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Abstract. It is becoming increasingly important to verify safety and security of
AI applications. While declarative languages (of the kind found in automated
planners and model checkers) are traditionally used for verifying AI systems, a
big challenge is to design methods that generate verified executable programs. A
good example of such a “verification to implementation” cycle is given by auto-
mated planning languages like PDDL, where plans are found via a model search
in a declarative language, but then interpreted or compiled into executable code in
an imperative language. In this paper, we show that this method can itself be ver-
ified. We present a formal framework and a prototype Agda implementation that
represent PDDL plans as executable functions that inhabit types that are given
by formulae describing planning problems. By exploiting the well-known Curry-
Howard correspondence, type-checking then automatically ensures that the gener-
ated program corresponds precisely to the specification of the planning problem.

Keywords: AI Planning · Curry-Howard Correspondence · Constructive Logic ·
Verification · Dependent Types.

1 Motivation

Declarative programming languages have long provided convenient formalisms for
knowledge representation and reasoning, ranging from Lisp and Prolog in the 1960s-
1980s to modern SMT solvers [3,2], model checkers [13], and automated plan-
ners [4,11]. Common features of such languages typically include a clear logic-based
syntax, a well-understood declarative semantics, and an inference engine that produces
sound results with respect to the semantics.

As AI applications become increasingly deployed in the real world, e.g. in self-
driving vehicles or autonomous robots, so safety and security issues are becoming in-
creasingly important. Existing ad-hoc software development approaches do not provide
the strong confidence levels that the public expects from such applications. It is tempt-
ing to envisage that declarative languages will play an increasingly important role in
verifying the safety and security of real-world AI applications. Ideally, such languages
could become vehicles for proof-carrying code, an approach in which all relevant veri-
fication properties are directly embedded in the source code [12]. To make this possible,
we must supplement the ability to prove that a property 𝐴 holds in a theory 𝑇 (denoted
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𝑇 ⊢ 𝐴) with robust mechanisms that can generate a program 𝑝 that executes according
to the specification 𝐴, together with a proof that 𝑝 satisfies 𝐴 (denoted 𝑇 ⊢ 𝑝 ∶ 𝐴). Such
an approach would embed verification directly as an integral part of the implementation
cycle for AI applications.

The well-known Curry-Howard correspondence [18,19], tells us, of course, that
some proofs in intuitionistic first-order logic can be represented as computable func-
tions. In this case, first-order formulae are seen as types, and proofs are seen as terms
that inhabit those types. For example, when we write 𝑇 ⊢ 𝑝 ∶ 𝐴, we mean that a proof
term 𝑝 is an executable program that satisfies proposition 𝐴, and moreover that this
inference is sound, i.e. that 𝑇 ⊢ 𝑝 ∶ 𝐴 holds in some formal system.

Until recently, the significance of the Curry-Howard correspondence has been pre-
dominantly theoretical. The main impediment to its practical application has been the
immaturity of programming languages that could fully implement this idea. For exam-
ple, in order to express verification properties of AI applications, a language that could
infer 𝑇 ⊢ 𝑝 ∶ 𝐴 must possess at least first-order types. Moreover, it should ideally
also possess dependent types. Several dependently-typed languages have now become
available and increasingly practical, e.g., Coq, Agda, and Idris. This development has
made it possible to re-open the discussion of the actual practical value of the Curry-
Howard correspondence. For example, in [6,7] Fu et al. have given a Curry-Howard
interpretation for first-order Horn clauses and the resolution algorithm; and Urzyczyn
and Schubert [16] have given a constructive semantics for answer set programming.

In this paper, we turn our attention to AI Planning languages [4,11] – a rapidly grow-
ing research and engineering area that develops methods and tools for generating plans
from declarative problem specifications. We show that the Planning Domain Definition
Language (PDDL) [11] is a natural domain for the Curry-Howard implementation of
declarative reasoning. In particular, specifications of planning problems that are usu-
ally written in first-order logic can be expressed naturally as types, and executable plans
that are generated by PDDL can be formalised as programs that inhabit those types. Type
checking thus verifies that correct executable programs are generated from specifications
via the automated planning tool. We provide a proof-of-concept implementation [17] in
the dependently-typed language Agda.

2 Example: Proof-Carrying PDDL
Figure 1 shows a snippet of PDDL code that describes the classic Blocksworld do-
main, a simple planning task for a robot assembling a tower from bricks. It de-
fines a set of predicates (handEmpty, holding, onTable, on, clear) and an action
pickup_from_table that must satisfy certain pre- and post-conditions (“effects”) that
are expressed using those predicates. Several such actions are usually defined as part of
a planning domain. In addition, a grounded problem will also be supplied to the plan-
ner, e.g., to form a stack of blocks a on b on c, given that a, b and c are initially on the
table (but not on each other). Given the domain and problem definitions, an automated
planner will initiate an algorithm (e.g., a search procedure) to generate a sequence of
actions that satisfy the specification and the goal. In our case, one possible solution is:
Plan1 = pickup_from_table b; putdown_on_stack b c;
pickup_from_table a; putdown_on_stack a b.
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Definition of a Planning Domain: Definition of a Planning Problem:

(define (domain blocksworld)
(:requirements :strips)
(:predicates

(handEmpty)
(holding ?x)
(onTable ?x)
(on ?x ?y)
(clear ?x) )

(:action pickup_from_table
:parameters
(?x)

:precondition
(and (handEmpty)

(onTable ?x)
(clear ?x) )

:effect
(and (not (handEmpty))

(not (onTable ?x))
(holding ?x) )))

(define (problem blocksworld1)
(:domain blocksworld)
(:objects a b c)
(:init (onTable a)

(onTable b)
(onTable c)
(clear a)
(clear b)
(clear c)
(handEmpty) )

(:goal (and (on a b) (on b c))))

Fig. 1. The Blocksworld: a code snippet defining the planning domain and a planning problem.

We would like to have an implementation of this planning language where an exe-
cutable function 𝑝𝑙𝑎𝑛1 is generated from the planning domain and problem, such that
𝑝𝑙𝑎𝑛1 corresponds to the actions of Plan1 and has a type onTable a ∧ onTable b ∧
onTable c ∧ clear a ∧ clear b ∧ clear c ∧ handEmpty ⇝ on a b ∧ on b c.
If this judgement type-checks, then we will obtain a verified program 𝑝𝑙𝑎𝑛1 that can be
later compiled and executed. As we will show in the rest of the paper, this task is far
from trivial. Although the Curry-Howard correspondence tells us that, in principle, (in-
tuitionistic) first-order proofs have a computational meaning, it is not enough for us to
just formulate arbitrary proofs. Firstly, we need to formulate a generic and automatable
approach to translate PDDL domains and problems into the dependently-typed setting.
In addition, we need to devise our calculus in such a way as to ensure that the programs
that inhabit the types give us the actual executable plans in the PDDL sense. In this pa-
per, we therefore develop two parallel narratives. The first sets up the general method
in mathematical notation independently of the concrete implementation. The second il-
lustrates the important engineering aspect of this work, with reference to the intricacies
of the Agda encoding that we give in [17]. The two parallel story lines merge when we
come to the main result of this paper: the formal proof of soundness of the proof terms
that implement the plans. We state this in standard mathematical notation, but delegate
the proof checking to Agda. In time, we envisage that our Agda prototype will become a
fully fledged program for generation of executable code from planners, while maintain-
ing the guarantees of soundness of the generated code relative to the plan specification.
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Atomic Formulae At ∋ 𝐴 ∶∶= 𝑅 𝐶1 … 𝐶𝑛

Formulae 𝐹 𝑜𝑟𝑚 ∋ 𝑃 , 𝑄 ∶∶= 𝐴 ∣ ¬𝐴 ∣ 𝑃 ∧ 𝑄
Polarities 𝒫𝑜𝑙𝑎𝑟𝑖𝑡𝑦 ∋ 𝑡 ∶∶= + ∣ −

States 𝒩 ∋ 𝑀, 𝑁 ∶∶= [ ] ∣ [𝐴𝑡, 𝑁]
Plans 𝒫𝑙𝑎𝑛 ∋ 𝑓 ∶∶= halt ∣ 𝛼; 𝑓

Contexts Γ ∋ Γ1, Γ2 ∶∶= 𝛼 ∶ 𝑀 ⇝ 𝑁

Fig. 2. Definitions of Formulae, States, Plans and Actions, given a set of predicates ℛ =
{𝑅, 𝑅1, 𝑅2, ..., 𝑅𝑛}, a set of constants 𝒞 = {𝐶1, 𝐶2, ..., 𝐶𝑘}, and a set of constant actions
{𝛼, 𝛼1, … , 𝛼𝑚}.

