. A framework for
automated reasoning in multiple-valued logics. Journal of Automated
Reasoning, 21(1):39-67, 1998.

James J. Lu, Neil V. Murray, and Erik Rosenthal. Deduction
and search strategies for regular multiple-valued logics. Journal of
Multiple-valued logic and soft computing, 11:375-406, 2005.

Maria Manzano. Introduction to many-sorted logic. In K. Meinke
and J. V. Tucker, editors, Many-Sorted logic and its Applications,
pages 3-88. John Wiley and Sons, UK, 1993.

Gernot Salzer. MUIltlog 1.0: Towards an expert system for many-
valued logics. In Proc. 13th Int. Conf. on Automated Deduc-
tion (CADE’96), volume 1104 of LNCS (LNAI), pages 226 — 230.
Springer, 1996.

Gernot Sazler. Optimal axiomatizations of finitely-valued logics. In-
formation and Computation, 162(1 — 2):185 — 205, 2000.

