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The A-calculus with de Bruijn indices assembles eachklass ofA-terms in a unique term, using
indices instead of variable names. Intersection typesigeofinitary type polymorphism and can
characterise normalisableterms through the property that a term is normalisable df anly if it

is typeable. To be closer to computations and to simplifyftimmalisation of the atomic operations
involved in 3-contractions, several calculi of explicit substitutioens developed mostly with de
Bruijn indices. Versions of explicit substitutions calcwithout types and with simple type systems
are well investigated in contrast to versions with more etate type systems such as intersection
types. In a previous work, we introduced a de Bruijn versibthe A-calculus with an intersection
type system and proved that it preserves subject reduaidiasic property of type systems. In
this paper a version with de Bruijn indices of an intersettigpe system originally introduced to
characterise principal typings fBrnormal forms is presented. We present the charactenisatibis
new system and the corresponding versions for the typeanéerand the reconstruction of normal
forms from principal typings algorithms. We briefly discube failure of the subject reduction
property and some possible solutions for it.

1 Introduction

The A-calculus a la de Bruijn_[6] was introduced by the Dutch neatlatician N.G. de Bruijn in the
context of the project Automath [24] and has been adopteddweral calculi of explicit substitutions
ever since (e.g.[[7,/1, 18]). Term variables in thecalculus a la de Bruijn are represented by indices
instead of names, assembling eachklass of terms in tha -calculus [5] in a unique term with de Bruijn
indices, thus turning it moramachine-friendly” than its counterpart. Calculi with de Bruijn indices have
been investigated for both type free and simply typed vassi¢tdiowever, to the best of our knowledge,
apart from [19], there is no work on using de Bruijn indiceshamore elaborate type systems such as
intersection type systems.

Intersection types were introduced to provide a charaeon of the strongly normalising-terms
[10,/11,25]. In programming, the intersection type disoplis of interest becauseterms correspond-
ing to correct programs not typeable in the standard Cupg Bssignment systeim [13], or in extensions
allowing some sort of polymorphism as in ML [23], are typeahith intersection types. 10 [31] an inter-
section type system for thie-calculus with de Bruijn indices was introduced, based @ntyipe system
given in [16], and proved to satisfy the subject reductiooperty (SR for short); that is the property of
preserving types undét-reduction: whenevdr - M : g andM B-reduces intdN,T =N : o.
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A relevant problem in type theory is whether the system haipal typings (PT for short), which
means that for any typeable teivh there is a type judgememt M : T representing all possible typ-
ings (I, 1") of M in this system. Expansion variables are an important psof@scalculating PT([8].
Since [17] shows that a typing system similar to thaf of [3bl¥d become incomplete if extended with
expansion variables, we did not study the PT property forsifstem of[[31]. Instead, we consider in
this paper a restricted intersection type system for whiehavre able to establish the PT property for
B-normal forms B-nf for short). The concept of most generatyping is usually linked to syntactic
operations and they vary from system to system. For exarnimeyperations to obtain one typing from
another in simply typed systems aseakeningandtype substitutionsmapping type variables to types,
while in an intersection type systeaxpansionis performed to obtain intersection types replicating a
simple type through some specific rules. [In|[32] J. Wellsodtrced a system-independent definition of
PT and proved that it was the correct generalisation of wallkn system-dependent definitions such as
Hindley's PT for simple type systems [15]. The notion of gipal typings has been studied for some
intersection type systems ([12], [2€], [27]) [3], 120]) aimd12,(26] it was proved that PT for some term’s
B-nf is principal for the term itself. Partial PT algorithm®we proposed in [27, 20]. In][8] S. Carlier and
Wells presented the exact correspondence between thericBemechanism for their intersection type
system and thg-reduction. They introduce thexpansion variablesintegrating expansion operations
into the type system (see [9]).

We present in this paper a de Bruijn version of the intereadiype system originally introduced in
[28], with the purpose of characterising the syntacticatre of PT for3-nfs. E. Sayag and M. Mauny
intended to develop a system where, similarly to simply tdypgstems, the definition of PT only depends
on type substitutions and, as a consequence, their typstgrayin [28] does not have SR. Although SR
is the most basic property and should be satisfied by anydygystem, the system infers types to all
B-nfs and, because it is a restriction of more complex and statlied systems, is a reasonable way to
characterise PT for intersection type systems. In factsylséem in[[28] is a proper restriction of some
systems presented in/[3].

Below, we give some definitions and properties for the urdypealculus with de Bruijn indices, as
in [31]. We introduce the type system in Secfidn 2, where sproperties are stated and counterexamples
for some other properties, such as SR, are presented. Taentfygoence algorithm introduced here, its
soundness and completeness are at the end of Settion 2. dtaetehisation of PT fop-nfs and the
reconstruction algorithm are presented in Sedtion 3. Blgbrithms introduced here are similar to the
ones presented in [28].