3 Planning Problems as Types

In their development of the STRIPS planner, Fikes and Nilsson presented an inference
system for planning languages that is based on the notion of states, or possible worlds.
The worlds are sets of atomic formulae, that interpret complex formula of the planning
domain. Operators that are defined on the worlds interpret planning actions, and rewrite
the worlds by adding and deleting the atomic formulae. The inference algorithm thus
starts in an initial world and ends in a goal world by the repeated application of the
operators. The system is sound in the sense that the resultant world model satisfies the
goal. We now show how to work with STRIPS predicates directly in a type-system,
yielding proof obligations that will be fulfilled by plan execution.

3.1 Formal Language and its Declarative Semantics

We assume a finite set of predicates ℛ = {𝑅, 𝑅1, 𝑅2, ..., 𝑅𝑛} each 𝑅𝑖 of fixed arity, and
a finite set 𝒞 = {𝐶1, 𝐶2, ..., 𝐶𝑘} of constants (also known as “objects”). The standard
definition of first-order formulae is given in Figure 2. It has two notable restrictions: the
formulae do not admit variables, and only atomic formulae can be negated. The former
restriction, together with the assumption that there are only finitely many constants, en-
sures that the set of all atomic formulae is finite, which makes it possible to take the
closed world assumption [15], and ensure the decidability of set membership on possi-
ble worlds. The latter restriction means that disjunction is not definable in our language.
In PDDL, two key restrictions apply to the use of disjunction. Firstly, all formulae are
pre-compiled into disjunctive normal form. Secondly, no “actions” can have disjunc-
tive “effects”, i.e. they cannot give rise to disjunctive post-conditions. Thus, our second
restriction actually adheres to the practice of PDDL plan specification and search.

Example 1. Given the syntax of Figure 2, handEmpty ∧ ¬onTable a is a formula.

The inductive definitions of Figure 2 are given as data type definitions in our Agda
implementation (Figure 3). We provide a generic Agda module, 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠, that is para-
metric in predicates and actions. For each planning problem, the set of predicates ℛ
may then be defined concretely, as in the 𝐵𝑙𝑜𝑐𝑘𝑠𝑤𝑜𝑟𝑙𝑑 module. Propositional equality
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module 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠
{𝑅 ∶ 𝑆𝑒𝑡 }
{𝑖𝑠𝐷𝐸 ∶ 𝐼𝑠𝐷𝑒𝑐𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒

{𝐴 = 𝑅} (_≡_) }
where

data 𝐹 𝑜𝑟𝑚 ∶ 𝑆𝑒𝑡 where
_∧_ ∶ 𝐹 𝑜𝑟𝑚 → 𝐹 𝑜𝑟𝑚 → 𝐹 𝑜𝑟𝑚
¬_ ∶ 𝑅 → 𝐹 𝑜𝑟𝑚
𝑎𝑡𝑜𝑚 ∶ 𝑅 → 𝐹 𝑜𝑟𝑚

module 𝐵𝑙𝑜𝑐𝑘𝑠𝑤𝑜𝑟𝑙𝑑 where

data 𝐶 ∶ 𝑆𝑒𝑡 where
𝑎 𝑏 𝑐 ∶ 𝐶

data 𝑅 ∶ 𝑆𝑒𝑡 where
ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦 ∶ 𝑅
𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐𝑙𝑒𝑎𝑟 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 ∶ 𝐶 → 𝑅
𝑜𝑛 ∶ 𝐶 → 𝐶 → 𝑅

open import 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠 {𝑅} {𝑖𝑠𝐷𝐸}

Fig. 3. Left: Module 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠 giving a general-case Agda definition of a formula, following the
set-up of Figure 2. Right: Module 𝐵𝑙𝑜𝑐𝑘𝑠𝑤𝑜𝑟𝑙𝑑 giving specification of the particular Blocksworld
domain from Figure 1: listing its constants and predicates.

𝑊 𝑜𝑟𝑙𝑑 ∶ 𝑆𝑒𝑡
𝑊 𝑜𝑟𝑙𝑑 = 𝐿𝑖𝑠𝑡 𝑅

data 𝑃 𝑜𝑙𝑎𝑟𝑖𝑡𝑦 ∶ 𝑆𝑒𝑡 where
+ − ∶ 𝑃 𝑜𝑙𝑎𝑟𝑖𝑡𝑦

𝑛𝑒𝑔 ∶ 𝑃 𝑜𝑙𝑎𝑟𝑖𝑡𝑦 → 𝑃 𝑜𝑙𝑎𝑟𝑖𝑡𝑦
𝑛𝑒𝑔 + = −
𝑛𝑒𝑔 − = +

Fig. 4. Agda definitions of worlds as lists of atomic formulae, polarities. (Module 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠)

on atomic formulae must be shown to be decidable for the particular planning problem.
As we will show later, this property is needed in order to manipulate world represen-
tation. Since our implementation of the 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠 module takes a generic approach, a
proof that propositional equality _ ≡ _ for ℛ is decidable must also be provided as a
module parameter. This explains the declaration of the main module:

module 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠 {ℛ ∶ 𝑆𝑒𝑡 } {𝑖𝑠𝐷𝐸 ∶ 𝐼𝑠𝐷𝑒𝑐𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑐𝑒 {𝐴 = ℛ} (_≡_) }

When we instantiate ℛ with a finite set of predicates for each planning problem, we need
to instantiate 𝑖𝑠𝐷𝐸 with a proof that propositional equality for this particular problem
is indeed decidable. In [17] we show how to automate such “boilerplate” proofs for any
given ℛ, using reflection.

Given a set 𝑤 of atomic formulae (called a world), a formula 𝑃 is satisfied by 𝑤 if
𝑤 ⊧+ 𝑃 can be derived using the rules of Figure 5. In Agda, we take advantage of the
extensive library of list operations, and so define worlds as lists of atomic formulae, as
shown in Figure 4. Figure 7 gives an Agda definition of the entailment relation.

Example 2. Given the world 𝑤1 = {handEmpty}, 𝑤1 ⊧+ handEmpty ∧¬ onTable a.

