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1 The central limit theorem

The central limit theorem is one of the most fundamental results in probability, and explains the
appearance of the normal distribution in a whole host of diverse applications in mathematics,
physics, biology and the social sciences. Results in this area date back to de Moivre in the 1730s,
who used a normal distribution to approximate probabilities associated with binomial random
variables.

∗Minor corrections made in May 2018
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A very readable account of the history of the central limit theorem is given by Le Cam (1986).

The name ‘central limit theorem’ was applied by Pólya in the 1920s to refer to results concern-
ing sums of independent random variables (suitably scaled) converging to a normal distribution.
The name now, however, applies to a much larger class of results concerning convergence in
distribution to the normal.

The case of sums of independent random variables is treated by the Lindeberg–Lévy–Feller The-
orem, which uses the Lindeberg conditions to give convergence to a normal distribution. Suppose
we have independent random variables X1, X2, . . . with EXi = µi and Var(Xi) = σ2

i < ∞ for
each i. Let s2

n = σ2
1 + · · ·+ σ2

n. We have the Lindeberg conditions

max
k

σ2
k

s2
n

→ 0 as n→∞ , (1)

and

Lε(n) =
1

s2
n

n∑
k=1

E
[
|Xk − µk|2I {|Xk − µk| > εsn}

]
→ 0 as n→∞, ∀ε > 0 . (2)

Theorem 1 (Lindeberg–Lévy–Feller) With X1, X2, . . . as above

a). If (2) holds then so does (1) and

1

sn

n∑
k=1

(Xk − µk)
d→ N(0, 1) as n→∞ . (3)

That is, Fn(x) → Φ(x) as n → ∞ for all x ∈ R, where Fn is the distribution function of
s−1
n

∑n
k=1(Xk − µk) and Φ is the distribution function of Z ∼ N(0, 1).

b). If (1) and (3) hold then so does (2).

For the remainder of this section we will assume, without loss of generality, that µi = 0 for all i.

Sketch Proof of Sufficiency 1: Characteristic Functions Let Sn = X1 + · · · + Xn and for a
random variable X let ψX(t) = E[eitX ] be the characteristic function of X . We need to show that

|ψSn/sn(t)− e−t2/2| → 0 as n→∞ .

Since X1, X2, . . . are independent, ψSn/sn(t) =
∏n

k=1 ψXk
(t/sn). Also,

e−t
2/2 =

n∏
k=1

exp

{
−σ

2
kt

2

2s2
n

}
.

Hence, we need to prove that∣∣∣∣∣
n∏
k=1

ψXk
(t/sn)−

n∏
k=1

exp

{
−σ

2
kt

2

2s2
n

}∣∣∣∣∣→ 0 as n→∞ .
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For any z1, . . . , zn, w1, . . . , wn ∈ C with |zi| ≤ 1 and |wi| ≤ 1 for all i, it can be shown that∣∣∣∣∣
n∏
k=1

zk −
n∏
k=1

wk

∣∣∣∣∣ ≤
n∑
k=1

|zk − wk| .

Hence, it is enough to prove that

n∑
k=1

∣∣∣∣ψXk
(t/sn)− exp

{
−σ

2
kt

2

2s2
n

}∣∣∣∣→ 0 as n→∞ .

We use the triangle inequality, and will show that

n∑
k=1

∣∣∣∣ψXk
(t/sn)−

(
1− σ2

kt
2

2s2
n

)∣∣∣∣ → 0 as n→∞ , (4)

n∑
k=1

∣∣∣∣(1− σ2
kt

2

2s2
n

)
− exp

{
−σ

2
kt

2

2s2
n

}∣∣∣∣ → 0 as n→∞ . (5)

Since (5) is a special case of (4), the case where Xk ∼ N(0, σ2
k) for all k, if we can show (4) we

are done.

To prove (4), we use properties of the characteristic function to write

n∑
k=1

∣∣∣∣ψXk
(t/sn)−

(
1− σ2

kt
2

2s2
n

)∣∣∣∣ ≤ n∑
k=1

Emin

{
t2X2

k

s2
n

,
|t|3|Xk|3

6s3
n

}
≤

n∑
k=1

E
[
|t|3|Xk|3

6s3
n

I {|Xk| ≤ εsn}
]

+
n∑
k=1

E
[
t2X2

k

s2
n

I {|Xk| > εsn}
]

≤
n∑
k=1

|t|3εsn
6s3

n

E
[
|Xk|2I {|Xk| ≤ εsn}

]
+ t2Lε(n)

≤ |t|3ε
6

+ t2Lε(n) , (6)

for some ε > 0. Since Lε(n)→ 0 as n→∞ for all ε, and ε was arbitrary, the result follows.

Sketch Proof of Sufficiency 2: Replacement We show convergence in distribution by showing
that Eh(Sn/sn)→ Eh(Z) as n→∞ for all h : R 7→ R with three bounded derivatives.

To do this, introduce a sequence of independent random variables Y1, Y2, . . ., where Yi ∼ N(0, σ2
i )

for each i. Write Zn = Y1 + · · ·+ Yn so that Zn ∼ N(0, s2
n). For 1 ≤ j ≤ n, let

S(j)
n = Y1 + · · ·+ Yj−1 +Xj+1 + · · ·+Xn .
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Note that Sn = X1 + S
(1)
n and Zn = S

(n)
n + Yn.