1.1 A-calculus with de Bruijn indices
Definition 1. The set of termfgg of the Agg-calculus, the A -calculus with de Bruijn indices, is defined
inductively by: MN € Agg::=n|((MN))|A.M where ne N*=N~\{0}.
Definition 2. FI(M), theset of free indicesof M € Agg, is defined by:
FI(n={n}  FI(MiMp))=FI(M)UFI(Mz)  FI(A.M)={n=1,vneFI(M),n>1}

The free indices correspond to the notion of free varialidhe A -calculus with names, hendé is
called closed whef| (M) = 0. The greatest value &fl (M) is denoted bysupM). In [31] we give the
formal definitions of those concepts. Following, a lemmaisgaproperties abouwsuprelated with the
structure of terms.

Lemma 1([31]). 1. suf(M1Mz)) =maxsupgMi),supMy)).
2. If sugM) =0, then supA .M)=0. Otherwise, sup\ .M)=supgM) — 1.
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Terms like((...((M1 M2) M3)...) Mp) are written agyM; M, --- Mp), as usual. The-contraction
definition in this notation needs a mechanism which deteuisipdates free indices of terms. Intuitively,
thelift of M, denoted byM™, corresponds to an increment by 1 of all free indices ocegrin M. Thus,
we are able to present the definition of the substitution bgg8l-contractions, similarly ta [2].

Definition 3. Let mn € N*. The-substitution for free occurrences of im M € Ay4g by term N, denoted
as{n/N}M, is defined inductively by

m—1ifm>n
1. {n/N}(M1 M2) = ({n/N}M1 {n/N}M2z) 3. {Q/N}m:{ N, ifm=n
2.{n/N}(A.M1) =A.{n+1/N*}M, m, ifm<n

Observe that in item 2 of Definitidd 3, the lift operator is dise avoid captures of free indiceshih We
present thg8-contraction as defined ial[2].
Definition 4. B-contraction in the Agg-calculus is defined bfA MN)— 3 {1 /N}M.

Notice that item 3 in Definitiol]3 is the mechanism which ddes substitution and updates the free
indices inM as consequence of the lead abstractor elimination. Srheduction is defined to be the
A-compatible closure of thg-contraction defined above. A term isffnormal form, B3-nf for short,
if there is no possiblg-reduction.
Lemma 2. A term Ne Agg is aB-nfiff N is one of the following :

- N = n, for any ne N*.

- N=A.Nand N is aB-nf.

- N=nNz---Np, for some nre N* andv1<j<m, N, is a 3-nf.

Proof. Necessityproof is straightforward fron-nf definition. Sufficiencyproof is by induction on the
structure ofN € Agg. O

2 The type system and properties

Definition 5. 1. Let be a denumerably infiniteet of type variablesand leta, 8 range overs .

2. The set7 of restricted intersection typesis defined by:
1,0 T :=d|\U—T UEU :=w|UNU|T
Types are quotiented by takingto be commutative, associative and to haveas the neutral
element.
3. Contextsare ordered lists of & %, defined byT ::= nil |u.l"
i denotes the i-th element bfand |I"| denotes the length of.
w" denotes the sequencew. - -- .w of length n and letw®.Ir =T .
The extension of to contexts is done by taking nil as the neutral element@ad’) A (uz.A) =
(upAup).(FAA). Hence,\ is commutative and associative on contexts.

4. Type substitution maps type variables to types. Given a type substitutiow’ s» .7, the cor-
responding extensions for elementsZnhand for contexts are straightforward. The domain of a
substitution s is defined by Dds)={a |s(a) # o} and let[a /] denote the substitution s such
that Domn(s)={a}. For two substitutions;sand $ with disjoint domains, let;s+ s, be defined by

s(a) ifaeDom(s),forie {1,2}
(s1+s2)(a) { a if a ¢ Dom(s;) UDom(sp)
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5. TV(u) is theset of type variables occurringin u € 7. Extension to contexts is straightforward.
The set7 defined here is equivalent to the one defined in [28].

Lemma3. 1. Ifue%,thenu=woru=A} ;7 wheren>0andvV1<i<n,,€.J.

2. ftreJ, thent=a, 1=w—0oort=A;i—0,wheren>0ando,1y,...,Th € J.

Proof. 1. By induction orue % .
2. By induction onr € 7 and LemmalB]1. O

Definition 6. 1. The typing rules for system SM are given as follows:

var M:(u.rlrtrr1)
1:(T.nil 1) AM:(
M:

ETES

n:(Ck1) vam (nil - 1) L

n+1:(w.l 1) AM:(nilFw—1)
M1: Tk w—T) Mz:(AF o) N
(Mle):<F/\AFr> €

Mii(TEAL o —T)  M2i(AlFo1) ... Mo (A" ay)

(My M) s (T ADALA - AATF T e

2. System SMs obtained from system SM, replacing rutr by rule

_ >0
1:(0p— = Oh—anlk-o— - — oh—a) (n=20) var

Type judgements will be of the foriv : (I' -5 ), meaning that ternM has typer in systemS
providedl” for FI(M) . Briefly, M has typer with I" in Sor (I', 1) is a typing ofM in S. TheSis omitted
whenever its is clear to which system we are referring to.

