
Diagrams for Meaning Preservation?

J. B. Wells1, Detlef Plump2, and Fairouz Kamareddine1

1 Heriot-Watt University
http://www.cee.hw.ac.uk/ultra/

2 University of York
http://www.cs.york.ac.uk/~det/

Abstract. This paper presents an abstract framework and multiple
diagram-based methods for proving meaning preservation, i.e., that all
rewrite steps of a rewriting system preserve the meaning given by an
operational semantics based on a rewriting strategy. While previous
rewriting-based methods have generally needed the treated rewriting sys-
tem as a whole to have such properties as, e.g., confluence, standardiza-
tion, and/or termination or boundedness of developments, our methods
can work when all of these conditions fail, and thus can handle more
rewriting systems. We isolate the new lift/project diagram as the key
proof idea and show that previous rewriting-based methods (Plotkin’s
method based on confluence and standardization and Machkasova and
Turbak’s method) implicitly use this diagram. Furthermore, our frame-
work and proof methods help reduce the proof burden substantially by,
e.g., supporting separate treatment of partitions of the rewrite steps,
needing only elementary diagrams for rewrite step interactions, exclud-
ing many rewrite step interactions from consideration, needing weaker
termination properties, and providing generic support for using develop-
ments in combination with any method.

1 Discussion

1.1 Background and Motivation

A programming language is defined as a set of programs and a way to evaluate
(or “execute”) the programs. It is increasingly popular to define evaluation via
program rewriting [18, 5, 6, 7, 2, 13, 8, 19]. In this approach, evaluation rewrite
rules are repeatedly applied at program positions given by evaluation contexts [5].

Other kinds of program rewriting than evaluation are also desirable. Potential
uses of rewriting-based program transformations include optimizing compilers,
partial evaluators, and program simplifiers. These transformations may use the
already existing evaluation rules in arbitrary contexts or use additional rewrite
rules. Some transformations may involve global reasoning about the entire pro-
gram, but many are local and a good match for rewriting-based techniques.

? This work was partly supported by NSF grants CCR 9417382, CCR 9988529, and
EIA 9806745, EPSRC grants GR/L 36963 and GR/R 41545/01, and Sun Microsys-
tems equipment grant EDUD-7826-990410-US.

It is important to know when program transformations preserve a program’s
meaning as given by evaluation. There are many non-rewriting based approaches,
such as denotational semantics (models), logical relations, applicative bisimula-
tion and coinduction, etc., but they will not be discussed here because this paper
focuses on rewriting-based techniques. Plotkin [18] first devised a rewriting-based
method to prove meaning preservation for the call-by-name and call-by-value λ-
calculus using confluence and standardization. At the same time, Plotkin proved
that evaluation via rewriting was equivalent to evaluation via abstract machine.
Subsequently, this approach has been applied to many systems, including sys-
tems with imperative features such as assignments and continuations (examples
include [6, 7, 15, 2, 13, 8, 19, 11]).

Warning 1.1 (Not Quite Same as Observational Equivalence) What we
call meaning preservation is related to observational equivalence (sometimes
called observational soundness, operational equivalence, consistency, etc.), but
is only the same for contextually closed rewriting systems. In this paper, two
terms have the same meaning iff evaluating them yields the same result (diver-
gence or the same halted state). Terms t1 and t2 are observationally equivalent,
usually written t1 ' t2, iff C[t1] and C[t2] have the same meaning for every
context C where C[t] places t in the hole of the context C. Proving a rewriting
relation R to be meaning preserving implies that R ⊆ ' only when R is con-
textually closed. This paper presents an abstract (syntax-free) framework, and
contexts are syntactic, so we do not discuss observational equivalence.

1.2 Summary of Contributions

The existing rewriting-based tools for proving meaning preservation are difficult
to use and sometimes completely inapplicable. To address this problem, this
paper presents an abstract framework and multiple diagram-based methods for
proving meaning preservation. The new knowledge presented here improves on
what is already known as follows.

1. Our methods can be used for rewriting systems that as a whole fail to have
confluence, standardization, and/or termination or boundedness of develop-
ments. While some of our methods ask for confluence or standardization-like
properties, they do so only for subsets of all rewrite steps.

2. We isolate the new lift/project diagram (LP in definition 4.1) and show that it
is the key proof idea for previous methods for proving meaning preservation
(Plotkin’s method based on confluence and standardization and Machkasova
and Turbak’s method based on lift and project [11]). We show that the con-
fluence & standardization method is incomparable in proving power with the
lift & project method. We present new lift/project-based methods that can
handle systems that previous methods can not such as systems without stan-
dardization.

3. All of the proof methods dealt with in this paper (including the earlier meth-
ods of Plotkin and Machkasova & Turbak) are presented abstractly (free
of syntax). Because our methods are abstract, there are no restrictions on

2

the kinds of rewrite rules used. Rewrite rules may be non-left-linear, non-
orthogonal (overlapping), non-first-order, etc. Also, our approach does not
need a notion of closed programs as a subset of terms.

4. All our methods support partitioning the rewrite steps into subsets treated
separately with different methods as needed. These subsets need only be closed
under (an informal notion of) “residuals with respect to evaluation steps”.
This partitioning also makes proving termination properties easier.

5. Our framework provides generic support for using developments (i.e., rewrit-
ing contracting only preexisting marked redexes) together with any method,
so each method only needs to be used for marked rewrite steps. This eases the
burden of proving termination properties. No notion of residuals is needed,
which is important for systems with wildly overlapping rules where it is un-
clear how to define residuals.

6. In addition to a number of high-level diagram-based methods for proving
meaning preservation, we also present low-level methods that are easier to use
for people who are not researchers in rewriting. We give as many as possible of
the details needed for the non-specialist to use and adapt the proof methods.
These low-level methods use simple termination properties and diagrams.

(a) Termination properties are only needed for ordinary rewriting, not for
rewriting of rewrite step sequences (perhaps this should be called meta-
rewriting?) as in some abstract standardization methods [14]. The different
termination properties that each method requires are simple, ranging over
strong (SN) and weak (WN) normalization and a bound on the number of
evaluation steps in any rewrite sequence (BE in definition 5.1).

(b) For analyzing rewrite step interactions, each method needs only the com-
pletion of elementary diagrams, i.e., diagrams where the only given edges
are two adjacent single rewrite steps. In contrast, some abstract standard-
ization methods require completing cubes [9, 14]. The method choice can
depend on which elementary diagrams are completable. All of our methods
exclude many rewrite step interactions from consideration.

7. To help rewriting researchers, as much as possible we identify intermediate
diagrams to make it easier for new diagrams to be added as needed.

8. Our methods use only the simplest notion of standardization, that a rewrite
sequence t1 −−� t2 can be rearranged into a sequence t1 −

�
−� t3 −

�
−� t2 where�

and � indicate respectively evaluation and non-evaluation steps. Standard-
ization in the literature is a rich and interesting notion [14], but other stan-
dardization definitions always imply our definition and the extra details are
not useful here, so they are omitted.

1.3 Acknowledgements

An early informal presentation by Elena Machkasova on the lift and project
diagrams gave significant inspiration, although this work has subsequently pro-
ceeded independently. Zena Ariola is partly responsible for this work by con-
vincing us to use rewrite rules for letrec that are difficult to prove correct.

3

2 Mathematical Definitions

Let S] S′ denote S ∪ S if S ∩ S = ∅ and otherwise be undefined. In a proof,
“IH” means “by the induction hypothesis” and “w/o.l.o.g.” means “without loss
of generality”.

