
Vehicle: A High-Level Language for Embedding

Logical Speci�cations in Neural Networks

Matthew L. Daggitt1, Wen Kokke2, Robert Atkey2, Luca Arnaboldi3, and
Ekaterina Komendantskaya1

1 Department of Computer Science, Heriot-Watt University, Edinburgh, UK
{m.daggit,e.komendantskaya}@hw.ac.uk

2 Department of Computer and Information Sciences, University of Strathclyde,
Glasgow, UK

{robert.atkey,wen.kokke}@strath.ac.uk
3 School of Informatics, University of Edinburgh, Edinburgh, UK

luca.arnaboldi@ed.ac.uk

Abstract. Veri�cation of neural network speci�cations is currently an
active �eld of research in automated theorem proving. However, the ac-
tual act of veri�cation is merely one step in the process of constructing
a veri�ed network. Prior to veri�cation the speci�cation should in�uence
the training of the network, and afterwards users may want to export the
veri�ed speci�cation to other veri�cation environments in order to prove
a speci�cation about a larger system that uses the network. Currently
there is little consensus on how best to connect these di�erent stages.
In this talk we will describe our proposed solution to this problem: the
Vehicle speci�cation system. Vehicle allows the user to write a single spec-
i�cation in a high-level human readable form, and the Vehicle compiler
then compiles it down to di�erent targets, including training frameworks,
veri�ers and interactive theorem provers. In this talk we will discuss the
various design decisions involved in the speci�cation language itself and
hope to solicit feedback from the veri�cation community.

Keywords: Neural networks · Veri�cation · Agda · Marabou

1 Introduction

Signi�cant progress has been made in the last decade on embedding speci�cations
into neural networks, including in areas such as training [7, 8], counter-example
search [3, 5] and veri�cation [11, 15]. However, none of the tools in these areas
are designed to interact with each other, and users are forced to repeatedly
rewrite the same speci�cation in a series of disparate formats. As well as be-
ing inconvenient, this increases the likelihood of logical inconsistencies between
the di�erent representations of the same speci�cation. Additionally, there is no
support for integrating formally veri�ed speci�cations into interactive theorem
provers. We believe that such integration is an important step to being able
to formally prove the correctness of larger software developments that contain
neural networks sub-components.



2 M. L. Daggitt et al.

ONNX

Network

Vehicle

Network

SpecVehicle

Agda

Network

Spec

Agda

Model of

Larger

System

Marabou

Queries

Marabou

Vehicle

Proof

Cache

Dataset

Loss 

Function 

for

Spec

User file

Automatically

generated

file

Tool

Used by

Generates

Not yet

implemented

Key
Tensorflow

Fig. 1: The architecture of a proof about a neural network enhanced system.

Our proposed system, Vehicle, aims to solve these problems by having the
user write only a single de�nitive high-level speci�cation. This speci�cation is
then automatically compiled down to the various tools as required. The full
proposed architecture of an example Vehicle project is shown in Figure 1.

The current implementation of the Vehicle compiler targets the neural net-
work veri�er Marabou [11] and the interactive theorem prover Agda [13]. Com-
pilation of speci�cations to loss functions for training is still a work in progress.
The system has been designed to be modular, so adding support for new training,
veri�cation and theorem proving tools should be relatively straightforward.

While the implementation of the Vehicle compiler contains several novel pro-
gramming language challenges, in this talk we will focus on the design of the
speci�cation language itself. It is important to emphasise this language is sup-
posed to be a high-level and human-readable. This contrasts it to other similar
works such as VNNLib [2] and DNNV [14], whose primary focus is to provide a
uni�ed input format for veri�ers.



Dependently-Typed Domain-Speci�c Language for NN Properties 3

We identify the following design principles that we believe that the existing
input formats for training and veri�cation fail to satisfy:

P1 Speci�cations should be comprehensible by experts in the problem domain
who have little knowledge of programming, rather than solely by veri�cation
experts.

P2 The size of a speci�cation should scale with its inherent complexity, rather
than the number of input and output dimensions of the network.

P3 The speci�cation language should be independent of any particular network
format, training framework, veri�er etc.