Note thatSM s a proper extension @M, hence properties stated for the syst8M are also true
for the systenSM. The following lemma states th&Mis relevant in the sense of [14].

Lemma4. If M : (I Fgyu T), then|l|=supM) andV1<i<|[|, I # wiffi e FI(M).
Proof. By induction on the derivatioM : (I" - u).

o If a0 then||=1=sup(1). Note thatFl(1)={1} andlM =T.

n:(rt) .
N1 (@ T then by IH one hagl'| =supgn)=n, M #wandvli<i<n l=w
Thus, |w.lN =1+ =n+1=supgn+l), (W1 =Th# w, (wW.N)1=wandV1<i<n,
(w.Nin=Ti=w.
M:(u.l - o) . e
. I = <i< — )i
AM T us o) By IH, [ul'| =supgM) andv0 <i <supM)—1, (ul)i1 # wiff i+1le
FI(M). Hence,supgM) = 1+|I'| > 0 and, by Lemm&lll2supA.M) = sugM)—1 = |I|. By
Definition[2,v1 <i <supA.M), ie FI(A.M) iff i+1€FI(M), thus,(ul)i =T # wiff ie
FI(A.M).
M:(nil - o) . B B
AMIF 00 By IH one hagnil|=sugM)=0. Thus, by LemmalllZupgA.M) =
supgM)=nil|. Note that~1 (M)=FI(A.M)=0.

o Let

o Let
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Let M1'<r(:/lf’M_;)T:><MA'V':'T<>M 9) By IH, |F|=supMs), ¥1<i < || one has; # wiff i e
FI(My), |A] = supgM2) andV1 < j < |A| one hashj # wiff j € FI(Mz). By Lemmall]l one
hassup((M1 M2)) = maxsupgMy),supMz)) =max|I'|,|4]) = | AA|. Let 1<1<|F AA| and

suppose w.l.0.g. that< ||, |A|. Thus,(IT AA) =T AL # wiff [ # w or A # wiff L e FI (Mq) or

L€ FI(Mp)iff L e FI(M1) UF1(Mg2) =FI1((My Mp)).

L MM AR 0k—T)  Mai(Alk o) ... Mo (A" ay)
ot (M1 M) (T ADIA - ADDE T)

| one had; # wiff i € FI1(My) andv1<k<n, |A¥| = supM,) andv1< j <|AX| one hashk

wiff j€FI(Mp). LetA' = AA--- AA". Thus,|A'| = supM,) andV1< j < |4, A # wiff | €

FI(M,). The proof is analogous to the one above. O

. By IH, [I| =supM;), V1<i<

Note that, by LemmAl4 above, syst&M is not only relevant but there is a strict relation between
the free indices of terms and the length of contexts in thgings. Following, a generation lemma is
presented for typings i8Mand some specific fd8M

Lemma 5(Generation) 1. If n: (I sy T), thenlp=T.

2.
3.

If n:(I" Fey T), thent =01 — --- — ok—a for k> 0.

If A.M: (nil Fgy 1), then eithert =w— o and M: (nil - o) or T=A ;0,— 0, n> 0, and
M: (AL, 6:.nil sy 0) for someo, 0y, ...,0n0€ 7.

4. IfAM: (T Fgy 1) and|l| > 0, thent=u— o for some & % ando € .7, where M (u.l' kg O).

If NMy1---Mp: ([ bgy T), thenl = (w™.01 = -+ = Op—T.NIN ATIA--AT™, V1<i<m,
Mi: (M Fgy i) andT = Om1 — -+ — Omik— O

Proof. 1. By induction on the derivation: (I' ¢, 7). Note that(c.l")n1 = .

2.

By induction on the derivation: (" g T).

3. By case analysis on the derivatidM : (nil ¢y, 7).
4.
5. By induction om.

By case analysis on the derivatidtM : (I" ¢, T), for || > 0.

If m= 0, then, by LemmalBl2r = 0, — --- — ok — a. Thus, by Lemmagl4 ard(%.T, =
™. 1.nil.
If m=m + 1, then by case analysis the last step of the derivation is

Mz My (T AL T = T) Muggat (AT 1) o Mg (AT 1)
(ﬂ My -+ Mpy MM+1)Z<F/\A1/\'-'/\AI F T>

By IH, F=(w".01 — - = Oy — (A|_y Ty = T).nil) AT A AT™, VI<i <, My (T by 07)
and /\Ij:]_Tj —T=0ms1 — -+ — Omsk— a . Therefore,t = Oyyo — - = omk— d, =1 and
T1 = Ons1. Hence, taking ™+ = Al and gyyy.4 = 11, the result holds. O

Following, we will give counterexamples to show that neithbject expansion nor reduction holds.

