Proof-Pattern Search in Coq/SSReflect*

Jénathan Heras and Ekaterina Komendantskaya

School of Computing, University of Dundee, UK
{jonathanheras,katya}@computing.dundee.ac.uk

Abstract. ML4PG is an extension of the Proof General interface of
Coq, allowing the user to invoke machine-learning algorithms and find
proof similarities in Coq/SSReflect libraries. In this talk, we will show
the recent ML4PG features in action, using examples from the standard
SSReflect library and HoTT library. We will compare ML4PG with tra-
ditional Coq searching tools and dependency graphs.

Keywords: Coq/SSReflect, Proof-Patterns, Recurrent Clustering.

Development of Coq has led to the creation of big libraries and varied infras-
tructures for formal mathematical proofs. For instance, there are approximately
4200 definitions and 15000 theorems in the formalisation of the Feit-Thompson
theorem. The growing size and sophistication of libraries make maintenance and
re-use of the methods contained in them harder, and require new tools for library
analysis and search.

For analysing existing Coq libraries, Dependency Graphs [7] are a useful
tool. There are actually two types of dependency graphs: (i) graphs showing
dependency of a Coq theorem to all the auxiliary results that were used to prove
it; and (i7) graphs showing the relations between libraries.

For searching, Coq/SSReflect provides comprehensive search mechanisms:
Search , SearchAbout, SearchPattern and SearchRewrite. In addition, SS-
Reflect implements its own version of the Search command [2] — SSReflect’s
Search gathers the functionality of the 4 Coq’s search commands. The Whelp
platform [1] is a web search engine for mathematical knowledge formalised in
Coq, which features 3 functionalities: Match (similar to Coq’s Search command),
Hint (that finds all the theorems which can be applied to derive the current goal)
and Elim (that retrieves all the eliminators of a given type).

The ML4PG (“Machine-Learning for Proof General”) tool [5/6] was created
to complement the functionalities of the above two groups of methods with
statistical machine-learning techniques. In this talk, we will use several SSReflect
libraries [2], as well as the HoTT library [8], to illustrate the use of the new
version of ML4PG compared to the above-mentioned tools.

For standard searching, the user provides a search pattern e.g. using com-
mands of the form “Search "distr" in bigop” or “Search _ (_ * (\bigl
_/_1_(C <= _| 2)_))”, where bigop is a library, "distr" is a pattern in a
lemma name, and _ (_ * (\big[_/_1_(_ <= _| _)_)) is a pattern for search.

* The work was supported by EPSRC grants EP/J014222/1 and EP/K031864/1.



The situation is more complicated if the user does not know the right pattern
to search for, and just wishes to know whether there exist proofs or definitions
that are similar to his current development, in order to extrapolate them.

MLAPG uses recurrent clustering [4] to detect proof patterns in Coq/SSRe-
flect libraries. A proof pattern is now understood differently — as a correlation
of several proof features. Proof features that MLAPG collects include term-tree
structures, types, tactics, (types and shapes of) tactic arguments, and the num-
ber of generated subgoals, to name a few. Overall, 300 features are analysed for
every term (definition, type declaration, lemma statement, and so on); and 85
features are analysed for every 5 proof steps when proofs are data-mined. More-
over, very much like in dependency graphs, the gathered feature statistic takes
into consideration mutual dependencies of various lemmas, types and definitions;
by using previous results of clustering auxiliary terms, types and proofs when
extracting features for new terms, types and proofs.

The resulting machine-learning tool works differently compared to traditional
searching or dependency graphs. It is no longer deterministic, due to its statisti-
cal character; it finds proof similarities, not dependencies or exact matching of
symbols; and it finds patterns beyond concrete notation. For example, if some-
one re-defines the same or a similar notion using different notation or literally
different but structurally similar types, ML4PG can easily group such definitions
together, as many structural features will correlate. Comparing to dependency
graphs that show all the existing dependencies of a (lemma) statement, MLAPG
helps to “post-process” such dependencies and discriminate between “impor-
tant” and “unimportant” dependencies, relative to whether they play a role in
forming a proof pattern as compared to other Coq objects in the given libraries.

Finally, the graphical output of MLAPG is similarity graphs, showing either
a correlation of proof features (for a single proof cluster); or groups of similar
definitions or lemma statements (for a whole library); see [3].

References

1. A. Asperti et al. A Content Based Mathematical Search Engine: Whelp. In
TYPES’04, volume 3839 of LNCS, pages 17-32, 2006.

2. G. Gonthier and A. Mahboubi. An Introduction to Small Scale Reflection. Journal
of Formalized Reasoning, 3(2):95-152, 2010.

3. J. Heras and E. Komendantskaya. HoT'T Formalisation in Coq: Dependency Graphs
and ML4PG. A technical note, 2014. http://arxiv.org/abs/1403.2531.

4. J. Heras and E. Komendantskaya. Proof Pattern Search in Coq/SSReflect, 2014.
http://arxiv.org/abs/1402.0081.

5. J. Heras and E. Komendantskaya. Recycling Proof Patterns in Coq: Case Studies.
Journal Mathematics in Computer Science, accepted, 2014.

6. E. Komendantskaya et al. Machine Learning for Proof General: interfacing inter-
faces. FElectronic Proceedings in Theoretical Computer Science, 118:15-41, 2013.

7. A. Pacalet and Y. Bertot. The dpdgraph tool, 2009-2013. https://anne.pacalet.
fr/dev/dpdgraph/.

8. The Univalent Foundations Program. Homotopy Type Theory: Univalent Founda-
tions of Mathematics. Institute for Advanced Study, 2013.


http://arxiv.org/abs/1403.2531
http://arxiv.org/abs/1402.0081
https://anne.pacalet.fr/dev/dpdgraph/
https://anne.pacalet.fr/dev/dpdgraph/

	Proof-Pattern Search in Coq/SSReflect