Let R range over binary relations. Let −R−→ and −−R→ be alternate notations for

R which are usable infix, i.e., both a −R−→ b and a −−R→ b stand for R(a, b) which in
turn stands for (a, b) ∈ R.

Define the following operators on binary relations. Let R; R′ be the com-

position of R with R′ (i.e., { (a, b) ∃c. R(a, c) and R′(c, b) }). Let −R,0−−→ = R0 be

equality at the type intended for R. Let −R,i+1−−−→ = Ri+1 = (Ri; R) when 0 ≤ i. Let

−R,≥k−−−→ = R≥k =
⋃

i≥k Ri. Let −R,≤k−−−→ = R≤k =
⋃

i≤k Ri. Let −R,j,≤k−−−−→ = Rj ∩ R≤k

(useful in diagrams when j is existentially quantified). Let −R−� = R∗ = R≥0

(the transitive, reflexive closure). Let ←R−− = R−1 be the inverse of R (i.e.,

{ (a, b) R(b, a) }). Let �
R−− = (R−1)≥0. Let ←R−→ = (R ∪ R−1) (the symmetric

closure). When R = R−1 (i.e., R is symmetric), let −R−− = R. Let ←R,k−−→ = (←R−→)k.

Let �
R−� = (←R−→)≥0.

Let an entity a be a R-normal form, written is-nf(R, a), iff there does not

exist some entity b such that a −R−→ b. Let an entity a have a R-normal form,
written has-nf(R, a), iff there exists some b such that a −R−� b and is-nf(R, b). Let

−R,nf−−� be the relation such that a −R,nf−−� b iff a −R−� b and is-nf(R, b). A relation R

is strongly normalizing, written SN(R), iff for every entity a there is some k ≥ 0
such that there does not exist an entity b such that Rk(a, b). A relation R is
weakly normalizing, written WN(R), iff for every entity a there is some entity b

such that a −R,nf−−� b. Note that SN(R)⇒WN(R).

Diagrams make statements about relations where solid and dotted edges
indicate quantification. Metavariables already mentioned outside the diagram
are unquantified. Other metavariables (e.g., for node names or used in edge
labels) are universally quantified if attached to a solid edge and existentially
quantified if attached only to dotted edges. As an example, in a context where
R1 and R2 have already been given, the following equivalence holds:

a b

c d

R1,k

R2

R1,≤k
R1 ⇐⇒ ∀a, b, c, k. (a −R1,k−−→ b ∧ a −R2−→ c)⇒ ∃d. c −R1,≤k−−−→ d ∧ b −R1−� d

In proofs, the reason for each diagram polygon will usually be written inside it.

3 Abstract Evaluation Systems

An abstract evaluation system (AES) is a tuple

(� , � , � , endpoints,
�
, result)

4

satisfying the conditions given below by axioms 3.3 and 3.4 and the immediately
following conditions. The carriers of an AES are the sets � , � , and � . The
function endpoints maps � to � × � . The set

�
is a subset of � . The function

result maps � to � . Let t range over � , let s range over � , let r range over � ,
and let S range over subsets of � .

The intended meaning is as follows. � should be a set of terms. � should be a
set of rewrite steps. � should be a set of evaluation results which by axiom 3.4(1)
will most likely contain the symbol diverges and one or more other members,
typically symbols such as halt, error, etc. The halt case might be subdivided into
possible constant values of final results. If endpoints(s) = (t1, t2), this should
mean that step s rewrites term t1 to term t2. The members of

�
are the rewrite

steps used for evaluation. Let � = � \ �
(where “ � ” stands for “non-evaluation”).

If result(t) = r, this should mean that r is the observable result of evaluating
term t, where diverges is reserved by axiom 3.4(1) for non-halting evaluations.

Convention 3.1 In this paper, wherever no specific AES is being considered,
statements are about every possible AES.

Let rewriting notation be defined as follows. Given a rewrite step set S, let

S be the binary relation { (t, t′) ∃s ∈ S. endpoints(s) = (t, t′) }. Thus, t −S−→ t′ iff
there exists s ∈ � such that endpoints(s) = (t, t′). When a rewrite step set S is
used in a context requiring a binary relation on � , then let S implicitly stand

for S . Thus, as examples, t −S−→ t′ stands for t −S−→ t′ and an S-normal form is
simply a S -normal form. When used in a position requiring a subset of � or a
binary relation on � , let s stand for {s} and let S,S ′ stand for S ∩ S ′. Thus,

as an example, t −S,s−−→ t′ stands for t −
S∩{s}
−−−−→ t′. When a binary relation on �

is required and none is supplied, then let the relation � be implicitly supplied.

Thus, as examples, t −−→ t′ stands for t −
�

−→ t′ and t −k−→ t′ stands for t −
�

,k−−→ t′.

Definition 3.2 (Rewrite Step Set Properties). Define the following rewrite
step sets and properties of rewrite step sets:

Standardization: Confluence:

Std(S,S ′) ⇐⇒
t1 t2

t3

S
�
,S′

�
,S′

Conf(S) ⇐⇒
t1 t2

t3

S

S S

Local Confluence: Meaning Preservation:

LConf(S) ⇐⇒
t1 t4

t2 t3

S
S

S
S s ∈ MP ⇐⇒

t1
r

t2

s

result

result

Subcommutativity:

SubComm(S, i, j) ⇐⇒
t1 t3

t2 t4

S,i
S,j

S,≤j
S,≤i

Let Std(S) abbreviate Std(S, �). Let SubComm(S) abbreviate SubComm(S, 1, 1).
Traditionally, only Std(�) = Std(� , �) is considered. The simple definition of MP

5

is reasonable because axiom 3.4(1) (given below) means MP implies preservation
of the existence of

�
-normal forms. See also warning 1.1 and do not confuse MP

with observational equivalence.

Axiom 3.3 (Subcommutativity of Evaluation) SubComm(
�
).

Non-deterministic evaluation is needed for rewriting systems with non-deterministic
syntax, e.g., the system of [11] where the top syntax level is a set with unordered
components. Often, it will be simpler to make evaluation deterministic so that

t2 ←
�
,s1−−− t1 −

�
,s2−−→ t3 implies that t2 = t3.

Axiom 3.3 does not ensure that any strategy for −
�
−→ will find

�
-normal forms

when they exist. Strengthening axiom 3.3 so that the bottom and right diagram
edges have the same length would ensure this, but is not needed otherwise.

Axiom 3.4 (Evaluation Sanity)

1. “diverges” Means Evaluation Diverges:
result(t) = diverges⇔ ¬has-nf(

�
, t).

2. Evaluation Steps Preserve Meaning:�
⊆ MP.

3. Non-Evaluation Steps Preserve Evaluation Steps:

t1 t3

t2 t4

� �
�

Consequently, if t1 −
�
−→ t2, then is-nf(

�
, t1)⇔ is-nf(

�
, t2).

4. Non-Evaluation Steps on
�
-Normal Forms Preserve Meaning:

If t −
�
−→ t′ and is-nf(

�
, t), then result(t) = result(t′).

When defining an AES for a rewriting system, it is trivial to satisfy ax-
ioms 3.4(1) and 3.4(2) by using an auxiliary function result′ which maps { t is-nf(

�
, t) }

to � \ {diverges} and defining result as follows:

result(t) =

{

diverges if ¬has-nf(
�
, t),

result′(t′) if t −
�
,nf−−� t′.

Indeed, the model of how evaluation should be computed expects to work this
way. When ¬is-nf(

�
, t), it is expected that computing result(t) involves first find-

ing t′ such that t −
�
,nf−−� t′, then computing result(t′), and otherwise diverging

if no such t′ exists. Thus, the value of result(t) is unimportant if ¬has-nf(
�
, t).