Example 1. In order to have the subject expansion property, we needigeghe statement: {f1 /N}M:
(T'e1)then((AMN)):(lT'-1). Let M=A.1land N= 3, hence{1/3}A.1=A.1. We have that, by
generation lemmas\.1: (nil - a —a). Thus,A.A.1:(nil - w—a—a) and 3: (w.c.B.nil F B), then
AA.13):{wwp.nlF-a—a).
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For subject reduction, we need the statemen{{AfM N)): (I - 1) then{1/N}M: (I - 1). Note
that if we takeM andN as in the example above, we have the same problem as befarethatother
way round. In other words, we have a restriction on the oalggontext after thg-reduction, since we
loose the typing information regardimg= 3.

M: (I w—T)
(MN): (1)

This approach was originally presented [in][29], but a newonoteplacing free index should be
introduced since we would not have the typing informationélh free indices occurring in a term. In
[29], and in [30], no notion is presented instead of the udeal variables, which is wrongly used to state
things that are not actually true.

The other way to achieve the desired properties is to thiokiethe meaning of the properties itself.
Since, by LemmBl4, the system is related to relevant loge[(54]), the notion of restriction of contexts
is an interesting way to talk about subject reduction. Thigept was presented in[16] for environments,
where environments expansion was also introduced for tke sisubject expansion. Note that this
approach is not sufficient to regain subject expansion fstesgSM, since in rule— it is required that
the term being applied is also typeable.

Even though, any3-nf is typeable with systen$M. We introduce the type inference algorithm
Infer for B-nfs, similarly to [28].

Definition 7 (Type inference algorithm)Let N be a3-nf:

One possible solution for those problems is to replace-reféy

Infer(N) =

Case N=n
let a be a fresh type variable
return (w"=L.q.nil,a)
Case N=A.N
let (",0) = Infer(N’)
if (I"=u.I')then
return (M ,u—0)
else
return (nil,w— o)
Case N=(nNz---Np)
let (M, 01) = Infer(Np)

(F™M Om) = Infer(Np)
o be a fresh type variable
return ((w™1.01 — -+ —= om—a.ni) ATIA--AT™ a)
Similarly to [28], the notion offresh type variabless used to prove completeness. The freshness of a
variable is to guarantee that each time some type variapieked up from it is a new one. Therefore,
two non overlapped calls tbnfer return pairs with disjoints sets of type variables. Belowuanig
example of how the algorithm is applied is presented.

Example 2. LetN=2(A.1) 1 A.(11). For Infer(N), the term N matches the third case, foe=r2.
The algorithm is then called recursively as follows

(F,o1) = Infer(A.1)
(r2,0,) = Infer(l
(r3,03) = Infer(A

)
(11))
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Below, we show how each call is treated by the algorithm.

The caselnfer(A.1) goes down recursively to obtaiimfer(1) = (a3.nil,a1) and then one has
that Infer(A.1) = (nil,a1 — aq).

The casdnfer(1) returns(a,.nil,a,). Note that we have to take a different type variable from the
one used in the previous case.

The casdnfer(A.(1 1)) goes down recursively to retudimfer(1) = (as.nil, as), for the subterm
1 on the right. For a fresh type variables, one has thatrs — as.nil A az.nil = (az3— a4) A az.nil.
Hence,Infer(1l 1) = ((az3— aa) Aas.nil,as). Finally, Infer(A.(1 1)) = (nil,(az3—as) Aaz — ay).

Now, lett = (a1 —a1) — a2 — ((a3— a4) A a3 — dq) — 05 for the fresh type variablers. One
has that(c.t) A nil A (az.nil) Anil = a,.7.nil. Therefore Infer(N) = (a2.7.nil,05).
Theorem 1(Soundness)If N is a3-nf andInfer(N) = (I',0), then N: (I' gy O).

Proof. By structural induction omN.

e If N= nthenInfer(n) = (wt.a.nil,a). By rule vaf, 1:(a.nil - a) and, by rule varn applied
n—1 times,n: (0™ .a.nil - a).

e LetN=A.N. If (I",0)=1Infer(N’) then, by IH one ha®\’: (I - o). Thus, if"=u.l' then
Infer(A.N')=(I',u— o) and, by rule—;, A.N": (I' - u— o), otherwise one haknfer(A.N')=
(nil,w— o) and, by rule—{, A.N": (nil - w— o).

e LetN = nN;---Np. If Vi<i<m, (I, ;) = Infer(N;) then, by IH,Vi<i<m, Ni: (I I g;). Let
A=w"=t gy — - — om—a.nil. HenceInfer(N) = (AATIA---AT™M a) for some fresh type
variablea. By rule vaf and by rule varm—1-times,n: (A+ 03 — --- — on—a) and, by rule
—e Mtimes,N: (AATIA - AT™E a). O

Note that, since the choice of the new type variables is netfixnfer is well defined up to the
name of type variables.
Corollary 1. If N is aB-nf then N is typeable in system SM
Theorem 2 (Completeness)If N : (' kg, o), N a B-nf, then for(I'",0’) = Infer(N) exists a type
substitution s such tha{E') =T and §0’) = 0.