It might be expected that the rule for conjunction with negative polarity to be given by

two additional rules:
𝑤 ⊧− 𝑃

𝑤 ⊧− 𝑃 ∧ 𝑄
and

𝑤 ⊧− 𝑄
𝑤 ⊧− 𝑃 ∧ 𝑄

. However, our current rule
is sound given the syntax restrictions, and it simplifies our reasoning on decidability of
normalisation, which we define next.
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𝑤 ⊧𝑡 𝑃 𝑤 ⊧𝑡 𝑄
𝑤 ⊧𝑡 𝑃 ∧ 𝑄

𝑤 ⊧−𝑡 𝐴
𝑤 ⊧𝑡 ¬𝐴

𝐴 ∈ 𝑤
𝑤 ⊧+ 𝐴

𝐴 ∉ 𝑤
𝑤 ⊧− 𝐴

Fig. 5. Declarative interpretation of formulae. We define −𝑡 by taking −+ = − and − − = +.

data _⊨[_]_ ∶ 𝑊 𝑜𝑟𝑙𝑑 → 𝑃 𝑜𝑙𝑎𝑟𝑖𝑡𝑦 → 𝐹 𝑜𝑟𝑚 → 𝑆𝑒𝑡 where
𝑓𝑙𝑖𝑝 ∶ ∀{𝑤 𝑡 𝐴} → 𝑤 ⊨[ 𝑛𝑒𝑔 𝑡 ] (𝑎𝑡𝑜𝑚 𝐴) → 𝑤 ⊨[ 𝑡 ] ¬ 𝐴
𝑏𝑜𝑡ℎ ∶ ∀{𝑤 𝑡 𝑃 𝑄} → 𝑤 ⊨[ 𝑡 ] 𝑃 → 𝑤 ⊨[ 𝑡 ] 𝑄 → 𝑤 ⊨[ 𝑡 ] 𝑃 ∧ 𝑄
𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒 ∶ ∀{𝑤 𝑎} → 𝑎 ∈ 𝑤 → 𝑤 ⊨[ + ] 𝑎𝑡𝑜𝑚 𝑎
𝑛𝑜𝑤ℎ𝑒𝑟𝑒 ∶ ∀{𝑤 𝑎} → 𝑎 ∉ 𝑤 → 𝑤 ⊨[ − ] 𝑎𝑡𝑜𝑚 𝑎

Fig. 6. Agda definition of the entailment relation given in Figure 5. (Module 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠)

3.2 Operational Semantics, States and Types

Matching the declarative-style semantics of Figure 5, we can define an operational se-
mantics, given by a normalisation function that acts directly on formulae and computes
lists of atomic formulae with polarities. A state is defined as a list of atomic formulae
with polarities, as in Figure 2. By a small abuse of notation, we will use ∈ to denote list
membership, as well as set membership. The function ↓𝑡 normalises a formula to a state:

(𝑃 ∧ 𝑄) ↓𝑡 𝑁 = 𝑄 ↓𝑡 𝑃 ↓𝑡 𝑁
¬𝐴 ↓𝑡 𝑁 = 𝐴 ↓−𝑡 𝑁

𝐴 ↓𝑡 𝑁 = [𝐴𝑡, 𝑁]

We write 𝑃 ↓𝑡 to mean 𝑃 ↓𝑡 [ ].

Example 3. Continuing with the previous examples, we have:
(handEmpty ∧ ¬onTable a) ↓+= [handEmpty+,onTable a−].

As might be expected, while the definition of the entailment relation ⊧𝑡 is given as an
inductive data type in Agda, normalisation is defined as a function (Figure 7). Note that,
in order to bring the disjunction into this language in any future extensions, normalisa-
tion function for minus could be amended, to allow for non-determinism. Normalisation
is sound relative to the declarative interpretation of formulae. Given a state 𝑁 , define a
well-formed world 𝑤𝑁 to contain all 𝐴 such that 𝐴+ ∈ 𝑁 and contain no 𝐴’s such that
𝐴− ∉ 𝑁 . Generally 𝑤𝑁 is not uniquely defined, and we use the notation {𝑤𝑁 } to refer
to the (necessarily finite) set of all 𝑤𝑁 . We then have the result:

Theorem 1 (Soundness and completeness of normalisation).Given a formula 𝑃 and
a world 𝑤, it holds that 𝑤 ⊧𝑡 𝑃 iff 𝑤 ∈ {𝑤𝑃 ↓𝑡}.

Proof. (⇒) is proven by induction on the derivation of 𝑤 ⊧𝑡 𝑃 . (⇐) follows by induction
on the shape of 𝑃 , cf. the attached Agda file [17] for the fully formalised proof.

Example 4. If 𝑁 = (handEmpty ∧ ¬onTable a) ↓+, then 𝑤𝑁 may be given by e.g.
𝑤1 ={handEmpty}, or 𝑤2 = {handEmpty,onTable b}, or any other world containing
handEmpty but not onTable a. The given formula will be satisfied by any such 𝑤𝑁 .
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𝑁𝑃 𝑟𝑒𝑑 ∶ 𝑆𝑒𝑡
𝑁𝑃 𝑟𝑒𝑑 = 𝐿𝑖𝑠𝑡 (𝑃 𝑜𝑙𝑎𝑟𝑖𝑡𝑦 × 𝑅)

_↓[_]_ ∶ 𝐹 𝑜𝑟𝑚 → 𝑃 𝑜𝑙𝑎𝑟𝑖𝑡𝑦 → 𝑁𝑃 𝑟𝑒𝑑 → 𝑁𝑃 𝑟𝑒𝑑
𝑃 ∧ 𝑄 ↓[ 𝑡 ] 𝑁 = 𝑄 ↓[ 𝑡 ] 𝑃 ↓[ 𝑡 ] 𝑁
¬ 𝑥 ↓[ 𝑡 ] 𝑁 = (𝑛𝑒𝑔 𝑡 , 𝑥) ∷ 𝑁
𝑎𝑡𝑜𝑚 𝑥 ↓[ 𝑡 ] 𝑁 = (𝑡 , 𝑥) ∷ 𝑁

Fig. 7. Agda definition of the normalisation function. (Module 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠)

data 𝑃 𝑙𝑎𝑛 ∶ 𝑆𝑒𝑡 where
𝑑𝑜𝐴𝑐𝑡 ∶ 𝐴𝑐𝑡𝑖𝑜𝑛 → 𝑃 𝑙𝑎𝑛 → 𝑃 𝑙𝑎𝑛
ℎ𝑎𝑙𝑡 ∶ 𝑃 𝑙𝑎𝑛

data 𝐴𝑐𝑡𝑖𝑜𝑛 ∶ 𝑆𝑒𝑡 where
𝑝𝑖𝑐𝑘𝑢𝑝_𝑓𝑟𝑜𝑚_𝑡𝑎𝑏𝑙𝑒_𝑏 ∶ 𝐴𝑐𝑡𝑖𝑜𝑛
𝑝𝑖𝑐𝑘𝑢𝑝_𝑓𝑟𝑜𝑚_𝑡𝑎𝑏𝑙𝑒_𝑎 ∶ 𝐴𝑐𝑡𝑖𝑜𝑛
𝑝𝑢𝑡𝑑𝑜𝑤𝑛_𝑜𝑛_𝑠𝑡𝑎𝑐𝑘_𝑏_𝑐 ∶ 𝐴𝑐𝑡𝑖𝑜𝑛
𝑝𝑢𝑡𝑑𝑜𝑤𝑛_𝑜𝑛_𝑠𝑡𝑎𝑐𝑘_𝑎_𝑏 ∶ 𝐴𝑐𝑡𝑖𝑜𝑛

𝑝𝑙𝑎𝑛1 ∶ 𝑃 𝑙𝑎𝑛
𝑝𝑙𝑎𝑛1 = 𝑑𝑜𝐴𝑐𝑡 𝑝𝑖𝑐𝑘𝑢𝑝_𝑓𝑟𝑜𝑚_𝑡𝑎𝑏𝑙𝑒_𝑏

(𝑑𝑜𝐴𝑐𝑡 𝑝𝑢𝑡𝑑𝑜𝑤𝑛_𝑜𝑛_𝑠𝑡𝑎𝑐𝑘_𝑏_𝑐
(𝑑𝑜𝐴𝑐𝑡 𝑝𝑖𝑐𝑘𝑢𝑝_𝑓𝑟𝑜𝑚_𝑡𝑎𝑏𝑙𝑒_𝑎
(𝑑𝑜𝐴𝑐𝑡 𝑝𝑢𝑡𝑑𝑜𝑤𝑛_𝑜𝑛_𝑠𝑡𝑎𝑐𝑘_𝑎_𝑏

ℎ𝑎𝑙𝑡)))

Fig. 8. Agda abstract definition of a 𝑃 𝑙𝑎𝑛 according to Figure 2, in module 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠. A concrete
instantiation of the set of actions, a concrete plan 𝑝𝑙𝑎𝑛1 in module 𝐵𝑙𝑜𝑐𝑘𝑠𝑤𝑜𝑟𝑙𝑑.