P4 Every speci�cation should have a rigorous mathematical semantics associ-
ated with it. Not only does this allow the compilation procedure to be for-
mally proved correct, it is also a vital pre-requisite in order to be able to
export the speci�cations to interactive theorem provers.

P5 The language should be expressive enough to cover all possible speci�cations
of interest, even those that aren't supported by current veri�ers. For example,
speci�cations that involve multiple networks, or multiple applications of the
same network.

This extended abstract is structured as follows. In Section 2 we discuss the
design of the language itself. In Section 3, we use it to demonstrate how the fa-
mous robustness speci�cation for the MNIST dataset may be encoded. Finally, in
Section 4, we discuss our planned future work. We also include two additional ex-
ample speci�cations in the appendices: ACAS Xu [10] and a simple autonomous
car controller. The tool itself, along with documentation and further examples
is available online [6].

2 The speci�cation language

Principle P4 in Section 1 stated that it is important that every well-typed spec-
i�cation has a clear mathematical semantics. Consequently, the language uses
a Haskell-style functional paradigm with a statically-checked, dependent type
system. The dependent types allow the user to specify the size of tensors in the
type-system itself, e.g. the type of 10× 10 matrices of rational numbers. This in
turn allows type-safe indexing into vectors and tensors. Consequently every well-
typed Vehicle program is guaranteed to be free of run-time errors that would
interfere with assigning every speci�cation a semantics. We decided against cre-
ating a deeply embedded DSL within Haskell itself for two reasons. Firstly we
relinquish signi�cant control over the syntax, and secondly Haskell's type-system
is not powerful enough to encode the dependent types discussed above.

We will now describe some of the main features of this language. The full BNF
grammar and further documentation for the language can be found online [6].

2.1 Basic types

The Vehicle language contains the following basic types:



4 M. L. Daggitt et al.

� Bool - booleans
• Operations: and, or, =>, not, if ... then ... else ..., ==, !=

� Index n - natural numbers between 0 (inclusive) and n (exclusive).
• Used for safe indexing into tensors. For example, only the values 0 and
1 have type Index 2.

• Operations: ==, !=, <=, >=, <, >
� Nat - natural numbers

• Operations: ==, !=, <=, >=, <, >, +, *
� Int - integer numbers

• Operations: ==, !=, <=, >=, <, >, +, *, -
� Rat - rational numbers

• Operations: ==, !=, <=, >=, <, >, +, *, -, /

We note that recent work has shown that the mismatch between rational/real
number and �oating point semantics leads to soundness problems in veri�ca-
tion [9]. As discussed further in Section 4, in the medium-term we aim to replace
Rat with a set of variable-precision �oating point types.

Next there are two container types:

� List A - a list of elements of type A
• Used for sequences of data for which one either doesn't care about or
don't know the length of.

• Operations: ==, !=, map, fold
� Tensor A [d1, ..., dn] - a tensor of elements of type A with dimensions

d1× ...× dn.
• Used for data for which it is important to know the size of. Due to the de-
pendently typed-nature of the language, the dimensions can themselves
be arbitrary expressions.

• Operations: ==, !=, map, fold, !

The lookup operation ! for tensors deserves a special mention. If its �rst argu-
ment is a tensor whose �rst dimension is n, then the index argument must have
type Index n. This allows the type-system to eliminate the possibility of runtime
out-of-bounds exceptions. For example the expression [0.1, 0.2, 0.3] ! 1

is well-typed, with 1 being given the type Index 3, and evaluates to 0.3. In
contrast, the expression [0.1, 0.2, 0.3] ! 3 is not well-typed as 3 is out of
bounds and therefore not a valid element of the type Index n.

2.2 Functions

Functions make up the backbone of the language. Function application is written
by juxtaposition, i.e. f x represents the function f applied to input x. The
function type is written A -> B where A is the input type and B is the output
type. For example Tensor Rat [10,10] -> Bool is the type of functions from
10 × 10 matrix of rational numbers to a single boolean value. However, as the
language is dependently typed, the type B may depend on the value passed for



Dependently-Typed Domain-Speci�c Language for NN Properties 5

A. For example (n : Nat) -> Tensor Rat [n] is a function that takes in a
natural number n and returns a vector of rationals of length n.