Proof. By structural induction oiN

e LetN = n. If n:(I' F ) then, by Lemmasl4 aid5.I = w™=1.g.nil. One has thainfer(n) =
(w"™1.a.nil,a), then takes= [a/a].

e LetN = A.N"and suppose that.N": (I - o).
If ™' =nil, then by Lemma&l5I3 eithes = w— 7 andN": (nil - 1) or c=A_;0j — 1 andN":
(A"_;0j.nil = 7). The former, by IH,Infer(N’) = (I, 7’) and there exists s.t. s(1')=1 and
s(I"") =nil, thusl" =nil. Hence,Infer(A.N')=(nil,w—1') ands(w— 1') =s(w) = s(T') = 0.
The latter, by IHInfer(N")=(I"",7") and there existss.t. (1) =1 ands(I"") =AJ_, o;j.nil. Then
" =u.nil for s(u) = AJ_;0j, hencelnfer(A.N) = (nil,u—1') ands(u— 1) =s(u) = s(1') = 0.
Otherwise, by Lemm@B.4r=u— 1 andN’: (u.l' - 7). The proof is analogous to the one above.

e LetN=(nNg---Np). If nNz---Ny: (T - o) then, by LemmalBl5/1<i<m,N;:(I"F ;) s.t.T =
(wt.01 = - = Om—a.nil) ATIA - AT™ By IH, Y1<i<m, Infer(N;)=(I'",d/) and there
is as s.t.§(0/)=0; ands (I )=I". One has thalnfer(N)=((w"=2.0] — --- — g a.nil) A
FYA-A Fm,a), for some fresh type variablg. The domain of eack is compounded by the
type variables returned by each call bifer for the correspondindN;, consequently they are
disjoint. Thus, fors=[a /0] + s, + - - -+ sm the result holds. O
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Hence, the pair returned nfer for somef-nf N is a most general typing & is SM. Note that
these typings are unique up to renaming of type variables.

Corollary 2. If N is af-nf, then(I",0) = Infer(N) is a principal typing of N in SV

3 Characterisation of principal typings
Following, we give some characterisation of principal hgs for3-nfs, analogue ta [28]. To begin with,
we introduce proper subsets 6f and% containing the pairs returned hliyfer.
Definition 8. 1. Let. 7, InF and % be defined by:
p € Tci=d|INF— T O € INF = A | Uc— INF VE U= w|UNU| T
2. Let% be the set of contexis::= nil | v.I" such that « %4. Observe tha¥’ is closed unden.
Lemma 6. If Infer(N) = (', 0), N af-nf, then(l',0) € € x InE.

Proof. By structural induction om. O

Definition 9. Let Im(Infer) be defined as the set of palifs, o) = Infer(N) for someS-nf N.
Corollary 3. Im(Infer) C € x INE.

We use the usual notion gfositive and negative occurrences of type variables andfofal oc-
currencesfor elementsu € % (see [21]). For contexts, the positive and negative ocooge are the
respective occurrences in the types forming the contegtgisnces.

Definition 10. Letl € € and¢ € F\g. The€-typesT are definedby: T:=T=¢|A= s.t.|A|>0

Note that, for any3-nf N, Infer(N) has a unique correspondirg-type TN. The corresponding
A-types in [28] are defined by taking the set of multisets dased to an environment and transforming
them in a single multiset used on the left hand=ef Thus, for an environmenk and typetr, A= T is
the A-type with A being the multiset obtained from On Definition 10 above the sequential structure of
contexts are preserved.

Definition 11. Let T=T = ¢ be a%-type, Tisheldin T if T'=I"= or "= ¢, such thal” =" AA
for " # w" and some context. If T # T then T is strictly held in T.

Observe that on Definitidn 11 above we have fifatan benil for T’ =" = ¢ andA = w" for any
n<|F|whenl’ =T.

Definition 12. The set IT) of theleft subtypesfor some#-type T is defined by structural induction:

- L(F=)=L(r).

S L(T=¢) = LN UL($).

(
- L(vlh) = {V}UL( ) if v# wand L(I") otherwise.
- L(nil) =
- L(v—>¢) {V}UL( ) if v# wand L(¢) otherwise.
- L(a)=0.