Theorem 1 will allow us to work with states at the type level, while keeping the link to
the standard PDDL formula syntax and declarative semantics.

We finally define actions and plans. Given a halting state halt, and a finite set of con-
stant actions {𝛼, 𝛼1, … , 𝛼𝑚}, we define plans inductively as sequences of action names
ending with halt, cf. Figure 2. Once again, we show an instantiated version of the Agda
definition of actions in Figure 8, with actions specified as per the Blocksworld prob-
lem. In the Agda prototype [17], we first develop the code for an abstract set 𝐴𝑐𝑡𝑖𝑜𝑛,
and then instantiate it on the concrete examples. Figure 8 also shows the Agda function
𝑝𝑙𝑎𝑛1 that encodes Plan1 given in Section 2 in PDDL syntax. Keeping in line with
Section 2, a planning domain (or a context) Γ is a set of actions with effects, of the form
𝛼 ∶ 𝑁 ⇝𝑀 , where 𝛼 is a constant action, and 𝑁, 𝑀 are states (see Figure 2). Figure 9
shows an Agda implementation of both the general definition of a context Γ and one
concrete Γ1 that corresponds to the PDDL code snippet of Figure 1.

We now move on to our main goal: to realise the Curry-Howard intuition and define
a framework in which plans will inhabit normalised formulae seen as types. We wish
to show that, proving that a certain (possibly composite) plan 𝑓 satisfies pre- and post-
conditions given by the formulae 𝑃 and 𝑄 will be equivalent to typing the judgement

Γ ⊢ 𝑓 ∶ 𝑃 ↓+ ⇝ 𝑄 ↓+

We will say 𝑃 ↓+ is the initial state of the plan 𝑓 , and 𝑄 ↓+ is its final state. In the next
section, we introduce typing rules that define derivations of these judgements.
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Γ ∶ 𝑆𝑒𝑡
Γ = 𝐴𝑐𝑡𝑖𝑜𝑛 → 𝑁𝑃 𝑟𝑒𝑑 × 𝑁𝑃 𝑟𝑒𝑑

Γ1 ∶ Γ
Γ1 𝑝𝑖𝑐𝑘𝑢𝑝_𝑓𝑟𝑜𝑚_𝑡𝑎𝑏𝑙𝑒_𝑏 =

(𝑎𝑡𝑜𝑚 ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦 ∧ 𝑎𝑡𝑜𝑚 (𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑏) ∧ 𝑎𝑡𝑜𝑚 (𝑐𝑙𝑒𝑎𝑟 𝑏)) ↓+ ,
((¬ ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦 ∧ ¬ (𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑏) ∧ 𝑎𝑡𝑜𝑚 (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏)) ↓+)

Γ1 𝑝𝑖𝑐𝑘𝑢𝑝_𝑓𝑟𝑜𝑚_𝑡𝑎𝑏𝑙𝑒_𝑎 = ...
Γ1 𝑝𝑢𝑡𝑑𝑜𝑤𝑛_𝑜𝑛_𝑠𝑡𝑎𝑐𝑘_𝑏_𝑐 =

(𝑎𝑡𝑜𝑚 (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏) ∧ 𝑎𝑡𝑜𝑚 (𝑐𝑙𝑒𝑎𝑟 𝑐)) ↓+ ,
(¬ (ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏) ∧ ¬ (𝑐𝑙𝑒𝑎𝑟 𝑐) ∧ 𝑎𝑡𝑜𝑚 (𝑜𝑛 𝑏 𝑐) ∧ 𝑎𝑡𝑜𝑚 ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ↓+

Γ1 𝑝𝑢𝑡𝑑𝑜𝑤𝑛_𝑜𝑛_𝑠𝑡𝑎𝑐𝑘_𝑎_𝑏 = ...

Fig. 9. Agda definition of the concrete context Γ1 in module 𝐵𝑙𝑜𝑐𝑘𝑠𝑤𝑜𝑟𝑙𝑑.

NilSub
[ ] <∶ 𝑁

ASub 𝑁 <∶ 𝑀 𝐴𝑡 ∈ 𝑀
𝐴𝑡, 𝑁 <∶ 𝑀

Fig. 10. Sub-typing of normalised formulae.

4 Plans as Proof Terms

4.1 Typing Rules for Planning Problems

A naïve attempt to type plans introduces two problems. First, an action 𝛼 ∶ 𝑀 ⇝ 𝑁
should not produce exactly 𝑁 , but an extension of 𝑀 by 𝑁 . For example, picking up
𝑏 from the table does not affect the fact that 𝑐 is still on the table (this is known as the
STRIPS assumption in planning [20]). To solve this problem, we introduce an override
operator 𝑀 ⊔ 𝑁 :

𝑀 ⊔ [ ] = 𝑀
𝑀 ⊔ [𝐴𝑡, 𝑁] = [𝐴𝑡, 𝑀\{𝐴+, 𝐴−}] ⊔ 𝑁

The second problem involves applying 𝛼 ∶ 𝑀 ⇝ 𝑁 in a state 𝑀′ that is stronger (has
more atomic formulae) than 𝑀 . For example, if 𝑏 is known to be on the table, knowing
that 𝑐 is also on the table should not preclude picking up 𝑏. This state-weakening action
corresponds to sub-typing 𝑀 <∶ 𝑀′ defined in Figure 10. When we write 𝑀 <∶ 𝑀′,
we will say 𝑀′ is a sub-type of 𝑀 . This agrees with the usual convention that a sub-
type is given by a stronger predicate. The rules of Figure 11 define how a program
𝑓 ∶ 𝑀 ⇝ 𝑁 can be typed given some planning domain Γ. A well-typed plan Γ ⊢ 𝑓 ∶
𝑀 ⇝ 𝑁 “transports” an initial state𝑀 to a goal state𝑁 . TheAgda code implements the
typing relation as an inductive data type with two constructors, ℎ𝑎𝑙𝑡 and 𝑠𝑒𝑞, following
verbatim Figure 11 (see also the accompanying Agda file). To exemplify these rules,
we refer again to the Blocksworld problem with the pre-condition 𝑃0 = onTable a ∧
onTable b∧onTable c∧clear a∧clear b∧clear c∧handEmpty and the post-
condition𝑄0 = on a b∧on b c. Suppose that the PDDL planner proposes Plan1, as
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Halt 𝑀 ′ <∶ 𝑀
Γ ⊢ halt ∶ 𝑀 ⇝𝑀 ′ Seq

𝑀 ′
1 <∶ 𝑀1

(𝛼 ∶ 𝑀 ′
1 ⇝𝑀2) ∈ Γ Γ ⊢ 𝑓 ∶ 𝑀1 ⊔ 𝑀2 ⇝𝑀3

Γ ⊢ 𝛼; 𝑓 ∶ 𝑀1 ⇝𝑀3

Fig. 11. Well-typing relation for plans.

given in Section 2. Let 𝑝𝑙𝑎𝑛1 be the corresponding version in the precise mathematical
notation of Figure 2 (cf. also its Agda version in Figure 8):

plan1 = pickup_from_table_b;putdown_on_stack_b_c;
pickup_from_table_a;putdown_on_stack_a_b; halt

If Γ1 ⊢ plan1 ∶ 𝑃0 ↓+⇝ 𝑄0 ↓+ yields a typing derivation by Figure 11, then this typing
derivation verifies that plan1 correctly implements the given planning problem in the
planning domain Γ1 (cf. also Agda code for Γ1 in Figure 9). To make our example more
readable, we will use our mathematical notation. This gives the following definition of
Γ1, corresponding to the Agda code of Figure 9:

Γ1 = {pickup_from_table_b ∶
handEmpty ∧
onTable b ∧
clear b

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐↓+

⇝
¬handEmpty ∧

¬(onTable b) ∧
holding b

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐↓+

pickup_from_table_a ∶ …

putdown_on_stack_b_c ∶ holding b ∧
clear c

⏐⏐⏐⏐⏐⏐↓+
⇝

¬(holding b) ∧
¬(clear c) ∧
on b c ∧
handEmpty

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐↓+

putdown_on_stack_a_b ∶ …}

Let us perform the typing derivation for Γ1 ⊢ plan1 ∶ 𝑃0 ↓+⇝ 𝑄0 ↓+. Given 𝑃0 ↓+,
then the first action that we can apply by the Seq rule is pickup_from_table_b.
The application of Seq demands that 𝑃0 ↓+ is a sub-type of the initial state of
the action pickup_from_table_b in Γ1. A sub-typing derivation provides such
a proof, selecting the required piece of evidence from 𝑃0 ↓+, i.e. handEmpty+,
(onTable b)+, (clear b)+ <∶ (onTable a)+, (onTable b)+, (onTable c)+,
(clear a)+, (clear b)+, (clear c)+,handEmpty+. We have thus verified that
plan1 = pickup_from_table_b; 𝑓 ′. To complete the proof of well-typedness
and compute an action for 𝑓 ′, we must show that the remainder of the plan is ty-
peable. According to Seq, we now have a new state 𝑃1 = 𝑃0 ↓+ ⊔ handEmpty−,
( onTable b)−, ( holding b)+ = ( onTable a)+, ( onTable b)−, ( onTable
c)+, ( clear a)+, ( clear b)+, ( clear c)+, ( handEmpty)−, ( holding b)+,
as well as an obligation to prove 𝑓 ′ ∶ 𝑃1 ⇝ 𝑄0 ↓+. We can pick the next action
from Γ1: putdown_on_stack_b_c. Again 𝑃1 is readily shown to be a sub-type of
the pre-conditions of putdown_on_stack_b_c. Continuing in this way for each
action in plan1, the final state is 𝑃3 = (onTable a)−, (onTable b)−, (onTable c)+,
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𝑃0 ∶ 𝐹 𝑜𝑟𝑚
𝑃0 = 𝑎𝑡𝑜𝑚 (𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑎) ∧ 𝑎𝑡𝑜𝑚 (𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑏) ∧ 𝑎𝑡𝑜𝑚 (𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐) ∧
𝑎𝑡𝑜𝑚 (𝑐𝑙𝑒𝑎𝑟 𝑎) ∧ 𝑎𝑡𝑜𝑚 (𝑐𝑙𝑒𝑎𝑟 𝑏) ∧ 𝑎𝑡𝑜𝑚 (𝑐𝑙𝑒𝑎𝑟 𝑐) ∧ 𝑎𝑡𝑜𝑚 ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦

𝑄0 ∶ 𝐹 𝑜𝑟𝑚
𝑄0 = 𝑎𝑡𝑜𝑚 (𝑜𝑛 𝑎 𝑏) ∧ 𝑎𝑡𝑜𝑚 (𝑜𝑛 𝑏 𝑐)

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ∶ Γ1 ⊢ 𝑝𝑙𝑎𝑛1 ∶ (𝑃0 ↓+) ↝ (𝑄0 ↓+)
𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = ...

Fig. 12. Agda type-checking the derivation of Γ1 ⊢ plan1 ∶ 𝑃0 ↓+⇝ 𝑄0 ↓+. We give the full code
for 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 in Appendix A or in [17].

(clear a)+, (clear b)−, (clear c)−, (on b c)+,handEmpty+, (holding b)−,
(on a b)+, (holding a)−. However, this is not the same state as the goal state 𝑄0. To
resolve such cases, we have the rule Halt, eliminating all unnecessary evidence from
the current state by proof of sub-typing i.e. Γ1 ⊢ halt ∶ 𝑃3 ⇝ 𝑄0. Clearly (on a b)+,
(on b c)+ <∶ 𝑃3 as required. We have thus verified that Γ1 ⊢ plan1 ∶ 𝑃0 ↓+⇝ 𝑄0 ↓+.
In Agda, the above derivation will amount to type-checking the function 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 as
shown in Figure 12. If it type-checks, then we know that 𝑝𝑙𝑎𝑛1 can be soundly executed
as a function. Proving this property in general is the subject of the next section.

4.2 Computational Characterisation of Plans: Soundness of Plan Execution

The proof of Γ1 ⊢ plan1 ∶ 𝑃0 ↓+⇝ 𝑄0 ↓+ provides evidence that the execution of plan1
on a world satisfying 𝑃0 produces a new world satisfying 𝑄0. Generally, the inference
of Γ ⊢ 𝑓 ∶ 𝑀 ⇝ 𝑁 , with 𝑓 = 𝛼1; … ; 𝛼𝑗 ; halt corresponds to successively applying
actions 𝛼1 … 𝛼𝑗 to states 𝑀, 𝑀1, … 𝑀𝑗 in a sequence of state transitions, satisfying
𝑁 <∶ 𝑀𝑗 . We now prove that the plan 𝑓 thus inferred indeed has a computational
meaning, i.e. can be evaluated, and that the result of its evaluation is sound. To state
this, we need to define an evaluation function J.K that will interpret actions on worlds.
Recall that every state 𝑁 maps to a world 𝑤𝑁 . Let us use notation 𝜎 for an arbitrary
mapping (an action handler) that maps each action 𝛼 ∶ 𝑀 ⇝ 𝑁 to insertions and
deletions on the world 𝑤𝑀 according to 𝛼’s action on 𝑀 . We then define the evaluation
function JK𝜎

𝑤 that evaluates a plan to a world (according to a given world 𝑤 and action
handler 𝜎):

JhaltK𝜎
𝑤 = 𝑤J𝛼; 𝑓K𝜎
𝑤 = J𝑓K𝜎

(𝜎 𝛼 𝑤)

We say that an action handler 𝜎 is well-formed with respect to a context Γ if, for any
𝑤 ∈ {𝑤𝑀 }, 𝑀′ <∶ 𝑀 and 𝛼 ∶ 𝑀′ ⇝ 𝑁 in Γ it follows that (𝜎 𝛼 𝑤) ∈ {𝑤𝑀⊔𝑁 }.
Figure 13 shows Agda definitions of an action handler and evaluation action.

Canonical Handler. In order to be constructive in our further claims, and to provide
a practical solution to the quest for a well-formed handler, we first define a canonical
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𝐴𝑐𝑡𝑖𝑜𝑛𝐻𝑎𝑛𝑑𝑙𝑒𝑟 ∶ 𝑆𝑒𝑡
𝐴𝑐𝑡𝑖𝑜𝑛𝐻𝑎𝑛𝑑𝑙𝑒𝑟 = 𝐴𝑐𝑡𝑖𝑜𝑛 → 𝑊 𝑜𝑟𝑙𝑑 → 𝑊 𝑜𝑟𝑙𝑑

⟦_⟧ ∶ 𝑃 𝑙𝑎𝑛 → 𝐴𝑐𝑡𝑖𝑜𝑛𝐻𝑎𝑛𝑑𝑙𝑒𝑟 → 𝑊 𝑜𝑟𝑙𝑑 → 𝑊 𝑜𝑟𝑙𝑑
⟦ 𝑑𝑜𝐴𝑐𝑡 𝛼 𝑓 ⟧ 𝜎 𝑤 = ⟦ 𝑓 ⟧ 𝜎 (𝜎 𝛼 𝑤)
⟦ ℎ𝑎𝑙𝑡 ⟧ 𝜎 𝑤 = 𝑤