Reserving the value diverges for this case simplifies things.
Satisfying axioms 3.4(3) and 3.4(4) requires more care in the design of the

rewriting system and the AES, but is not hard. Anyway, axiom 3.4(3) is a conse-
quence of the properties WL1 and WP1 or WLP1 (definition 5.1) which typically
must also be proven. The condition of axiom 3.4(3) appears in other abstract
frameworks as early as [9] and appears in non-abstract form in [18]. The first
explicit statement of the condition of axiom 3.4(4) that we are aware of appears
in [10], although the condition is partially present in [2].

6

Lemma 3.5 (Non-Evaluation Steps on Eval-Normal Forms). If t1 �

�
−� t2

and is-nf(
�
, t1), then t1 �

MP−� t2.

Proof. See appendix A.

4 Lift/Project Diagrams for Meaning Preservation

This section presents properties of rewrite step sets in definition 4.1 and shows
how to use them to prove meaning preservation, the important connection be-
tween arbitrary-strategy rewriting and evaluation. When evaluation is defined
by a subset of the rewrite steps (specified in an AES by the set

�
), it is necessary

to show that arbitrary rewriting preserves the evaluation result in order to have
confidence that the non-evaluation rewrite steps are at all meaningful. Tradition-
ally, this has been done by proving confluence (Conf) and standardization (Std),
the preconditions of Plotkin’s approach [18] (presented in lemma 4.5(1,2)).

Needing confluence and standardization is a big weakness, as shown by the
non-confluent system in [11] and the λ:=,letrec calculus we mention in section 9
which has neither confluence nor standardization. In contrast, our new method in
theorem 4.3 needs only the lift/project (LP) property. By lemma 4.2, lift/project
can be obtained from the lift (Lift) and project (Proj) properties. Because lift
and project do not imply confluence (lemma 4.5(2)), theorem 4.3 does not need
confluence. Furthermore, because lift/project implies neither lift nor project
(lemma 4.2(8)) and lift is equivalent to standardization (lemma 4.4(1)), the-
orem 4.3 does not need standardization when lift is not used.

Theorem 4.3 differs from earlier work of Machkasova and Turbak [11] in
several important ways. First, it is abstract (syntax-free). Second, it makes it
easy to treat rewrite step subsets independently. This vastly simplifies auxiliary
termination proofs (e.g., for properties SN or BE as used in definition 5.1) and
is vital when a single method fails to cover all � steps (e.g., section 9). Third,
it needs only the weaker lift/project property rather than lift and project. This
is vital because lift is equivalent to standardization so the Machkasova/Turbak
method fails for systems without standardization (e.g., section 9).

Definition 4.1 (Lift, Project, and Related Properties). Define the fol-
lowing rewrite step sets and properties of rewrite step sets:

Strong Lift: Lift:

SLift(S) ⇐⇒
t1 t4

t2 t3

�
,S �

� �
,S s ∈ Lift ⇐⇒

t1 t4

t2 t3

s �
� �

Lift′:

s ∈ Lift′ ⇐⇒
t1 t4

t2 t3 t5

s � �
� �

Strong Project: Project:

SProj(S) ⇐⇒
t1 t2 t4

t3 t5

�
,S

� �
� �

,S s ∈ Proj ⇐⇒
t1 t2 t4

t3 t5

s

� �
� �

7

Strong Lift/Project: Lift/Project:

SLP(S) ⇐⇒
t1 t3 t5

t2 t4

�
,S

� � �
,S� s ∈ LP ⇐⇒

t1 t3 t5

t2 t4

s

� �
� �

Lift/Project when Terminating:

s ∈ LPT ⇐⇒
t1 t3

t2 t4

s

�
,nf� �

The Lift and Proj properties given here match the properties by the names
“Lift” and “Project” in [11], except that there both properties are defined on
the entire rewriting system rather than on individual rewrite steps and both
properties specify the step on the left diagram edge to be a � step (an inessential
difference). Only the weaker Lift′ which is symmetrical with Proj is actually
needed together with Proj to obtain LP (lemma 4.2(7)). However, Lift′ can not
replace Lift in the statement of lemma 4.4(1).

Lemma 4.2 (Relationships between Lift and Project Properties).

1.
�
⊆ Lift ∩ Proj.

2. If SLift(S), then S ⊆ Lift.
3. If SProj(S), then S ⊆ Proj.
4. If SLP(S), then S ⊆ LP.
5. Lift ⊆ Lift′.
6. Lift′ ⊆ Lift need not be true.
7. Lift′ ∩ Proj ⊆ LP.
8. None of LP ⊆ Lift′ ∩ Proj, LP ⊆ Lift′, and LP ⊆ Proj need to be true.
9. LP ⊆ LPT.

10. LPT ⊆ LP need not be true.

Proof. See appendix B.

Theorem 4.3 (Relationships between Lift, Project, and Meaning Preser-
vation).

1. LPT ⊆ MP.
2. MP ⊆ LPT need not be true.

Proof.

1. Suppose s ∈ LPT. Let t1 −
s−→ t2. Suppose neither has-nf(

�
, t1) nor has-nf(

�
, t2).

By axiom 3.4(1), it holds that result(t1) = diverges = result(t2), so s ∈ MP.
Suppose instead that either has-nf(

�
, t1) or has-nf(

�
, t2). Suppose has-nf(

�
, t1)

(w/o.l.o.g. because only t1 ←
s−→ t2 is used). Then t1 −

�
,nf−−� t3 for some t3. By

s ∈ LPT, it holds that t3 �

�
−� t4 �

�
−− t2 for some t4. Because is-nf(

�
, t3), by

lemma 3.5 it holds that t3 �
MP−� t4. By axiom 3.4(2) and induction on the

lengths of rewrite sequences, it holds that t1 −
MP−� t3 and t2 −

MP−� t4. Thus,

t1 �
MP−� t2. Thus, s ∈ MP.

8

2. Consider this 4-term 3-step AES where all results are the same:

t1 t2

t3 t4

�
,s1�

,s2 �
,s3

Then MP = � , but MP \ LPT = {s2}.

4.1 Comparison with Traditional Approach

This subsection compares the lift & project and lift/project methods with the
traditional confluence & standardization method. Plotkin’s traditional approach
was separated out and presented abstractly by Machkasova [10] in a form sim-
ilar to the combination of the proofs of lemma 4.5(1), lemma 4.2(9), and theo-
rem 4.3(1). We have done the work needed to allow the argument be easily ap-
plied to subsets of � and reformulated it for the AES framework. Furthermore, we
have factored the argument to show it goes through LP (lemma 4.5(1)) and LPT

before reaching MP. Thus, it appears that the main previously known rewriting-
based methods of showing meaning preservation implicitly use the lift/project
diagram. Interestingly, in lemma 4.5(3,4) it is shown that the confluence & stan-
dardization method and the lift & project method are incomparable in their
power; each can address problems that the other can not. Section 5 will develop
another method (WB\Std in definition 5.1) of proving lift/project which can
address yet more problems, because it does not require standardization.

The following equivalence of Lift and standardization in lemma 4.4(1) appears
in [10], although here it has been parameterized on rewrite step sets.

Lemma 4.4 (Lift Equivalent to Standardization).

1. S ⊆ Lift iff Std(S ∪
�
). (Consequently, Lift = � iff Std(�).)

2. The above statement need not be true with Lift replaced by Lift′.

Proof.