The notion of sigh of occurrences for type variable are gitéorward extended t&’-types, where
the polarity changes on the left side-ef. We have thaTV(IF'=¢) =TV(I)UTV(¢).
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Definition 13. A ¥-type T isclosedif eacha € TV(T) has exactly one positive and one negative
occurrences in T.

Lemma?7. 1. vl = ¢ isclosed iffifl =v— ¢ is closed.
2. nil= ¢ is closed iff ni>w— ¢ is closed.
3. IfvVl<i<m, T=T"= ¢ is closed and TVYT;) are pairwise disjoint then, for any fresh type
variablea, (w™=2.¢y — --- — dm— a.Nil) ATIA---AT™= q is closed.
Proof. 1. LetT =vl=¢ andT' =T =v—¢. Note thatTV(T) = TV(T’) and that the sign for
type variable occurrences ufor both T andT’ are exactly the same.
2. analogous to the proof above.

3. LetT = (W™t — - — dm— a.nil) ATIA---AT™=q. SinceTV(T;) are pairwise disjoint,
TV(T)=U";TV(Ti)U{a} andT has exactly two occurrences of each type variable. Note that
Vi<i<mthe type variable occurrencesliand ¢; have exactly the same sign on baihand T
and thator has one positive and one negative occurrenck. iHence,T is closed. O

Definition 14. A ¥-type T=T = ¢ isfinally closed, f.c. for short, if the final occurrence ¢f is also
the final occurrence of a type inTL).
Lemma8. 1. vl = ¢ isfinally closed ifll =v— ¢ is finally closed.
2. nil= ¢ is finally closed iff nile- w— ¢ is finally closed.
Proof. 1. LetT=vI =¢ andT'=I =v—¢. The final occurrence of — ¢ is the same as of
¢. If v+ w, by Definition[I2,L(T)=L(v.MNUL(¢)={v}UL(MN)UL(¢)=L(MNUL(v— ¢)=L(T").

Otherwise L (T)=L(w.lNUL(¢)=L(I"N)UL(¢)=L(INUL(cww— ¢)=L(T’). Hence,T isf.c. iff T"is
f.c.

2. analogous to the proof above. O

Definition 15. A %-type T isminimally closed, m.c. for short, if there is no closed $trictly held in T.
Lemma9. 1. Ifvl = ¢ is m.c. for v+* w, thenl =v— ¢ is m.c.
2. wlh'=¢ism.c. iffl =w— ¢ ism.c.
3. nil=¢ is m.c. iff nil= w— ¢ is m.c.
4. 1fV1<i<m, T=T"=¢; ism.c. and T\(T;) are pairwise disjoint then, for any fresh type variable
a,T=(w=tp; — - = dm—a.nil)ATIA- - ATM=qais m.c..

Proof. 1. LetT =vIl = ¢ be m.c. forv£wand letT' =T =v—¢. Let T” be strictly held inT’.
If T =T"=v—¢ thenT” =v.["= ¢ is strictly held inT. By Lemmd.1L,T” is closed iffT"”
is closed. Thus, sinc€ is m.c.,T” cannot be closed. [f” =I""= then one has similarly that”
cannot be closed. HencE’ is m.c..

2. LetT be strictly held inw. = ¢. One has thal = w.I'" = ¢ is strictly held inw.l' = ¢ iff
T =T"= w— ¢ is strictly held in[ = w— ¢. There is a correspondinf for T = nil = ¢ and
for T = w.I'" = . Therefore, by Lemmid[?.1, there is a cloSedtrictly held inw.I" = ¢ iff there is
a closedT’ strictly held in[ = w— ¢.

3. analogous to the proof above.
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4. LetT’ be held inT defined above and suppose tfiais closed. IfT" = '"= then, sincel’| >0,
"= A AT” for somei s.t. ' = AT AA, |A'|>0. Note thatTV(I') are pairwise disjoint, thus
if AT£TT (A #nil) thenA' = would be closed and strictly held ii. Hence Al =T (A’ =nil)
and similarly ¢, — --- — ¢m— a must be inl”, giving a non close®-type T'. f T' =T"=
a then with a similar argument one has thiat= (w™t.¢; — --- — ¢m— a.nil) ATIA---AT™,
Therefore T’ is closed iffT is closed and’=T. HenceT is m.c. O

Definition 16. A% -type T is calleccompleteif T is closed, finally closed and minimally closed.
Lemma 10. 1. If vl = ¢ is complete for v w thenl =v— ¢ is complete.
2. w.I = ¢ is complete ifl = w— ¢ is complete.
3. nil= ¢ is complete iff nik- w— ¢ is complete.
4. If Vi<i<m, T =T'= ¢; is complete and TYT,) are pairwise disjoint then, for any fresh type
variablea, T = (w™L.¢; — --- = dm— a.nil) ATIA---ATM= a is complete.
Proof. 1. By Lemmas$IJL1Bl1 and9.1.
2. By Lemma$Tr]L1Bl1 and®.2.
3. By Lemma$1r]Z.18l2 and®.3.
4. By LemmaglJ3 and[S.4 one has that Thdescribed above is respectively closed and m.c. Note
that(¢y — -+ — dm—a) A (TEA - AT™LEL(T), thusT is f.c. O
Lemma 11. If N is a 3-nf then ™ is complete.