New functions can be introduced in two ways. Firstly, anonymous lambda
functions can be declared using the \x -> notation, e.g. \x -> x + 2 is a func-
tion that adds 2 to its input. Alternatively, the same function could be given a
name and an explicit type as follows:

add2 : Nat -> Nat

add2 x = x + 2

and can then be used later in the speci�cation by referring to this name. As
will be demonstrated in Section 3, the ability to name functions allows subcom-
ponents of the speci�cation to be given names meaningful within the speci�c
problem domain. This is an example of principle P1 in action.

2.3 Network Declarations

The language models neural networks as black box functions between tensors,
and they can be declared as follows using the network keyword:

network myNetwork : Tensor Rat [28, 28] -> Tensor Rat [10]

The network can then be used as any other function would be, by applying
myNetwork to arguments, e.g.

lastOutputPositive : Tensor Rat [28, 28] -> Bool

lastOutputPositive x = myNetwork x ! 9 > 0

At the moment Vehicle only supports networks with a single input and output
node, i.e. type of a network must be of the form Tensor A [m] -> Tensor B [n]

where A and B are numeric types and m and n are known constants. We hope to
relax this constraint in the near future.

The actual implementation of the network is provided at compilation time, in
the form of a path to the underlying �le, using the --network command line op-
tion. Currently Vehicle supports the ONNX network format [1]. This mechanism
for declaring and providing networks ful�ls principle P3, as the speci�cation is
fully decoupled from the implementation of the network.

2.4 Dataset Declarations

Sometimes a speci�cation may want to reference an external source of data.
These may be introduced using the using the dataset keyword:

dataset myDataset : Tensor Rat [10, 784]

Datasets are restricted to being a container type (i.e. List or Tensor). Once
declared, datasets can be used as any other named List or Tensor would be,
e.g.



6 M. L. Daggitt et al.

robust : Bool

robust = forall x in myDataset . robustAround x

Again, the dataset is only provided by the user at compile time using the
--dataset command line option. At the moment Vehicle supports the IDX [12]
format.

2.5 Parameter Declarations

Sometimes the user may not want to hard-code a speci�c value in the speci-
�cation, but instead provide it at compile time. For example, the value may
not be known ahead of time, or you might want to reuse the same spec with
multiple di�erent values e.g. assign di�erent values for epsilon in a robustness
speci�cation. This can be achieved using the parameter keyword:

parameter myParameter : Rat

Like networks and datasets, parameters are passed in at compile time via the
--parameter command line option.

2.6 Quanti�ers

Vehicle supports both universal and existential quanti�ers using the forall and
exists keywords respectively which bring a new named variable into scope to
the right of the dot, e.g.

property1 : Bool

property1 = forall x . lastOutputPositive x

property2 : Bool

property2 = exists x . forall i . myNetwork x ! i > 0.5

Although they can be manually annotated, the compiler can automatically infer
the types of the quanti�ed variables, Tensor Rat [28, 28] for x and Index 10

for i, from their use.
As well as quantifying over variables of an arbitrary type as above, one can

also quantify over the elements contained within a tensor or a list, using the
forall ... in syntax e.g.

normalised : Tensor Rat [10] -> Bool

normalised tensor = forall x in tensor . 0 <= x <= 1

Note that these quanti�ers ful�l principle P2, in that the speci�cation is in-
dependent of the size of the input tensor x. Changing the dimensions of the input
tensor for myNetwork from [28, 28] to [280, 280] would not change de�nition
of property2 at all. In contrast, if property2 were to be written in the Marabou
input query format, this change would increase the size of the speci�cation by a
factor of 100, as the constraints have to be speci�ed individually over each input
variable.



Dependently-Typed Domain-Speci�c Language for NN Properties 7

2.7 Type synonyms

Although the builtin types are su�cient to write a wide range of properties,
speci�cations can often be made more readable by using the type keyword to
de�ne domain-speci�c synonyms for types that are used repeatedly throughout
a speci�cation.