1. Std(S ∪
�
) ⇒ S ⊆ Lift is immediate. S ⊆ Lift ⇒ Std(S ∪

�
) is proven by

induction on the length of rewrite sequences. See appendix B for full details.
2. Consider this 6-term 6-step AES where all results are the same:

t1 t2

t3 t4 t5

t6

�
,s1�

,s2

�
,s3�

,s4 �
,s5�

,s6

Note that Lift′ = � , but Lift′\Lift = {s2}. The desired Std(�) is false, because

t1 −−� t6 but there is no t such that t1 −
�
−� t −

�
−� t6.

Lemma 4.5 (Relationships between Confluence + Standardization and
Lift + Project).

9

1. If Conf(S ∪
�
) and Std(S ∪

�
), then S ⊆ LP.

2. Consequently, Conf(S ∪
�
) and S ⊆ Lift imply S ⊆ MP.

3. If Conf(S ∪
�
) and Std(S ∪

�
), then S ⊆ Proj need not be true.

4. Conf(Lift ∩ Proj) need not be true.

Proof.

1. Suppose that Conf(S ∪
�
) and (*) Std(S ∪

�
) hold. Using the reason (*) as

indicated, the following diagram proves S ∪
�
⊆ LP and thus S ⊆ LP:

t1 t3 t5

t6

t2 t4

�

Conf(S ∪
�
)

�

S ∪
�

S ∪ �
�(*)

S ∪ �
�

�
(*)

2. By lemmas 4.2(9), 4.4, and 4.5(1) and theorem 4.3(1).
3. Consider this 5-term 6-step AES where all results are the same:

t1 t2

t5

t3 t4

�
,s1

�
,s2

�
,s
3

�
,s4

�
,s5 �

,s6

Then Conf(� ∪
�
) and Std(� ∪

�
), but � \ Proj = {s2}.

4. Consider this 3-term 2-step AES where all results are the same:

t1 t2

t3

�
,s1�

,s2

Then Lift = Proj = � , but ¬Conf(�).

5 Elementary Diagrams for Strong Lift/Project

According to section 4, one can prove rewrite step sets to have the lift/project
property in order to prove meaning preservation. Furthermore, lift/project can
be obtained via stronger properties such as the lift and project properties. How-
ever, proving these properties can be very difficult.

To help, this section provides abstract methods for proving strong lift, strong
project, and/or strong lift/project for particular rewrite step sets. Definition 5.1
defines that a rewrite step set is well behaved when it satisfies either the WB+Std

or WB\Std properties. In turn, each of these are conjunctions of a small number
of specific properties, one termination property and some elementary diagrams,
i.e., diagrams where the given edges are two adjacent single rewrite steps. The
WB+Std and WB\Std properties are about rewrite step sets rather than indi-
vidual steps because it is necessary to simultaneously treat all the steps in a
set that is closed under (a very informal notion of) “residuals with respect to
evaluation steps”. This section’s main result (theorem 5.4) is that a well behaved

10

rewrite step set S has either the strong lift and strong project properties or the
strong lift/project property.

Each of WB+Std and WB\Std has particular advantages. The termination
property of WB+Std requires only a bound on the number of

�
steps in a rewrite

sequence (BE), not full termination. When used together with the methods of sec-
tion 6, this is significantly weaker than the finite developments property needed
by some other proof methods, because it allows infinite developments (and there
is no requirement that coinitial developments can be completed to be cofinal).
In contrast, WB\Std requires a strong termination property, but replaces the
WL1 and WP1 elementary diagrams with the weaker diagram WLP1. The big
advantage of WLP1 is that it does not require standardization. Although proving
WB\Std(S) does require showing strong normalization and local confluence for
S, if confluence can be shown for S by other means then strong normalization
can be weakened to weak normalization and the local confluence requirement
can be dropped (lemmas 5.2(3) and 5.3(3)).

Definition 5.1 (Well Behaved Rewrite Step Sets). Let N∗EN∗(S) be the

relation −
�

,S−−�;−
�
,S−−→;−

�
,S−−�. Define the following rewrite step set properties:

Bounded
�
-Steps: � -Steps Do Not Create

�
-Steps:

BE(S) ⇐⇒ SN(N∗EN∗(S)) NE(S) ⇐⇒
t1 t4

t2 t3

�
,S �

,S

�
,S

Weak Lift 1-Step: Weak Project 1-Step:

WL1(S,S ′) ⇐⇒
t1 t4

t2 t3

�
,S �

,S′

�
,S′

S WP1(S) ⇐⇒
t1 t2

t3 t4

��
,S � S

Weak Lift/Project 1-Step: Standardization to Normal Form:

WLP1(S) ⇐⇒
t1 t4

t2 t3

�
,S

�
S� Std-nf(S) ⇐⇒

t1 t2

t3

S,nf�
,S,nf

�
,S,nf

Well Behaved with Standardization:

WB+Std(S) ⇐⇒ BE(S) ∧WL1(S,S) ∧WL1(S, �) ∧WP1(S)

Well Behaved without Standardization:

WB\Std(S) ⇐⇒ SN(S) ∧ LConf(S) ∧ NE(S) ∧WLP1(S)

Lemma 5.2 (Confluence and Standardization-Like Properties).

1. If BE(S) and WL1(S,S), then Std(S,S).
2. If LConf(S) and SN(S), then Conf(S) (Newman’s Lemma).
3. If Conf(S), WN(S), and NE(S), then Std-nf(S).

Proof. By definition 5.1 and lemmas C.2, C.7, and C.8 in appendix C.

Lemma 5.3 (Strong Lift and Project Properties).

1. If WL1(S, �) and Std(S,S), then SLift(S).

11

2. If WP1(S) and Std(S,S), then SProj(S).
3. If Conf(S), WN(S), Std-nf(S), and WLP1(S), then SLP(S).

Proof. By definition 5.1 and lemmas C.4, C.6, and C.11 in appendix C.

Theorem 5.4 (Well Behaved Rewrite Step Sets).

1. If WB+Std(S), then SLift(S) and SProj(S).
2. If WB\Std(S), then SLP(S).

Proof. By definition 5.1 and lemmas 5.2 and 5.3.

6 Marked Rewriting and Developments

Sometimes, a desired termination property (e.g., BE from definition 5.1, SN, or
WN) fails for a step set S generated by some rewrite rule(s), but holds for S ∩ �
where � is a set of marked steps. The marks will typically force termination by
forbidding contraction of unmarked redexes and ensuring that “created” redexes
will be unmarked. To use this method, the desired rewriting system is embedded
in a larger marked system with additional marked terms and rewrite steps, so
proving the larger system correct also proves the desired system correct.

This section defines conditions on marking and theorem 6.4 proves that when
these conditions hold, proving LPT for S ∩ � (i.e., the marked fragment of the
larger marked system) is sufficient to prove LPT for S (i.e., both the marked and
unmarked steps in the larger system). Thus, when any of this paper’s methods
for proving meaning preservation work for S ∩ � , the methods also work for S.
It is worth observing that the style of proof of theorem 6.4 can be repeated for
many properties other than LPT, e.g., for Lift (and therefore for standardization).

This section’s methods are related to developments. A development is a
rewrite step sequence starting from a term t where each step contracts a re-
dex which represents work that was already in t and “created” redexes are not
contracted. Usually, the notions of “work already present” and “created” are
defined using residuals of redexes across rewrite steps, sometimes defining resid-
uals using marks. This section’s methods do not need any notion of residual.
This is important because there do not seem to be good ways to define residuals
for many rewriting systems, e.g., those with highly overlapping rewrite rules.