Proof. By structural induction om.

e LetN = n. One has thalnfer(N) = (w".a.nil,a), henceTN = w1 .a.nil = a. Note that
L(TN) = {a}. Thus, TN is closed and finally closed. The only two-types strictly held inTN are
w1 . a.nil = andnil = a which are not closed, hend@@ is minimally closed.

o LetN=A.N" If (I",¢)=1Infer(N’)then, by IH,TN =I"= ¢ is complete.
If I'=vI thenInfer(A.N)=(I',v—¢)andTN=I =v— ¢. If v# w, then by LemmaIDI TN
is complete. Otherwise, by Lemmall0T2) is complete.
If I’ =nil thenInfer(A.N’)=(nil,w— ¢) and, by Lemm&I0l3N is complete.
o LetN = nNj---Np. If V1<i<m, (ri,¢i):Infer(Ni) then, by IH, TN is complete. Observe that
TV(TN) are pairwise disjoint because they correspond to disjaifls ©f Infer. One has that

Infer(N)=((w™t.¢1 — - = dm—a.nil) ATIA---AT™ a), for some fresh type variable.
Thus, by Lemm&a0l4 N is complete. m

Note that on itemE]1 arid 4 in Lemrhal 10 we only hauéficiencyproofs. Following we give coun-
terexamples for eadhecessargondition.

Example 3. Let T=T = ¢ be complete. Then, for any freshe o7, take T =T = (a —a)— ¢.
Therefore, Tis complete butr — a.I' = ¢ is not m.c.

Example 4. Let T= 1 — (B2— B3) = Ba.(B1— Bs) = (B3 — B2) = a.nil =a. Note that T is complete
but there is no such a partition of compledétypes.

Hence, to have complet&-types which satisfy thoseecessargonditions, we present the notion of
principal €-types, as done in [28].
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Definition 17. Let T be a complet&-type. T is called principal if:
- T=wxlanil=a.
- T =nil = w— ¢ and nil= ¢ is principal.
- T =T =v— ¢ such that eithef # nil or v # w and vl = ¢ is principal.

- T=T=aandthereard®,...,MMe% and neN*such thal = (w™2.¢; — --- — pm— a.nil ) A
FA---ATMandVi<i<m,T' = ¢; is principal.

Observe that in Definition 17 above we explicitly require éxéstence of the corresponding partition
in the casel = = a for I' # w1 .a.nil and thatv.l = ¢ is also principal thus complete far=I =
v— ¢ such thaf” #nil or v£ w. Although we have that, by LemrhallDP+=nil = w— ¢ is complete iff
T'=nil = ¢ is complete, this case has to be defined similarly. If in D&éin{17 we only have instead:
“T = nil = w— ¢” then we would guarantee only the completenes3 ofetting a counterexample as
in Example_B to be presented.

Lemma 12. If N is a 3-nf then ™ is principal.

Proof. By structural induction oN. By LemmaZ1.TN is complete:
e If N=nthenTN = w1 a.nil=a.
o LetN=A.NandTV =r"=¢. By IH TV is principal.
If I'=v. thenTAN = =v— ¢. If [ =nil then, by Lemma&l4y+ w. Hence T*N'is principal.
OtherwiseTA N =nil = w— ¢, henceT*N' is principal.

e LetN = nN;---Ny andVi<i<m, TN =T = ¢;. Hence, for some fresh type variatde TN =
(W=t 91— - = pm—a.ni) ATIA---ATM™=a and, by IH, TN is principal V1<i<m. Thus,
TN is principal. O

Therefore, the syntactic definition of principéttypes contains the PT f@#-nfs returned bynfer.
Definition 18. LetZ? = {(I',¢) € € x Ine | = ¢ is principal}.

In other words, by Lemmla 12 and analogously td [2Bh(Infer) C &
Definition 19. Let FQ(a, ") = {(i,I) | a is the final occurrence df;, V1<i<|l'|}.

The set~O(a,l") for T =T = a principal, specifically closed and finally closed, has prtps used
in the reconstruction algorithm’s definition.

Lemma13. Let T=T = a be a%-type. If T is finally closed then F@,[) £ 0. If T is also closed then
FO(a,I) has exactly one elemefitv), s.t. v=(¢1 — --- = ¢m—a) AV, form>0anda ¢ TV(V).