For example, when de�ning a robustness speci�cation for the MNIST dataset
which contains 28x28 greyscale images, in order to avoid having to repeatedly
write Tensor Rat [28, 28], one could declare Image as a synonym for it and
use it as follows:

type Image = Tensor Rat [28, 28]

network classify : Image -> Tensor Rat [10]

Type synonyms can also have arguments. For example one can declare a new
type Vector as a synonym for 1-dimensional tensors as follows:

type Vector A n = Tensor A [n]

2.8 Expressiveness and solver-compatibility

It is hopefully obvious that the expressive power of the Vehicle language is strictly
greater than the expressiveness of existing low-level query formats for veri�ers,
such as that of Marabou [11] or VNNLib [2], or that of training frameworks such
as DL2 [7]. For example, using Vehicle it is possible to write speci�cations in-
volving multiple networks (e.g. for encoding constraints between teacher-student
networks), something that isn't commonly supported by the current generation
of veri�ers. We therefore argue that Vehicle satis�es principle P5.

However, this also raises the question what happens when Vehicle's expressive
power is used to write queries that aren't soluble by the solver being targeted.
For example, given some neural network f, the query:

squaredSurjective : Bool

squaredSurjective = forall y . exists x . f (x * x) == y

is not soluble by Marabou for two reasons. Firstly, the mixing of the forall and
exists quanti�ers cannot be translated into a simple satisfaction problem, and
secondly, the speci�cation is non-linear in the variable x.

To address this, the compiler has a second hidden type-system that statically
tracks both the pattern of quanti�ers used and whether the variables are all
used strictly linearly. The user never needs to provide manual annotations for
this type system, and it works even in the presence of higher-order functions
(this level of automation is only possible because recursion is not present in the
language). Upon detecting an incompatibility with the solver, the type system
provides meaningful error messages to the user pinpointing the exact sequence
of de�nitions that leads to the problem.



8 M. L. Daggitt et al.

3 Case study: epsilon-ball robustness

We will walk through an annotated example of the famous epsilon-ball robustness
speci�cation for the MNIST dataset. Further example speci�cations are available
in Appendices A & B.

At a high-level, a neural network is robust if any small perturbation to the
network's input results in only a small change to the network's output. We begin
by de�ning a type synonym Image for the inputs of the network which are 28×28
pixels.

type Image = Tensor Rat [28, 28]

However, not every instance of Image is a valid input as we will assume that
pixel values range can only be in the range between 0 and 1. To encode this, we
de�ne a predicate valid that takes an image as an argument and requires that
all its pixel values are in that range:

valid : Image -> Bool

valid x = forall i j . 0 <= x ! i ! j <= 1

Note the use of forall syntax to quantify over all indices i and j. The compiler
will notice that as they are being used an index into x, an Image, and therefore
infer that they must both be of type Index 28. The compiler will therefore
automatically expand out this quanti�cation to a conjunction of 784 terms of
the form (0 <= x ! 0 ! 0 <= 1) and ... and (0 <= x ! 27 ! 27 <= 1).

Next we de�ne type synonyms for the output. The MNIST dataset has 10
classes: the digits 0 - 9, and the network produces a distribution over these
classes. These can be represented using the Index 10 and the Tensor Rat [10]

types respectively.

type Label = Index 10

type LabelDistribution = Tensor Rat [10]

Next we declare the network itself. We call it mnist and model it as a function
which takes an Image and produces a LabelDistribution. Each index of the
output tensor represents the score assigned to that label.

network mnist : Image -> LabelDistribution

We then de�ne another predicate advises that states that the network advises
that image x should be classi�ed as label i if i's score is higher than the score
of any other label:

advises : Image -> Label -> Bool

advises x i = forall j . j != i => mnist x ! i > mnist x ! j

Note how the network mnist is treated as just another function, and is applied to
input x. Again, the compiler will infer that j has type Index 10 (or equivalently
Label) and therefore the forall will again be expanded to a conjunction by the
compiler.



Dependently-Typed Domain-Speci�c Language for NN Properties 9

We now turn our attention to de�ning what it means for the mnist network
to be robust. We will use the standard epsilon ball robustness formulation here,
where we measure distance using the L∞ norm on pixel values for the standard
MNIST dataset.