A mark structure for an AES is a tuple

(Marks, markOf, noMark, rename)

satisfying axiom 6.1 below and the following conditions. The set Marks is non-
empty and does not contain ?. The function markOf maps � to Marks∪{?}. The
mark noMark is a member of Marks. The function rename is of type (Marks ×
Marks)→ � → � . Let m range over Marks. Let � = { s ∈ � markOf(s) 6= noMark}.
Let the statement markOccurs(m, t) hold iff there exist s and t′ such that t −s−→ t′

and markOf(s) = m.

12

The intended meaning is as follows. The set Marks should contain marks used
to track redexes. Each rewrite step s should be marked by the mark markOf(s).
The special mark noMark means “no mark at all”. The symbol ? means “can
be considered to be any mark because we do not track this kind of rewrite
step with marks”; this is a convenience for systems where only some steps have
marked versions. The operation rename(m1, m2)(t) should produce a new term
t′ resulting from renaming all occurrences of the mark m1 in t to m2.

Axiom 6.1 (Marking Sanity)

1. Marked Erasure:
For S ∈ {

�
, � },

t1 t2

t3 t4

rename(m,m′)
S

rename(m,m′)
S

2.
�

Marked Unerasure:
t1 t2

t3 t4

�
rename(m,m′) � rename(m,m′)

3. Erasing Nonexistent Mark:
If ¬markOccurs(m, t), then rename(m, m′)(t) = t.

4. Marks Not Introduced by Rewriting:
If ¬markOccurs(m, t), m 6= noMark, and t −−→ t′, then ¬markOccurs(m, t′).

5. Fresh Marks:
For any term t, there exists a mark m 6= noMark such that ¬markOccurs(m, t).

Convention 6.2 In this paper, wherever no specific mark structure is being
considered, statements are about every possible mark structure.

Definition 6.3 (Rewrite Step Set Property for Marks).

� Step Can Be Marked:

NM(S) ⇐⇒

(

(

m 6= noMark

∧ ¬markOccurs(m, t1)

)

⇒
t1 t2

t3

�
,S

rename(m,m′)
�

, � ,S

)

Theorem 6.4 (Lift/Project when Terminating via Marks). If S ∩ � ⊆
LPT and NM(S), then S ⊆ LPT.

Proof. Using axiom 6.1, lemma 4.2(1), and definitions 6.3 and 4.1. For full proof
details, see appendix D.

7 Example: The Call-by-Name λ-Calculus

This section gives an example of the use of our AES framework and our diagram-
based methods for proving meaning preservation. We choose the call-by-name λ-
calculus with left-most outermost evaluation to weak head normal forms because

13

it is a small system, needs the mark structure features of section 6, and will
already be familiar to most readers. The AES and a mark structure will be
defined and then the top-level proof strategy will be presented.

Define the AES for the call-by-name λ-calculus as follows. First, define the
AES carrier sets � , � , and � as well as the evaluation step subset

�
.

x, y, z ∈ Variable

t ∈ Context ::= 2 | x | λx t | t1 t2 | let
nx = t2 in t1 (n ≥ 1)

t ∈ � = { t t has no hole 2 }
E ∈ EvalContext ::= 2 | E t

R ∈ Redex ::= letnx = t2 in t1 | (λx t1) t2
s ∈ � ::= (t , R)�

::= (E , R)
r ∈ � = {diverges, stuck, halt}

In the term syntax, (letnx = t2 in t1) is used to indicate a marked β-redex. Terms,
contexts, and redexes are identified modulo α-conversion as usual. For contexts,
α-conversion can not rename bound variables whose scope includes a hole. Sub-
stitution of t for x in t′, written t′[x := t], is defined as usual. Placing a term or
context X in the hole of a one-hole context t , written t [X], is defined as usual.

Now, finish defining the AES by supplying the functions.

endpoints(t , (letnx = t2 in t1)) = (t [letnx = t2 in t1], t [t1[x := t2]])
endpoints(t , (λx t1) t2) = (t [(λx t1) t2], t [t1[x := t2]])

result(t) =

diverges if ¬has-nf(
�
, t)

halt if t −
�
,nf−−� λx t′

stuck if t −
�
,nf−−� t′ 6= λx t′′

Define an accompanying mark structure as follows.

Marks = {0, 1, 2, . . .}
noMark = 0
markOf(t , (letnx = t2 in t1)) = n

markOf(t , (λx t1)t2) = 0
rename(m1, m2) = θ

where

θ(x) = x

θ(λx t) = λx θ(t)
θ(t1 t2) = θ(t1) θ(t2)
θ(letm1x = t2 in t1) = (letm2x = θ(t2) in θ(t1)) if m2 6= 0
θ(letm1x = t2 in t1) = (λx θ(t1)) θ(t2) if m2 = 0
θ(letmx = t2 in t1) = (letmx = θ(t2) in θ(t1)) if m 6= m1

Lemma 7.1 (The Framework User’s Proof Burden).

1. Axioms 3.3, 6.1, and 3.4 hold.

2. WB+Std(�).

3. NM(�).

4. If t1 −−→ t2, then t [t1] −−→ t [t2] for any context t.

14

Proof. Many standard proofs by induction which are left to the reader. The
only difficult bit is BE(�) (part of WB+Std(�)). The stronger statement SN(�)
is proven by a known argument (e.g., see [3]) of rearranging the mark values so
that rewriting decreases the multiset of all marks in the term in the multiset
extension of <.

Theorem 7.2 (Meaning Preservation). � ⊆ MP.

Proof. Everything implicitly relies on lemma 7.1(1). By lemma 7.1(2) and the-
orem 5.4(1), SLift(�) and SProj(�). By lemma 4.2(2,3,5,7,9), � ∩ � = � ⊆ LPT.
By lemma 7.1(3) and theorem 6.4, � ⊆ LPT. By theorem 4.3(1), � ⊆ MP.

Corollary 7.3 (Observational Equivalence). If t1 −−→ t2, then result(t [t1]) =
result(t [t2]).

Proof. Suppose t1 −−→ t2. By lemma 7.1(4), t [t1] −−→ t [t2]. By theorem 7.2 and
the definition of MP, result(t [t1]) = result(t [t2]).

8 Related Work

The most closely related work is that by Machkasova and Turbak [10, 11, 12].
Their work is discussed throughout this paper, so only a few points will be
made here. First, our BE property corresponds to their complicated notion of
γ-development [12, sec. 4.5]. The γ-development idea may be implicitly the same
as BE [12, p. 193], but the exact relationship is unclear due to the complexity.
Second, Machkasova’s requirement of γ-confluence on evaluation is incomparable
with our requirement of evaluation subcommutativity (axiom 3.3). Because γ-
confluence involves the complicated γ-development machinery, we prefer our
simpler requirement. Third, our proof diagrams for lemmas C.1, C.3, C.4, C.5,
and C.6 are similar to some in [12] but were developed completely independently.
Our proof diagrams are simpler because we do not use γ-developments and we
have completely separated the treatment of marks for developments (section 6).

The next most closely related work is an unpublished technical report by
Odersky [17] that presents conditions for proving that a proposed transformation
∼ is an observational equivalence. This assumes ∼ is contextually closed. One
of Odersky’s conditions is that ∼ is locally stable, defined by diagram (2) in [17,
p. 2]:

t1 t2

t3 t4

∼1 ∼1'

The relation ∼1 is parallel similarity, the use of ∼ simultaneously at many dif-
ferent (presumably non-overlapping) positions. Another of Odersky’s conditions
is that ∼ preserves answers, i.e., t1 ∼ t2 ⇒ (is-nf(

�
, t2) ⇒ t1 −−� t2). There are

additional definitions and conditions that we do not have space to discuss.
Odersky’s approach is related to ours as follows. Where Odersky uses −−→

(normal rewriting) and ' (observational equivalence), we would use −
�
−→ and −

�
−�.