Proof. Let T =T = a. By Definition[12,L(T) ={I#w, V1<i<|['|}, hence ifT is f.c. then at least one
element of” hasa as its final occurrence. Lét,v)cFO(a,I). If T is also closed theh has exactly one
positive occurrence af, hencea occurs uniquely iv=l";. Note thatve 2. If ve ¢ then by induction
on its structurer=¢1 — --- — ¢m— a for m>0 (v=a if m=0). Otherwisey = vi AV, anda occurs
positively either invy or in vo. Thus, by induction on the structure of element$/4 commutativity and
associativity ofA, the result holds. O

We introduce the algorithrRecon, to reconstruct #-nf N from (I, ¢) € &2 such thatinfer(N) =
(F,¢), similar to the algorithm introduced ih [28].
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Definition 20 (Reconstruction algorithm).
Recon(l, 1) =

Case (nil,a)
fall
Case (I a)
let {(i*,u1),...,(i™ um)} = FO(a,l)
ifm=landy= (11— - > Th—a)AUstag¢TV(U)
then if Vi<i<nthere isl' s.t. = AX! andl" = 1; is principal
then let (N, A') = Recon(I'%, 11)

(N, A") = Recon(M, 1)
N = wil;l.rl — - = Th—a.nil
=N ATIA- AT
F=T"AQ stA# !, V1K<
return (i*Ng -~ Np, AAATA - AAM)
else fail
else fail
Case (Mu—1)
if T=nilandu=w
then let (N,A) = Recon(nil, 1)
else let(N,A) =Recon(u.l', T)
if A= nil
then return (A.N,A)
else fail
Lemma 14. Let(I",¢) € &2. ThenRecon(l,¢) = (N, nil), N aB-nf such thatinfer(N) = (I, ¢).

Proof. By recurrence on the number of callsRecon.

e Case(l',a). LetT =T =aq.
By hypothesis(l',a) € &, thusT is principal and in particular closed and f.c.. By Lemma 13,
FO(a,lN ={(,(¢1— - — dm—a) AV)} wherea ¢ TV(V). Sincerl; is the only occurrence
ofainl,lM=(w=2.¢; = - = dm—a.nil) AN st.agTV(A").
If m=0, then inRecon one has™’ =A' = w'=L.a.nil, henceT =" AA"=a. T is m.c., thus
A" = nil andl" =T, Then,Recon(I,a) = (i,nil) andInfer(i) = (w=t.a.nil,a).
Otherwise, there arie!,... .FMandne N*s.t.T = (w22t .¢; — --- = Pm—a.nil ) ATIA .. AT™
andv1<j<m, ' = ¢; is principal. Hencen =i and by IHY1<j<m, Recon(I', ¢;) = (Nj,nil),
N;j a B-nf s.t. Infer(Nj) = (Fj,de). Hence inRecon one has thaf =I"’, consequenthyA =nil.
Then,Recon(I,a)=(iNy --- Ny, nil) andInfer(iN;---Np)=((w'=L.¢1 = --- = dm—> a.nil) A
FIA- AT a).

o Case(l',v—¢). LetT ==v—4¢.
By hypothesigI",v— ¢) € &2, thusT is principal.
If I = nil andv= wthenT’ = nil = ¢ is principal and, by IHRecon(nil,¢) = (N, nil), N a 8-nf
s.t. Infer(N) = (nil,¢). Thus,Recon(nil,w— ¢) = (A.N,nil) andInfer(A.N) = (nil,w— ).
Otherwise,T’=v.I = ¢ is principal. By IH,Recon(v.l',¢)=(N,nil), N a 3-nf s.t. Infer(N)=
(v.l',9). HenceRecon(l',v—¢) = (A.N,nil) andInfer(A.N) = (I,v—¢). O

Observe that, by Lemnial4, we have tha?. C Im(Infer). Thus, 2 is the set of all, and only,
principal typings for3-nfs in SM.. Therefore,%” = Im(Infer).
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4 Conclusion

In this paper, we introduced the first intersection typeewysin de Bruijn indices for which the principle
typings property fo3-normal forms holds.

The restriction in the system af [28] prevents both thatesyséind our own system presented here,
from having SR in the usual sense. This is not the case hovi@vtre system of [31]. However, every
B-nf is typeable in the introduced system, as in the oné_in, [@8)roperty that does not hold for the
simply typed system. We then prove the PT propertyenfs and a characterisation of PT is given.
This de Bruijn version of the typing system in [28] was intngdd as a first step towards some extended
systems in which PT depends on more complex syntactic opesaguch as expansian [17].

As future work, we will introduce a de Bruijn version for sgsts such as the ones in [12] ahd|[26]
and try to add similar systems to bolto andAs.. There are works on intersection types and explicit
substitution, e.g.[22], but no work for systems where thmposition of substitutions is allowed.
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