𝜎𝛼 ∶ 𝑁𝑃 𝑟𝑒𝑑 → 𝑊 𝑜𝑟𝑙𝑑 → 𝑊 𝑜𝑟𝑙𝑑
𝜎𝛼 [] 𝑤 = 𝑤
𝜎𝛼 ((+ , 𝑥) ∷ 𝑁) 𝑤 = 𝑥 ∷ 𝜎𝛼 𝑁 𝑤
𝜎𝛼 ((− , 𝑥) ∷ 𝑁) 𝑤 = 𝑟𝑒𝑚𝑜𝑣𝑒 𝑥 (𝜎𝛼 𝑁 𝑤)

𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙−𝜎 ∶ Γ → 𝐴𝑐𝑡𝑖𝑜𝑛𝐻𝑎𝑛𝑑𝑙𝑒𝑟
𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙−𝜎 Γ1 𝛼 = 𝜎𝛼 (𝑝𝑟𝑜𝑗2 (Γ1 𝛼))

Fig. 13. Agda code for an action handler, an evaluation function and a canonical handler.

handler for a given context (planning domain). Firstly, we define a function 𝜎𝛼 that
constructs a world from a state:

𝜎𝛼 [ ] 𝑤 = 𝑤
𝜎𝛼 [𝐴+, 𝑁′] 𝑤 = 𝜎𝛼 𝑁′ (𝑤 ∪ {𝐴})
𝜎𝛼 [𝐴−, 𝑁′] 𝑤 = 𝜎𝛼 𝑁′ (𝑤 ⧵ {𝐴})

Next, given a context Γ, we apply 𝜎𝛼 to 𝑁 for each 𝛼 ∶ 𝑀 ⇝ 𝑁 in Γ; thus obtaining
a canonical mapping from actions and worlds into worlds, as required. The resulting
canonical action handler 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙−𝜎 Γ (defined formally in Figure 13) is well-formed,
as long as the states to which it is applied are consistent, in the following sense:

Implicit consistency assumption: for every state 𝑁 , if 𝐴𝑡 ∈ 𝑁 then 𝐴−𝑡 ∉ 𝑁 .

Proposition 1. Given a context Γ, the canonical handler 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙−𝜎 Γ is well-formed
with respect to Γ.

Proof. The proof starts with considering an arbitrary state 𝑀 with 𝑤 ∈ {𝑤𝑀 }, an
arbitrary 𝐴𝑡 ∈ 𝑀 , and an arbitrary action 𝛼 in Γ such that 𝑀′ <∶ 𝑀 and 𝛼 ∶ 𝑀′ ⇝
𝑁 . It proceeds by considering two cases, when 𝑡 = + and 𝑡 = −, and consequently
when 𝐴 ∈ 𝑤 or 𝐴 ∉ 𝑤. In each of these cases, it considers all possible effects of 𝜎𝛼
(i.e. formula deletions and insertions) in the process of constructing the world 𝑤′ =
𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙−𝜎 Γ 𝛼 𝑤. The attached Agda file gives the full proof. It uses the implicit
consistency assumption to eliminate the cases when states are inconsistent and hence
when more than one choice for deletion/insertion is possible.

The next two theorems show that executing a well-typed plan 𝑓 by the evaluation
function J𝑓K𝜎

𝑤 is sound, for any well-formed handler 𝜎.
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Theorem 2 (Soundness of evaluation for normalized formulae). Suppose Γ ⊢ 𝑓 ∶
𝑀 ⇝ 𝑁 . Then for any 𝑤 ∈ {𝑤𝑀 }, and any well-formed handler 𝜎, it follows thatJ𝑓K𝜎

𝑤 ∈ {𝑤𝑁 }.

Proof. The proof proceeds by structural induction on the typing derivation Γ ⊢ 𝑓 ∶
𝑀 ⇝ 𝑁 .
Case 1 (Halt). By assumption 𝑤 ∈ {𝑤𝑀 } and thus because 𝑁 <∶ 𝑀 , it follows 𝑤 ∈
{𝑤𝑁 }. Since JhaltK𝜎

𝑤 = 𝑤, we get JhaltK𝜎
𝑤 ∈ {𝑤𝑁 } as required.

Case 2 (Seq). Note that 𝑓 = 𝛼; 𝑓 ′ and therefore 𝛼 ∶ 𝑀′ ⇝ 𝑀2 is in Γ and Γ ⊢
𝑓 ′ ∶ 𝑀 ⊔ 𝑀2 ⇝ 𝑁 by inversion on Γ ⊢ 𝛼; 𝑓 ′ ∶ 𝑀 ⇝ 𝑁 . Then by induction
every 𝑤′ ∈ {𝑤𝑀⊔𝑀2} gives (J𝑓K𝜎

𝑤′ ) ∈ {𝑤𝑁 } for any well-formed 𝜎. However, by the
well-formedness of 𝜎 and because 𝑤 ∈ {𝑤𝑀 }, we have (𝜎 𝛼 𝑤) ∈ {𝑤𝑀⊔𝑀2}. ThusJ𝑓 ′K𝜎

(𝜎 𝛼 𝑤) ∈ {𝑤𝑁 } and therefore J𝑓K𝜎
𝑤 ∈ {𝑤𝑁 }.

Theorem 3 (Soundness of evaluation). Suppose Γ ⊢ 𝑓 ∶ 𝑃 ↓+⇝ 𝑄 ↓+ then for any
𝑤 such that 𝑤 ⊧+ 𝑃 , and any well-formed 𝜎 it follows J𝑓K𝜎

𝑤 ⊧+ 𝑄.

Proof. By assumption 𝑤 ⊧+ 𝑃 and by the completeness of normalisation (Theorem 1),
we have 𝑤 ∈ {𝑤𝑃 ↓+}. Then from Theorem 2, we have J𝑓K𝜎

𝑤 ∈ {𝑤𝑄↓+}. Thus by the
soundness of normalisation (Theorem 1), obtain J𝑓K𝜎

𝑤 ⊧+ 𝑄.

Thus the derivation of a type for a plan 𝑓 induces a proof that the execution of a plan in
world 𝑤 is correct. Although neither of the above theorems depends on the implicit con-
sistency assumption for its proofs, the existence of a well-formed and canonical handler
is predicated upon the consistency assumption. Our Agda implementation of a canonical
handler (cf. Figure 13) allows us to fully harness the computational properties of plans.
For the Blocksworld example, we can directly evaluate Jplan1K𝜎

𝑤 by plugging in:
– in place of 𝑤 – the world resulting from computing 𝜎𝛼(𝑃0 ↓+ [ ]) ∅. (To see this, re-
call that 𝑃0 is the formula that described the initial state in all examples of the previous
section, and 𝑃0 ↓+ [ ] is the state resulting from normalising 𝑃0.)
– and in place of 𝜎 – the canonical handler for Γ1. (Recall that Γ1 is the context that
defined the given planning domain in the previous section.)

In Agda, we simply evaluate the term:

⟦ 𝑝𝑙𝑎𝑛1 ⟧ (𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙−𝜎 Γ1) (𝜎𝛼 (𝑃0 ↓[ + ] []) [])

Evaluation of this term results, just as we manually computed in the last section, in the
world 𝑤′ = { handEmpty,on a b,on b c,clear a,onTable c} (in Agda syntax:
ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦 ∷ (𝑜𝑛 𝑎 𝑏) ∷ (𝑜𝑛 𝑏 𝑐) ∷ (𝑐𝑙𝑒𝑎𝑟 𝑎) ∷ (𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐) ∷ []). That is, the world
that corresponds to the state 𝑃3 of the previous section. Observe that 𝑤′ = 𝜎𝛼 𝑃3 ∅.

5 Discussion, Conclusions, and Future Work

We have given a proof of concept formalisation of a subset of PDDL plans in type the-
ory. In line with the Curry-Howard approach to first-order logic, we formulated an infer-
ence system that treats planning domains as types, and generated plans as functions that
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inhabit these types. Type-checking then ensures the soundness of these executable func-
tions relative to the specifications given as types. This paper does not cover the whole
PDDL syntax, nor does it implement the search and decision procedures of a usual auto-
mated planner e.g. the Stanford Research Institute Problem Solver STRIPS [4]. Rather,
our contribution is in setting up the original design of a method of Curry-Howard ap-
proach to AI planning languages in general, as well as showing the feasibility of its
successful implementation in a dependently typed language, such as Agda. This dual
purpose has determined our style of presentation, in which the formal method has been
given in parallel with, but independently from, the Agda code.