15

Odersky’s gives two versions of his approach. In the one in the diagram he takes
convertibility with a set of answers (

�
-normal forms in our setting) in the entire

rewriting system to be the definition of meaning preservation and then asks
whether additional rewrite rules can be safely added. In this case, the diagram
must be proven for all rewrite steps. In the other, he takes an evaluation strategy
like we do. In this case, using ' on the bottom edge seems more general, but it
also seems that in practice this diagram edge would be completed with

�
steps.

Where Odersky uses ∼1, we would typically use −S, �−−� and a combination of one
of the well-behavedness conditions of section 5 and the marks for developments
of section 6. Odersky’s use of parallel (simultaneous) rewriting corresponds to
our use of a termination property.

The key distinctions between Odersky’s approach and ours are as follows.
Many details of Odersky’s approach are entangled in syntactic notions for ex-
tensions of the λ-calculus while our approach is abstract. Odersky does not
provide elementary diagrams where each given edge is a single use of a rewrite
rule; it seems that one must work with full parallel similarity. Odersky appears to
assume that standardization is already proven while our approach proves what-
ever standardization is needed and can also work without it. Odersky’s approach
requires a notion of “preserving evaluation contexts” which we do not fully un-
derstand but which we are fairly sure one of our intended applications does not
satisfy. Odersky can not distinguish terms that go wrong from those that either
diverge or halt normally; thus his framework does not verify that rewriting can
not switch between non-wrong and wrong.

9 Future Work

The generalizations of our AES framework and lift/project diagrams were de-
veloped to handle λ:=,letrec, a calculus we are developing for reasoning about
call-by-value higher-order programs with mutable reference cells and mutually
recursive definitions (i.e., letrec). Evaluation of assignment statements can intro-
duce cycles in the store, so evaluation results may need letrec even if the initial
program was letrec-free. A specific evaluation strategy is given for the λ:=,letrec

calculus to define the meaning of programs. Calculi for assignments have been
done before (e.g., [7]), but λ:=,letrec also includes improvements like very simple
evaluation contexts as well as rules for letrec in the style of the work of Ariola
and Blom ([1]). The only previously known methods for reasoning about the
correctness of Ariola/Blom style letrec rules use very difficult methods.

The development of λ:=,letrec is nearing completion. Because λ:=,letrec is non-
confluent (due to using rules for letrec that Ariola and Klop [3] proved non-
confluent), we were using the lift & project method to prove meaning preser-
vation. It does not have finite developments, but has a number of rule subsets
whose associated rewrite step sets satisfy the BE property. The last barrier to
completing the proof of meaning preservation was several critical pairs of a rule
named [lift] (name unrelated to the Lift diagram from definition 4.1). One par-

16

ticularly irritating critical pair is only completable as follows:

t1 t3

t5

t2 t4

�
,[lift]

�
,[lift]

�
,[lift]

�
,[lift]

�
,[lift]

Unfortunately, this breaks standardization, so the lift & project proof method
can not be used. We considered changing the definition of λ:=,letrec (which would
be for probably the 1000th time), but felt that the changes to “fix” this critical
pair would probably break something else. Also, the rules of λ:=,letrec are obviously
meaning preserving, so we felt that rather than forcing λ:=,letrec through awkward
contortions to fit some weak proof method, it was the proof method that should
be fixed. Fortunately, the WB\Std property can be proven for the steps of the
[lift] rule, so we expect to complete the development of λ:=,letrec soon.

After λ:=,letrec is completed, we want to apply our proof methods to equational
reasoning for assembly language and maybe also to explicit substitutions.

References

[1] Z. M. Ariola, S. Blom. Skew confluence and the lambda calculus with letrec. Ann. Pure Appl.
Logic, 117(1–3), 2002.
[2] Z. M. Ariola, M. Felleisen. The call-by-need lambda calculus. J. Funct. Programming, 3(7),
1997.
[3] Z. M. Ariola, J. W. Klop. Lambda calculus with explicit recursion. Inform. & Comput., 139,
1997.
[4] Programming Languages & Systems, 9th European Symp. Programming, vol. 1782 of LNCS.
Springer-Verlag, 2000.
[5] M. Felleisen, D. Friedman. Control operators, the SECD-machine, and the λ-calculus. In
M. Wirsing, ed., Formal Description of Programming Concepts — III. North-Holland, 1986.
[6] M. Felleisen, D. P. Friedman. A syntactic theory of sequential state. Theoret. Comput. Sci.,
69(3), 1989.
[7] M. Felleisen, R. Hieb. The revised report on the syntactic theories of sequential control and
state. Theoret. Comput. Sci., 102, 1992.
[8] K. Fisher, J. Reppy, J. G. Riecke. A calculus for compiling and linking classes. In ESOP ’00
[4].
[9] G. Gonthier, J.-J. Lévy, P.-A. Melliès. An abstract standardisation theorem. In Proc. 7th Ann.
IEEE Symp. Logic in Comput. Sci., 1992.
[10] E. Machkasova. Techniques for proving observational equivalence. ASCII notes that later turned
into [11]. Not sure about year, 1998.
[11] E. Machkasova, F. A. Turbak. A calculus for link-time compilation. In ESOP ’00 [4].
[12] E. L. Machkasova. Computational Soundness of Non-Confluent Calculi with Applications to
Modules and Linking. PhD thesis, Boston Univ., 2002.
[13] J. Maraist, M. Odersky, P. Wadler. The call-by-need lambda calculus. J. Funct. Programming,
8(3), 1998.
[14] P.-A. Melliès. Axiomatic Rewriting Theory IV: A diagrammatic standardization theorem. Sub-
mitted, 2001.
[15] R. Muller. M-LISP: A representation-independent dialect of LISP with reduction semantics.
ACM Trans. on Prog. Langs. & Systs., 14(4), 1992.
[16] M. H. A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of
Math., 43(2), 1942.
[17] M. Odersky. A syntactic method for proving observational equivalences. Research Report
YALEU/DCS/RR-964, Yale Univ., Dept. of Comp. Science, 1993.
[18] G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoret. Comput. Sci.,
1, 1975.
[19] W. Taha. A sound reduction semantics for untyped CBN multi-stage computation: Or, the the-
ory of MetaML is non-trivial. In Proceedings of the 2000 ACM SIGPLAN Workshop on Evaluation
and Semantics-Based Program Manipulation (PEPM-00), N.Y., 2000. ACM Press.

17

A Proofs for Section 3

Lemma A.1 (Multi-Step Subcommutativity).
SubComm(S) ⇔ ∀i, j ≥ 0. SubComm(S, i, j).

Proof. The ⇐ direction is immediate, so SubComm(S) ⇒ SubComm(S, i, j) is

proven here for i, j ≥ 0 by induction on i× j. Suppose SubComm(S) and t2 ←
S,i−−

t1 −
S,j−→ t3 and it will be proven that there exists t4 such that t2 −

S,≤j−−−→ t4 ←
S,≤i−−− t3.

By cases on i and j.