The �rst step is to decide what value to set for our robustness tolerance
epsilon which will represent the maximum amount each individual pixel can
vary by without changing the classi�cation decision of the network. While we
could hard-code a speci�c value (e.g. 0.1), it is more �exible to declare it as a
parameter, which allows its value to be speci�ed by the user at compile time:

parameter epsilon : Rat

We can now use it to de�ne what it means for an image x to be inside the ball
of radius epsilon around some central image, namely that no two pixels di�er
by more than epsilon:

lInfBall : Image -> Image -> Bool

lInfBall centre x = forall i j .

-epsilon <= (x - centre) ! i ! j <= epsilon

Using this de�nition, we de�ne what it means for the network to be robust
around an image x that we know should be classi�ed as label y. Namely, that
for any valid input image z that lies within the ball of radius epsilon around x

the network should still advise label y when asked to classify z.

robustAround : Image -> Label -> Bool

robustAround x y = forall (z : Image) .

valid z and lInfBall x z => advises z y

Note that the quanti�cation over z is fundamentally di�erent from the pre-
vious quanti�ers that we've used until now. This is because as z has type
Image/Tensor Rat [784] which is an in�nite set. Such a quanti�er cannot be
normalised out to a �nite set of conjunctions, and this is the part of the speci�-
cation that needs to be sent to Marabou when verifying it.

However the speci�cation is still not complete, as we haven't declared which

images the network should be robust around. In theory we only care about the
network being robust on the set of images it will encounter during operation. Un-
fortunately we can't characterise this set of �reasonable" input images. Instead,
we take the standard approach of approximating it using the training dataset,
and simply ask that the network is robust around images in the training dataset.

To achieve this we �rst specify parameter n the size of the training dataset.
Unlike the earlier parameter epsilon, n is marked as implicit which means
that it does not need to be provided manually by the user at compile time but
instead the compiler will automatically infer its value. In this case it will be
inferred from the training dataset passed.

implicit parameter n : Nat

We next declare two datasets, the training images and the corresponding
training labels.



10 M. L. Daggitt et al.

dataset trainingImages : Tensor Image [n]

dataset trainingLabels : Tensor Label [n]

Note that we use n to enforce that they are the same size. If the actual datasets
passed are not the same size, then the compiler will throw an error when com-
piling the speci�cation.

We then say that the network is robust if it is robust around every pair of
input images and output labels.

robust : Tensor Bool [n]

robust = foreach i .

robustAround (trainingImages ! i) (trainingLabels ! i)

Note the use of the foreach keyword when quantifying over the index i in the
dataset. Unlike forall which produces a single boolean, foreach generates a
tensor of booleans. This ensures that Vehicle will report on the veri�cation status
of each image in the dataset separately. If forall was used, then Vehicle would
only report if the network was robust around every image in the dataset, a state
of a�airs which is unlikely to be true.

4 Conclusions

We hope that we have convinced the reader that the language presented above
is both expressive enough to capture a wide range of speci�cations, and is a
signi�cant step-up in terms of usability and readability.

Our short-term goals for further development of the system are as follows:

1. Compilation of speci�cations to loss-functions so that they can be used both
in training [7] and e�cient counter-example search [5].

2. Augmenting the Rat type with a comprehensive set of IEEE-compliant �oat-
ing point types, which can be used to specify both the format and the pre-
cision used on the deployed hardware.

3. A formal denotational semantics for both the high-level speci�cation lan-
guage and the Marabou query language with which the compilation proce-
dure can be proved correct.

In the longer term, we hope that Vehicle's ability to export veri�ed speci�ca-
tions to interactive theorem provers (something not discussed here) will be used
to formally verify the overall safety of large neural-network enhanced software
developments.

Acknowledgements This work was funded by the AISEC grant under EPSRC
numbers EP/T026952/1, EP/T026960/1, and EP/T027037/1. We would like
to thank the Marabou development team for their support and advice with
integrating our tool with Marabou.