Further experiments with plans: In the accompanying implementation [17], we provide
a second fully implemented example of a PDDL domain and plan checking in Agda: for
a Logistic planning problem. The problem consists of finding the best route (airplanes,
tracks, cities of call) to deliver a given parcel to a given office. The experiment showed
that, once the main Agda implementation is set up, instantaiting it with various problems
only takes a routine boilerplate code (such as e.g. proofs of decidability of equality on
predicates). Generation of this boilerplate code can in future be fully automated using
code reflection. Throughout our implementation, we have been working with plans gen-
erated by an on-line PDDL editor http://editor.planning.domains/. In the
future, a parser can be added to convert PDDL syntax directly into Agda.

With the view to future extensions, our Agda code is designed in a modular way, as
Section 3.1 illustrates: the main Agda file implementing the subset of PDDL syntax is
fully generic, and its definitions are instantiated as required when a particular planning
domain, such as Blockworld or Logistic, is presented. Proofs of decidability for objects
and predicates for each given problem are obtained in a generic way, as well, see [17].

Computational content of plans and the implicit consistency assumption: As Proposi-
tion 1 has shown, the existence of a canonical andwell-formed handler depends crucially
on the implicit consistency assumption. At the same time, the proofs of Theorems 2 or
3 do not depend on the consistency assumption. Thus, as we show in Appendix B, it
is possible in principle to construct planning domains and problems that violate the
assumption but are accepted by the well-typedness relation of Figure 11. However, if
such examples are added to the system, the implicit consistency assumption needs to
be removed (or else ⊥ will become provable, as Appendix B shows). But without the
assumption, we lose the existence of a well-formed and canonical handler and thus the
ability to evaluate the plans. This situation is of course illustrative of the rigour and
transparency that a constructive approach brings to verification. In our case, it dictates
that any practical deployment of the presented prototype needs to enforce the consis-
tency assumption. This can be done by either embedding additional state consistency
checks or by implementing states as partial functions from formulae to Booleans.

Generating executable plans from Agda: The main advantage of the presented approach
is the ability to generate executable code directly from plans verified in Agda. Appendix
C illustrates how first a Haskell code, and then an executable binary file, are automat-
ically generated from the verified plan (𝑝𝑙𝑎𝑛1 from our earlier example). Such binary
files can then be directly deployed in applications such as e.g. robots. This is in contrast
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to the existing practices when verified plans are separately converted into C or Python
code without any guarantees of compliance of that code to the verified plans.

Related work: Verification of AI languages and applications is an active research field.
In planning languages, two major trends exist. Firstly, PDDL is used to verify au-
tonomous systems and applications, see e.g. [14]; and it has been successfully integrated
within other similar languages, such asGOLOG [10], with the purpose of verifying plans
written in the situation calculus [1,21]. Secondly, planning domains have been verified
using model checkers [9], other automated provers such as Event-B [5], or planning
support tools such as VAL [8]. The method that we have presented is complementary
to these two trends. Its main difference lies in taking the perspective of intrinsic, rather
than external verification. That is, the correctness of the generated plans is verified not
by an external tool, such as a model checker, but is performed intrinsically within the
code that implements the plans. At the same time, the code that implements the plans is
inseparable from the language in which planning domains are specified. Furthermore,
the executable binary files automatically extracted from Agda are not just ready for de-
ployment, but also bear the verification guarantees provided by Agda proofs. To our
knowledge, this is the first attempt to bring these benefits of the Curry-Howard approach
to automated planning languages. Provisioning types for plans not only equips planners
with certificates of correctness for inspection, but also provides a direct link to an im-
plementation’s type theory.

Current limitations and possible improvements: First-order planning domains and first-
order types: Although the technical development of the code that we have presented
takes full advantage of Agda’s dependent types, the types that represent the predicates
and formulae of the planning problems are given by simple types. This is because we
propositionalised the planning domains. We however hope to extend this initial frame-
work to the full first-order syntax of PDDL. This development will also involve the
following extensions.

Beyond consistency assumptions; constraints: We have discussed the implicit con-
sistency assumption that our approach imposes. More generally, we note that PDDL
lacks any general method of handling consistency as well as similar but more complex
constraints and invariants, such as, for example, constraints saying that handEmpty and
holding x are mutually exclusive. This is a complex problem, but one for which we
anticipate that our dependently-typed setting will soon provide some useful solutions.

Functions and higher-order plans: The design of this Agda prototype has revealed
several limitations in state-of-the-art implementations of planning languages: e.g. their
reliance on the closed word assumption and formulae grounding, the absence of func-
tions, and the restricted use of disjunctions. Again, we see a potential of our method to
overcome many of these limitations thanks to our general dependently-typed set-up, in
which the use of functions, higher-order features, constraints and effect handling will be
much more natural than in the current implementations.
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A The full code for Derivation of Figure 12

𝑃0 ∶ 𝐹 𝑜𝑟𝑚
𝑃0 = 𝑎𝑡𝑜𝑚 (𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑎) ∧ 𝑎𝑡𝑜𝑚 (𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑏) ∧ 𝑎𝑡𝑜𝑚 (𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐) ∧

𝑎𝑡𝑜𝑚 (𝑐𝑙𝑒𝑎𝑟 𝑎) ∧ 𝑎𝑡𝑜𝑚 (𝑐𝑙𝑒𝑎𝑟 𝑏) ∧ 𝑎𝑡𝑜𝑚 (𝑐𝑙𝑒𝑎𝑟 𝑐) ∧ 𝑎𝑡𝑜𝑚 ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦

𝑄0 ∶ 𝐹 𝑜𝑟𝑚
𝑄0 = 𝑎𝑡𝑜𝑚 (𝑜𝑛 𝑎 𝑏) ∧ 𝑎𝑡𝑜𝑚 (𝑜𝑛 𝑏 𝑐)

{- Γ₁ ⊢ plan₁∶ P₀↓₊↝ Q₀↓₊ -}
𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ∶ Γ1 ⊢ 𝑝𝑙𝑎𝑛1 ∶ (𝑃0 ↓+) ↝ (𝑄0 ↓+)
𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =

𝑠𝑒𝑞 (𝑎𝑡𝑜𝑚<∶ (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙)))
(𝑎𝑡𝑜𝑚<∶ (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙))))))
(𝑎𝑡𝑜𝑚<∶ (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙)
([]<∶ ((+ , ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∷

(+ , 𝑐𝑙𝑒𝑎𝑟 𝑐) ∷
(+ , 𝑐𝑙𝑒𝑎𝑟 𝑏) ∷
(+ , 𝑐𝑙𝑒𝑎𝑟 𝑎) ∷
(+ , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐) ∷ (+ , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑏) ∷ (+ , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑎) ∷ [])))))

𝑟𝑒𝑓𝑙
(𝑠𝑒𝑞 (𝑎𝑡𝑜𝑚<∶ (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙))))

(𝑎𝑡𝑜𝑚<∶ (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙)
([]<∶ ((+ , ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏) ∷

(� , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑏) ∷
(� , ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∷
(+ , 𝑐𝑙𝑒𝑎𝑟 𝑐) ∷
(+ , 𝑐𝑙𝑒𝑎𝑟 𝑏) ∷
(+ , 𝑐𝑙𝑒𝑎𝑟 𝑎) ∷ (+ , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐) ∷ (+ , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑎) ∷ []))))

𝑟𝑒𝑓 𝑙
(𝑠𝑒𝑞 (𝑎𝑡𝑜𝑚<∶ (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙)))))))