1. Suppose i = 0 or j = 0. W/o.l.o.g., consider only the case i = 0. So t1 = t2.
Let t4 = t3. Done.

2. Suppose i = 1 and j = 1. By SubComm(S).
3. Suppose i > 1 or j > 1. W/o.l.o.g., consider only the case j > 1. By diagram:

t1 t5 t3

IH IH

t2 t6 t4

S

S,i

S,j−1

S,≤1 S,≤j−1

S,

i′,
≤i

S,≤i′

Lemma A.2 (Multi-Step Evaluation Subcommutativity).
SubComm(

�
, i, j) for all i, j ≥ 0.

Proof. By axiom 3.3 and lemma A.1.

Lemma A.3 (Confluence and Unique Normal Forms for Evaluation).

1. Conf(
�
).

2. If t1 �

�
,nf−−− t −

�
,nf−−� t1, then t1 = t2.

Proof.

1. Immediate from lemma A.2.
2. Suppose t1 �

�
,nf−−− t −

�
,nf−−� t2. By lemma A.3(1), there exists t3 such that

t1 −
�
−� t3 �

�
−− t2. Because is-nf(

�
, t1) and is-nf(

�
, t2), it holds that t1 = t3 = t2.

Done. (This is a standard result.)

Proof of Lemma 3.5 (Non-Evaluation Steps on Eval-Normal Forms).

First, it is proven that t ←
�

,s−−→ t′ and is-nf(
�
, t) imply t ←MP,s−−−→ t′ and is-nf(

�
, t′).

Suppose t ←
�

,s−−→ t′ and is-nf(
�
, t). By Axiom 3.4(3), it holds that is-nf(

�
, t′). By

Axiom 3.4(4), it holds that result(t) = result(t′). Hence, s ∈ MP and thus t←MP,s−−−→

t′. The lemma claim then follows by induction on k such that t1 ←
�

,k−−→ t2.

18

B Proofs for Section 4

Proof of Lemma 4.2 (Relationships between Lift and Project Properties).

1. Suppose s ∈
�
. It will now be proven that s ∈ Lift and s ∈ Proj.

Suppose t1 −
s−→ t2 −

�
−� t3. Then for t4 = t3 it holds that t1 −

�
−� t4 −

�
−� t3. Thus,

s ∈ Lift.
Suppose t3 ←

s−− t1 −
�
−� t2. By lemma A.2, there exists t4 such that t3 −

�
−� t4 �

�
−−

t2. Then for t5 = t4 it holds that t3 −
�
−� t4 �

�
−− t5 �

�
−− t2. Thus, s ∈ Proj.

2. Suppose SLift(S) and s ∈ S. If s ∈
�
, then s ∈ Lift by lemma 4.2(1). Suppose

s ∈ � . Suppose t1 −
s−→ t2 −

�
−� t3. By SLift(S) and s ∈ S, there exists t4 such

that t1 −
�
−� t4 −

�
,S−−� t3. This implies t1 −

�
−� t4 −

�
−� t3. Thus, s ∈ Lift.

3. Similar to the proof of lemma 4.2(2).
4. Similar to the proof of lemma 4.2(2).

5. Suppose s ∈ Lift. Suppose t1 −
s−→ t2 −

�
−� t3. Because s ∈ Lift, there exists t4

such that t1 −
�
−� t4 −

�
−� t3. Then for t5 = t3 it holds that t1 −

�
−� t4 −

�
−� t5 �

�
−− t3.

Thus, s ∈ Lift′.
6. Consider this 5-term 5-step AES where all results are the same:

t1 t2

t3 t4 t5

�
,s1�

,s2

�
,s3

�
,s4

�
,s5

Then Lift′ = � and Lift′ \ Lift = {s2}.

7. Suppose s ∈ Lift′ ∩ Proj. Suppose t2 ←
s−→ t1 −

�
−� t3. By cases on how t1 ←

s−→ t2
is true.
(a) Suppose t1 −

s−→ t2. By s ∈ Proj there exist t4 and t5 such that t2 −
�
−� t4 �

�
−−

t5 �

�
−− t3. So t4 �

�
−� t5. Thus, s ∈ LP.

(b) Suppose t1 ←
s−− t2. By s ∈ Lift′ there exist t4 and t5 such that t2 −

�
−� t4 −

�
−�

t5 �

�
−− t3. So t4 �

�
−� t5. Thus, s ∈ LP.

8. Consider this 4-term 4-step AES where all results are the same:

t1 t2

t3 t4

�
,s1�

,s2

�
,s3�

,s4

Then LP = � and LP \ Lift′ = LP \ Proj = {s2}.

9. Suppose s ∈ LP. Suppose t2 ←
s−→ t1 −

�
,nf−−� t3. By s ∈ LP there exist t4 and t5

such that t2 −
�
−� t4 �

�
−� t5 �

�
−− t3. Because is-nf(

�
, t3), it holds that t3 = t5. So

t2 −
�
−� t4 �

�
−� t3. Thus, s ∈ LPT.

10. Consider this 3-term 4-step AES:

t1

t2 t3

�
,s1 �

,s2

�
,s3

�
,s4

Then LPT = � , and LPT \ LP = {s1}.

19

Proof of Lemma 4.4 (Lift Equivalent to Standardization) part 1.

(⇒): Suppose S ⊆ Lift and Std(S ∪
�
) will be proven. Suppose t1 −

S ∪
�

−−−� t2 and

it will be proven that there exists t3 such that t1 −
�
−� t3 −

�
−� t2. By induction

on k such that t1 −
S ∪

�
,k−−−−→ t2. By cases on k.

1. Case k = 0: Let t3 = t1 = t2. Then t1 −
�
−� t3 −

�
−� t2. Done.

2. Case k ≥ 1: By lemma 4.2(1),
�
⊆ Lift, so S ∪

�
⊆ Lift. By diagram:

t1 t′ t2

t3 t′′

S ∪
�

S ∪
�
,k−1

�
�

S ∪
�
⊆Lift

� �IH

(⇐): Suppose Std(S ∪
�
). Suppose t1 −

S−→ t2 −
�
−� t3. Thus, t1 −

S ∪
�

−−−� t3. By Std(S ∪�
), there exists t4 such that t1 −

�
−� t4 −

�
−� t3. Thus, S ⊆ Lift.

20

C Proofs for Section 5

Lemma C.1 (Weak Lift Many-to-1). If WL1(S,S ′), then:

t1 t4

t2 t3

�
,S �

,S′

�
,S′

S

Proof. By induction on k such that t1 −
�

,S,k−−−→ t2. By cases on k.

– Case k = 0. Then t1 = t2. Let t4 = t3. Done.

– Case k > 0. By diagram:
t1 t4

WL1(S,S ′)

t t′

�
,S

�
,S′

�
,S′

S

IH

t2 t3

�
,S �

,S′

S

Lemma C.2 (S-Standardization). If WL1(S,S) and BE(S), then Std(S,S).

Proof. Let evalStepBound(t,S) = max{ k ∃t′. t −N
∗
EN

∗(S),k−−−−−−−→ t′ }. Note that evalStepBound(t,S)
is only defined when a bound exists. If BE(S), then evalStepBound(t,S) is defined
for every term t.

Suppose t1 −
S−� t2 and it will be proven that there exists t3 such that t1 −

�
,S−−�

t3 −
�

,S−−� t2. Let k = evalStepBound(t1,S) (this is well defined because BE(S)).

By induction on k. By cases on whether t1 −
�

,S−−� t2.

1. Suppose t1 −
�

,S−−� t2. Then let t3 = t1. Done.