Dependently-Typed Domain-Speci�c Language for NN Properties 11

References

1. Open Neural Network Exchange format, https://onnx.ai/, accessed on 30.01.2022
2. VNNLib format, https://vnnlib.org/, accessed on 01.12.2021
3. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial

examples. In: International conference on machine learning. pp. 284�293. PMLR
(2018)

4. Boyer, R.S., Green, M.W., Moore, J.S.: The use of a formal simulator to verify a
simple real time control program. In: Beauty Is Our Business, pp. 54�66. Springer
(1990)

5. Chiang, P.Y., Geiping, J., Goldblum, M., Goldstein, T., Ni, R., Reich, S., Shafahi,
A.: Witchcraft: E�cient PGD attacks with random step size. In: ICASSP 2020-
2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 3747�3751. IEEE (2020)

6. Daggitt, M.L., Kokke, W.: Vehicle, https://github.com/vehicle-lang/vehicle, ac-
cessed on 09.02.2022

7. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev, M.:
DL2: training and querying neural networks with logic. In: International Conference
on Machine Learning. pp. 1931�1941. PMLR (2019)

8. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Interna-
tional Journal of Computer Vision 129(6), 1789�1819 (2021)

9. Jia, K., Rinard, M.: Exploiting veri�ed neural networks via �oating point numerical
error. In: International Static Analysis Symposium. pp. 191�205. Springer (2021)

10. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
e�cient smt solver for verifying deep neural networks. In: International Conference
on Computer Aided Veri�cation. pp. 97�117. Springer (2017)

11. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zelji¢, A., et al.: The Marabou framework for veri�cation
and analysis of deep neural networks. In: International Conference on Computer
Aided Veri�cation. pp. 443�452. Springer (2019)

12. yann lecun, c.c., chris burges: The mnist database, http:yann.lecun.comexdbmnist
13. Norell, U.: Dependently typed programming in Agda. In: International school on

advanced functional programming. pp. 230�266. Springer (2008)
14. Shriver, D., Elbaum, S., Dwyer, M.B.: DNNV: A framework for deep neural net-

work veri�cation. In: Silva, A., Leino, K.R.M. (eds.) Computer Aided Veri�cation.
pp. 137�150. Springer International Publishing, Cham (2021)

15. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages 3(POPL),
1�30 (2019)



12 M. L. Daggitt et al.

A ACAS XU - Safety Conditions

ACAS Xu is a collision avoidance system for autonomous unmanned aircraft,
and its veri�cation was �rst described in the seminal Reluplex paper [10]. In
this appendix we demonstrate how the entire speci�cation, consisting of all 10
properties, can be written in a single Vehicle speci�cation �le. Unlike the equiv-
alent 43 low-level Marabou queries, the speci�cation is written at a high-level
and is understandable by a non-expert. However, these queries are automati-
cally generated from the speci�cation and veri�ed using Vehicle. We take the
full speci�cation of the ACAS XU networks from Appendix VI of the paper [10],
and the textual description of the properties is taken directly from there.

Initial Setup - we �rst de�ne the types of the inputs & output of the network
and add meaningful names for the indices.

type InputVector = Tensor Rat [5]

distanceToIntruder = 0

angleToIntruder = 1

intruderHeading = 2

speed = 3

intruderSpeed = 4

type OutputVector = Tensor Rat [5]

clearOfConflict = 0

weakLeft = 1

weakRight = 2

strongLeft = 3

strongRight = 4

Then we de�ne the network as a function from inputs to outputs.

network acasXu : InputVector -> OutputVector

For calculating steering angles we make use of the value of the constant pi.

pi : Rat

pi = 3.141592

We also de�ne a helper function advises that states the network chooses out-
put i when given the input x. We must necessarily provide a �nite index that is
less than 5 (i.e. of type Index 5). The a!b operator lookups index b in tensor a.

advises : Index 5 -> InputVector -> Bool

advises i x = forall j . i != j => acasXu x ! i < acasXu x ! j



Dependently-Typed Domain-Speci�c Language for NN Properties 13

Property 1 - �rst checks the distance to the intruder and its speed using
intruderDistantAndSlower, and assesses whether the intruder is distant and
is signi�cantly slower than your own ship, such that the score of a Clear of
Con�ict (COC) advisory will always be below a certain �xed threshold.