(𝑎𝑡𝑜𝑚<∶ (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙)))))))))
(𝑎𝑡𝑜𝑚<∶ (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙)
([]<∶ ((+ , ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∷

(+ , 𝑜𝑛 𝑏 𝑐) ∷
(� , 𝑐𝑙𝑒𝑎𝑟 𝑐) ∷
(� , ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏) ∷
(� , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑏) ∷
(+ , 𝑐𝑙𝑒𝑎𝑟 𝑏) ∷
(+ , 𝑐𝑙𝑒𝑎𝑟 𝑎) ∷ (+ , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐) ∷ (+ , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑎) ∷ [])))))

𝑟𝑒𝑓 𝑙
(𝑠𝑒𝑞 (𝑎𝑡𝑜𝑚<∶ (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙))))))))

(𝑎𝑡𝑜𝑚<∶ (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙)
([]<∶ ((+ , ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎) ∷

(− , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑎) ∷
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(− , ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∷
(+ , 𝑜𝑛 𝑏 𝑐) ∷
(− , 𝑐𝑙𝑒𝑎𝑟 𝑐) ∷
(− , ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏) ∷
(− , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑏) ∷
(+ , 𝑐𝑙𝑒𝑎𝑟 𝑏) ∷ (+ , 𝑐𝑙𝑒𝑎𝑟 𝑎) ∷ (+ , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐) ∷ []))))

𝑟𝑒𝑓 𝑙
(ℎ𝑎𝑙𝑡 (𝑎𝑡𝑜𝑚<∶ (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙))))))

(𝑎𝑡𝑜𝑚<∶ (𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙))
([]<∶ ((+ , ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∷

(+ , 𝑜𝑛 𝑎 𝑏) ∷
(− , 𝑐𝑙𝑒𝑎𝑟 𝑏) ∷
(− , ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑎) ∷
(− , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑎) ∷
(+ , 𝑜𝑛 𝑏 𝑐) ∷
(− , 𝑐𝑙𝑒𝑎𝑟 𝑐) ∷
(− , ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝑏) ∷
(− , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑏) ∷ (+ , 𝑐𝑙𝑒𝑎𝑟 𝑎) ∷ (+ , 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐) ∷ []))))))))
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B Experiment with Inconsistent States

--------------------------------------------------------
-- A simple example that demonstrates violation of the
-- implicit consistency assumpion
module 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠_𝑛𝑎𝑢𝑔ℎ𝑡𝑦 where
data 𝑅 ∶ 𝑆𝑒𝑡 where

ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦 ∶ 𝑅

-- There is only one, naughty, action, which violates
-- the implicit consistency assumption
data 𝐴𝑐𝑡𝑖𝑜𝑛 ∶ 𝑆𝑒𝑡 where

𝑛𝑎𝑢𝑔ℎ𝑡𝑦 ∶ 𝐴𝑐𝑡𝑖𝑜𝑛

open import 𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠 {𝐴𝑐𝑡𝑖𝑜𝑛} {𝑅} {𝑖𝑠𝐷𝑒𝑐𝑖𝑑𝑎𝑏𝑙𝑒}

-- The naughty action does not have any preconditions and
-- introduces an atomic predicate and its negation as
-- postconditions
Γ1 ∶ Γ
Γ1 𝑛𝑎𝑢𝑔ℎ𝑡𝑦 = ( [] , ((� , ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∷ (+ , ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∷ []))

-- Despite the obvious inconsistency,
-- the following plan has a derivation that type checks:
𝑝𝑙𝑎𝑛2 ∶ 𝑃 𝑙𝑎𝑛
𝑝𝑙𝑎𝑛2 = 𝑑𝑜𝐴𝑐𝑡 𝑛𝑎𝑢𝑔ℎ𝑡𝑦 (ℎ𝑎𝑙𝑡)

𝑄 ∶ 𝐹 𝑜𝑟𝑚
𝑄 = 𝑎𝑡𝑜𝑚 (ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∧ ¬ ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦

𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛2 ∶ Γ1 ⊢ 𝑝𝑙𝑎𝑛2 ∶ [] ↝ (𝑄 ↓[ + ] [])
𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑜𝑛2 = 𝑠𝑒𝑞 ([]<∶ []) 𝑟𝑒𝑓𝑙 (ℎ𝑎𝑙𝑡 (𝑎𝑡𝑜𝑚<∶ (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙)

(𝑎𝑡𝑜𝑚<∶ (𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙))
([]<∶ ((− , ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∷ (+ , ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦) ∷ [])))))

-- But, at the same time, action naughty
-- invalidates consistency of entire development
-- (given the implicit consistency assumption):
𝑝𝑟𝑜𝑝−𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 ∶ ⊥
𝑝𝑟𝑜𝑝−𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 =

𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡−𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦−𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦 (𝑝𝑟𝑜𝑗2 (Γ1 𝑛𝑎𝑢𝑔ℎ𝑡𝑦))
(𝑡ℎ𝑒𝑟𝑒 (ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙))
(ℎ𝑒𝑟𝑒 𝑟𝑒𝑓𝑙)
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C Executable Code Extraction

In Section 4.2 we showed how to use the canonical handler to evaluate a plan. The
dependently typed approach, however, offers more than just evaluation in Agda. It offers
a possibility to automatically extract executable functions fromAgda code. For example,
we can turn the function

𝑤𝑜𝑟𝑙𝑑−𝑒𝑣𝑎𝑙 ∶ 𝑊 𝑜𝑟𝑙𝑑
𝑤𝑜𝑟𝑙𝑑−𝑒𝑣𝑎𝑙 = ⟦ 𝑝𝑙𝑎𝑛1 ⟧ (𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙−𝜎 Γ1) 𝑤𝑃1

corresponding to the examples of Section 4.2 into an executable Haskell program by
compiling our Agda code to Haskell using Agda’s builtin extraction tools. The automat-
ically generated Haskell code for 𝑤𝑜𝑟𝑙𝑑−𝑒𝑣𝑎𝑙 is:

𝑛𝑎𝑚𝑒422 = "𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠_𝑏𝑙𝑜𝑐𝑘𝑠𝑤𝑜𝑟𝑙𝑑.𝑤𝑜𝑟𝑙𝑑−𝑒𝑣𝑎𝑙"
𝑑422 ∶∶ [𝑇 10]
𝑑422 = 𝑐𝑜𝑒

(𝑀𝐴𝑙𝑜𝑛𝑧𝑜.𝐶𝑜𝑑𝑒.𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠.𝑑𝑢1984
(𝑐𝑜𝑒 𝑑410)
(𝑐𝑜𝑒( 𝑀𝐴𝑙𝑜𝑛𝑧𝑜.𝐶𝑜𝑑𝑒.𝑃 𝐶𝑃 𝑙𝑎𝑛𝑠.𝑑𝑢2176 (𝑐𝑜𝑒 𝑑210) (𝑐𝑜𝑒 𝑑412)))
(𝑐𝑜𝑒 𝑑420))

To do this, the file run.agda has been created (see [17]) with a main function that
outputs the result of the 𝑤𝑜𝑟𝑙𝑑−𝑒𝑣𝑎𝑙 function as a string. The resulting binary file called
𝑟𝑢𝑛 returns the following world state after executing the plan:

ℎ𝑎𝑛𝑑𝐸𝑚𝑝𝑡𝑦 𝑜𝑛 𝑎 𝑏 𝑜𝑛 𝑏 𝑐 𝑜𝑛𝑇 𝑎𝑏𝑙𝑒 𝑐 𝑐𝑙𝑒𝑎𝑟 𝑎

It takes only 0.004𝑠 to run. The binary file can in principle be run on any independent
platform, e.g. on a robot.

Generally, as the reader can find in [17], the extraction of executable code from
Agda proceeds by compilation of all necessary Agda modules for run.agda, and creates
a stand alone repository of Haskell code that includes all necessary Haskell functions
corresponding to the Agda development in question.