2. Suppose t1 −
�

,S−−� t2 does not hold. The fact that t1 −
S−� t2 holds must depend

on using at least one
�

step. By diagram, observing that evalStepBound(t6,S) <

k:

t1 t6 t3

WL1(S,S),
lem. C.1

IH

t4 t5 t2

�
,S

�
,S S

�
,S

�
,S

�
,SS

Lemma C.3 (Strong Lift Many-to-1). If WL1(S, �) and Std(S,S), then

t1 t4

t2 t3

�
,S �

�
,≥1 �

,S

21

Proof. By diagram:

t1 t5

lem. C.1,
WL1(S, �)

Std(S,S) t4

t2 t3

� �
,S

�
,S S

�
,S

�

Lemma C.4 (Strong Lift). If WL1(S, �) and Std(S,S), then SLift(S).

Proof. Suppose t1 −
�

,S−−� t2 −
�
−� t3 and prove there exists t4 such that t1 −

�
−� t4 −

�
,S−−�

t3. By induction on k such that t2 −
�
,k−→ t3. By cases on k.

– Suppose k = 0. Let t4 = t1. Done.
– Suppose k ≥ 1. By diagram:

t1 t′ t4

WL1(S, �),
Std(S,S),
lem. C.3

IH

t2 t t3

�
,S

�

�

�
,S

�

�
,k−1

�
,S

Lemma C.5 (Strong Project Many-to-1). If WP1(S) and Std(S,S), then

t1 t2 t4

t3 t5

�
�

,S

�
,S �

,S�

Proof. By induction on k where t1 −
�

,S,k−−−→ t3. By cases on k.

1. Suppose k = 0. Then t1 = t3. Let t2 = t4 = t5. Done.
2. Suppose k ≥ 1. By diagram:

t1 t2

WP1(S)

t7 t6 Std(S,S) t4

IH

t3 t5

�
�

,S S�

�
,S,k−1 S�

�
,S

�
,S

Lemma C.6 (Strong Project). If WP1(S) and Std(S,S), then SProj(S).

Proof. Suppose t3 �

�
,S−−− t1 −

�
−� t2 and prove there exist t4 and t5 such that

t3 −
�
−� t5 �

�
,S−−� t4 �

�
−− t2. By induction on k where t1 −

�
,k−→ t2. By cases on k.

1. Suppose k = 0. Then t2 = t1. Let t4 = t2 and let t5 = t3. Thus, t3 −
�
−� t5 �

�
,S−−−

t4 �

�
−− t2. Done.

22

2. Suppose k ≥ 1. By diagram:

t1 • t2

lemma A.2

WP1(S),
Std(S,S),
lemma C.5

t7 t8

IH t4

t3 • t5

� �
,k−1

�
,S

�
,S

�

�
,S

�
,≤k−1

�

�

�
,S�

Lemma C.7 (Local Confluence & SN Imply Confluence (Newman [16])).
If LConf(S) and SN(S), then Conf(S).

Lemma C.8 (S-Standardization to Normal Form). If Conf(S), WN(S),
and NE(S), then Std-nf(S).

Proof. Suppose t1 −
S,nf−−� t2. Because WN(S), it holds that WN(

�
∩ S). So there

exists t3 such that t1 −
�
,S,nf−−−� t3. Because t3 �

S−� t2, by Conf(S) there exists t4

such that t3 −
S−� t4 �

S−− t2. Because is-nf(S, t2), it holds that t4 = t2. So t3 −
S,nf−−� t2.

Because is-nf(
�
∩ S, t3) and is-nf(S, t2), by induction on k such that t3 −

S,k−−� t2

and using NE(S), it holds that t3 −
�

,S,nf−−−� t2. Thus, there exists t3 such that

t1 −
�
,S,nf−−−� t3 −

�
,S,nf−−−� t2.

Lemma C.9 (Weak Lift/Project Many-to-1). If WLP1(S), then:

t1 t4

t2 t3

�
,S

�
S�

Proof. By induction using a proof resembling the proofs of lemmas C.1 and C.4.

Lemma C.10 (Strong Lift/Project Many-to-1). If Conf(S), WN(S), Std-nf(S),
and WLP1(S), then:

t1 t3 t5

t2 t4

�
,S

� �
�

,S�

Proof. By the following diagram, where t7 −
S,nf−−� t8 because WN(S):

t1 t3 t5

Std-nf(S)

WLP1(S),
lem. C.9

Conf(S) t7 t8

Std-nf(S)

t2 t6 t4

�
,S

�

S

�
,S,nf

� �
,S,nf

S

S

S,nf

�
,S,nf

�
,S,nf

23

Lemma C.11 (Strong Lift/Project). If Conf(S), WN(S), Std-nf(S), and
WLP1(S), then SLP(S).

Proof. By induction using lemma C.10. The proof is nearly the same as that for
lemma C.6.

24

D Proofs for Section 6

Lemma D.1 (Marking Properties).

1. t1 t2

t3 t4

rename(m,m′)

�
rename(m,m′)�

2. t1 t2

t3 t4

rename(m,m′)

�
rename(m,m′)�

3. t1 t2

t3 t4

�
rename(m,m′) � rename(m,m′)

4. If ¬markOccurs(m, t), m 6= noMark, and t −−� t′, then ¬markOccurs(m, t′).

5. If rename(m, m′)(t1) = t2, then is-nf(
�
, t1) iff is-nf(

�
, t2).

Proof. Using axiom 6.1, by induction on the length of rewrite sequences where
needed.

Proof of Theorem 6.4 (Lift/Project when Terminating via Marks). Suppose
that S∩ � ⊆ LPT and NM(S) and S ⊆ LPT will be proven. Suppose that s ∈ S. If

s ∈
�
, then s ∈ LPT by lemma 4.2. Suppose s ∈ � . Suppose that t2 ←

s−→ t1 −
�
,nf−−� t3

and it will be proven that there exists t4 such that t2 −
�
−� t4 �

�
−� t3. By cases on

whether t1 −
s−→ t2 or t2 −

s−→ t1.

1. Case t2 −
s−→ t1. Let m 6= noMark be a mark such that ¬markOccurs(m, t2)

(this exists by axiom 6.1(5)). By diagram:

t2 t4

lem. D.1(1)

NM(S) t6 t5 lem. D.1(2)

S ∩ � ⊆ LPT

t1 t3 t7

�

�
,s

ren
a
m
e(m

,m
′

)

� ,

� ,S

�
re
na

m
e(

m
,m

′)

�

�

�
,nf rename(m,m′)

Because t2 −−� t3, ¬markOccurs(m, t2), and m 6= noMark, by lemma D.1(4)
it holds that ¬markOccurs(m, t3). Then rename(m, m′)(t3) = t7 = t3 by

axiom 6.1(3). Thus, t2 −
�
−� t4 �

�
−� t3. Thus, s ∈ LPT.

25

2. Case t1 −
s−→ t2. Let m 6= noMark be a mark such that ¬markOccurs(m, t1)

(this exists by axiom 6.1(5)). By diagram:

t1 t3

lem. D.1(3),
lem. D.1(5)

NM(S) t6 t7 lem. D.1(2)

S ∩ � ⊆ LPT

t2 t4 t7

�
,nf

�
,s

ren
a
m
e(m

,m
′
)

�
,

�
,S

�
,nf

re
na

m
e(

m
,m

′)

�

�

�
rename(m,m′)

Because t1 −−� t4, ¬markOccurs(m, t1), and m 6= noMark, by lemma D.1(4)
it holds that ¬markOccurs(m, t4). Then (rename(m, m′))(t4) = t7 = t4 by

axiom 6.1(3). Thus, t2 −
�
−� t4 �

�
−� t3. Thus, s ∈ LPT.

26