intruderDistantAndSlower : InputVector -> Bool

intruderDistantAndSlower x =

x ! distanceToIntruder >= 55947.691 and

x ! speed >= 1145 and

x ! intruderSpeed <= 60

property1 : Bool

property1 = forall x . intruderDistantAndSlower x =>

acasXu x ! clearOfConflict <= 1500

Property 2 - states that if the intruder is distant and is signi�cantly slower
than the ownship, the score of a COC advisory will never be maximal.

property2 : Bool

property2 = forall x . intruderDistantAndSlower x =>

(exists j . (acasXu x ! j) > (acasXu x ! clearOfConflict))

Property 3 - states that if the intruder is directly ahead (directlyAhead) and
is moving towards the ownship (movingTowards), the score for COC will not be
minimal.

directlyAhead : InputVector -> Bool

directlyAhead x =

1500 <= x ! distanceToIntruder <= 1800 and

-0.06 <= x ! angleToIntruder <= 0.06

movingTowards : InputVector -> Bool

movingTowards x =

x ! intruderHeading >= 3.10 and

x ! speed >= 980 and

x ! intruderSpeed >= 960

property3 : Bool

property3 = forall x . directlyAhead x and movingTowards x =>

not (advises clearOfConflict x)

Property 4 - states that if the intruder is directly ahead and moving away
from the ownship but at a lower speed than that of the ownship, the score for
COC will not be minimal.



14 M. L. Daggitt et al.

movingAway : InputVector -> Bool

movingAway x =

x ! intruderHeading == 0 and

1000 <= x ! speed and

700 <= x ! intruderSpeed <= 800

property4 : Bool

property4 = forall x . directlyAhead x and movingAway x =>

not (advises clearOfConflict x)

Property 5 - states that if the intruder is near and approaching from the left,
that the network advises �strong right�.

nearAndApproachingFromLeft : InputVector -> Bool

nearAndApproachingFromLeft x =

250 <= x ! distanceToIntruder <= 400 and

0.2 <= x ! angleToIntruder <= 0.4 and

-pi <= x ! intruderHeading <= -pi + 0.005 and

100 <= x ! speed <= 400 and

0 <= x ! intruderSpeed <= 400

property5 : Bool

property5 = forall x . nearAndApproachingFromLeft x

=> advises strongRight x

Property 6 - states that if the intruder is su�ciently far away, the network
advises COC.

intruderFarAway : InputVector -> Bool

intruderFarAway x =

12000 <= x ! distanceToIntruder <= 62000 and

(- pi <= x ! angleToIntruder <= -0.7 or 0.7 <=

x ! angleToIntruder <= pi) and

-pi <= x ! intruderHeading <= -pi + 0.005 and

100 <= x ! speed <= 1200 and

0 <= x ! intruderSpeed <= 1200

property6 : Bool

property6 = forall x . intruderFarAway x

=> advises clearOfConflict x

Property 7 - states that if the vertical separation is large, the network will
never advise a strong turn.

largeVerticalSeparation : InputVector -> Bool

largeVerticalSeparation x =



Dependently-Typed Domain-Speci�c Language for NN Properties 15

0 <= x ! distanceToIntruder <= 60760 and

-pi <= x ! angleToIntruder <= pi and

-pi <= x ! intruderHeading <= pi and

100 <= x ! speed <= 1200 and

0 <= x ! intruderSpeed <= 1200

property7 : Bool

property7 = forall x . largeVerticalSeparation x =>

not (advises strongLeft x) and not (advises strongRight x)

Property 8 - states that for a large vertical separation and if the previous
advisory was �weak left�, the network will either output COC or continue advising
�weak left�.

largeVerticalSeparationAndPreviousWeakLeft : InputVector -> Bool

largeVerticalSeparationAndPreviousWeakLeft x =

0 <= x ! distanceToIntruder <= 60760 and

-pi <= x ! angleToIntruder <= -0.75*pi and

-0.1 <= x ! intruderHeading <= 0.1 and

600 <= x ! speed <= 1200 and

600 <= x ! intruderSpeed <= 1200

property8 : Bool

property8 = forall x . largeVerticalSeparationAndPreviousWeakLeft

x =>

(advises clearOfConflict x) or (advises weakLeft x)

Property 9 - even if the previous advisory was �weak right�, the presence of a
nearby intruder will cause the network to output a �strong left�advisory instead.

previousWeakRightAndNearbyIntruder : InputVector -> Bool

previousWeakRightAndNearbyIntruder x =

2000 <= x ! distanceToIntruder <= 7000 and

-0.4 <= x ! angleToIntruder <= -0.14 and

-pi <= x ! intruderHeading <= -pi + 0.01 and

100 <= x ! speed <= 150 and

0 <= x ! intruderSpeed <= 150

property9 : Bool

property9 = forall x . previousWeakRightAndNearbyIntruder x =>

advises strongLeft x

Property 10 - for a far away intruder, the network advises COC.

intruderFarAway2 : InputVector -> Bool

intruderFarAway2 x =



16 M. L. Daggitt et al.

36000 <= x ! distanceToIntruder <= 60760 and

0.7 <= x ! angleToIntruder <= pi and

-pi <= x ! intruderHeading <= -pi + 0.01 and

900 <= x ! speed <= 1200 and

600 <= x ! intruderSpeed <= 1200

property10 : Bool

property10 = forall x . intruderFarAway2 x

=> advises clearOfConflict x

One can hopefully observe that through our DSL the properties are easily
interpretable and akin to how one would write them in a traditional functional
programming language. Not only this, but the tool will type check the spec-
i�cation to ensure no type errors are introduced in design phase (something
quite di�cult to do across 43 separate property �les). Furthermore, since our
DSL is dependently typed so we can specify the dimensions of the tensor, as
well as the type of data stored within it. This means that it impossible to
mess up indexing into tensors, e.g. if you changed distanceToIntruder = 0

to distanceToIntruder = 5 the speci�cation would fail to type-check.

B Autonomous Vehicle Controller: Staying on the Road

In our �nal scenario an autonomous vehicle is travelling along a straight road of
width 6 parallel to the x-axis, with a varying cross-wind that blows perpendicular
to the x-axis. The vehicle has an imperfect sensor that it can use to get a (possibly
noisy) reading on its position on the y-axis, and can change its velocity on the
y-axis in response. The car's controller takes in both the current sensor reading
and the previous sensor reading and its goal is to keep the car on the road. The
setup is illustrated in Figure 2.

0

-1

-2

3

1

Road edges
y-velocity

windspeedy-position

direction
of travel

-3

2

Fig. 2: A simple model of an autonomous vehicle compensating against a
cross-wind.

Although not proved here, it turns out that the following speci�cation is
su�cient to guarantee that the car will never leave the road:



Dependently-Typed Domain-Speci�c Language for NN Properties 17

Initial Setup , we �rst de�ne the types of the inputs (InputVector) as well
as the inputs themselves([currentSensor,previousSensor]), and the network
(controller).

type InputVector = Tensor Rat [2]

currentSensor = 0

previousSensor = 1

network controller : InputVector -> Rat

Safety Property , then we de�ne the safety property as the controller never
steering more than a distance of 3.25 from the correct path.

safeInput : InputVector -> Bool

safeInput x = forall i . -3.25 <= x ! i <= 3.25

safeOutput : InputVector -> Bool

safeOutput x = -1.25 < controller x + 2 * (x ! currentSensor)

- (x ! previousSensor) < 1.25

safe : Bool

safe = forall x . safeInput x => safeOutput x

From this speci�cation, Vehicle automatically generates the following Marabou
queries:

x0 >= -3.25

x0 <= 3.25

x1 >= -3.25

x1 <= 3.25

-y0 -2.0x0 +x1 >= 1.25

x0 >= -3.25

x0 <= 3.25

x1 >= -3.25

x1 <= 3.25

y0 2.0x0 -x1 >= 1.25

Although we don't provide details here, on the Github repo there is a full worked
example of how this speci�cation may be formally veri�ed and then exported
to Agda. In Agda, we then prove that such a controller will never steer the car
o� the road. Although this is only a toy example, we hope it demonstrates the
potential of Vehicle,