We have that

|Eh(Sn/sn)− Eh(Z)| =

∣∣∣∣Eh(Snsn
)
− Eh

(
Zn
sn

)∣∣∣∣
≤

n∑
j=1

∣∣∣∣∣Eh
(
S

(j)
n +Xj

sn

)
− Eh

(
S

(j)
n + Yj
sn

)∣∣∣∣∣ .
Applying a Taylor expansion (noting that Xj and Yj are independent and have the same first two
moments for each j) we can show that this will go to zero if

n∑
j=1

Emin

{(
Xj

sn

)2

,

∣∣∣∣Xj

sn

∣∣∣∣3
}
→ 0 as n→∞ , (7)

n∑
j=1

Emin

{(
Yj
sn

)2

,

∣∣∣∣Yjsn
∣∣∣∣3
}
→ 0 as n→∞ . (8)

Given that Y1, Y2, . . . satisfy the Lindeberg condition (2), which may be easily shown, it is enough
to prove (7). A similar argument to that used in (6), splitting at εsn for an arbitrary ε > 0, can be
used to show that

n∑
j=1

Emin

{(
Xj

sn

)2

,

∣∣∣∣Xj

sn

∣∣∣∣3
}
≤ ε+ Lε(n) ,

from which the result follows.

The Lindeberg condition in Theorem 1 may be difficult to verify in practice, but may be checked
via the following slightly stronger sufficient condition, due to Lyapunov. With the random vari-
ables X1, X2, . . . as before, and with the additional assumption that the rth moment of Xi exists
for each i and some r > 2, we assume that

1

srn

n∑
k=1

E|Xk − µk|r → 0 ,

as n → ∞. With this assumption, the Lindeberg condition, and hence the central limit theorem,
holds.

There are several techniques for proving normal convergence in situations with dependence.
Many of them, however, require the dependence to take a particular form, for example CLTs
proved under mixing conditions or in a martingale setting. Stein’s method for normal approxi-
mation, introduced by Stein (1972), may be applied in many different settings with dependence.
Another advantage of Stein’s method is that while proving convergence to a normal distribution
it automatically gives a rate of convergence to accompany the limit theorem.

In the next part, we will present an argument, due to Stein (1972), that uses Stein’s method to
prove a central limit theorem in the independent case. Later (in Section 3) we will consider
how these techniques may be used in settings with dependence. Before doing that, however, we
consider Poisson approximation from both a coupling point of view and using Stein’s method.
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1.1 Stein’s approach to normal approximation: the independent
case

For use in this section and elsewhere, we will define the supremum norm of a function f : R 7→ R
by ‖f‖∞ = supx |f(x)|.

Suppose we have independent random variables X1, . . . , Xn with EXi = 0 and Var(Xi) = σ2
i

for each i. Suppose σ2
1 + · · ·+σ2

n = 1 and let W = X1 + · · ·+Xn. We also write Wi = W −Xi.

Stein’s approach relies on the observation that a random variable X has a standard normal distri-
bution if and only if

E [f ′(X)−Xf(X)] = 0 ,

for all absolutely continuous f : R 7→ R. (To see this: in one direction use integration by parts,
for the other direction solve a differential equation).

Thus, if W ≈ N(0, 1) then E [f ′(W )−Wf(W )] ≈ 0. How can we bound this (for a function f
with bounded second derivative)?

Firstly, note that E[Wf(W )] = E
∑n

i=1Xif(Wi +Xi). Then, using a Taylor expansion,

Xif(Wi +Xi) = Xif(Wi) +X2
i

∫ 1

0

f ′(Wi + uXi) du .

By independence, the first term vanishes on taking expectation. Hence

E[Wf(W )] = E
n∑
i=1

X2
i

∫ 1

0

f ′(Wi + uXi) du .

Also,

E[f ′(W )] = E
n∑
i=1

σ2
i f
′(W )

= E
n∑
i=1

σ2
i f
′(Wi) + E

n∑
i=1

σ2
i (f ′(W )− f ′(Wi))

= E
n∑
i=1

X2
i f
′(Wi) + E

n∑
i=1

σ2
i (f ′(W )− f ′(Wi)) .

Combining these,

E[f ′(W )−Wf(W )]

= E
n∑
i=1

X2
i

∫ 1

0

(f ′(Wi)− f ′(Wi + uXi)) du+ E
n∑
i=1

σ2
i (f ′(W )− f ′(Wi)) .

By the mean value theorem, |f ′(Wi)− f ′(Wi + uXi)| ≤ |Xi|‖f ′′‖∞. The same bound may also
be applied in the second term of the above (with u = 1). Hence

|E[f ′(W )−Wf(W )]| ≤ ‖f ′′‖∞
n∑
i=1

(
E|X3

i |+ σ2
iE|Xi|

)
≤ 2‖f ′′‖∞

n∑
i=1

E|X3
i | .
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So, if
∑n

i=1 E|X3
i | is small, we would expect a CLT to hold. A crucial step in Stein’s method

is to relate the work we have just done in bounding |E[f ′(W )−Wf(W )]| to an explicit result
in normal approximation. Suppose we have an absolutely continuous function h : R 7→ R. In
assessing a normal approximation for W , we may be interested in bounding |Eh(W )− Eh(Z)|,
where Z ∼ N(0, 1). We can relate this to our characterization of Z through the differential
equation

h(x)− Eh(Z) = f ′(x)− xf(x) ,

whose solution f = fh depends on h. It can be shown that for h absolutely continuous, ‖f ′′‖∞ ≤
2‖h′‖∞. Hence, from the above,

|Eh(W )− Eh(Z)| = |E[f ′(W )−Wf(W )]| ≤ 2‖f ′′‖∞
n∑
i=1

E|X3
i | ≤ 4‖h′‖∞

n∑
i=1

E|X3
i | .

2 Poisson approximation

Another of the key limit theorem in probability is that of Poisson convergence (often called “the
law of small numbers”). The convergence of the binomial distribution Bin(n, λ/n) to the Poisson
distribution Po(λ) as n→∞ was first established by Poisson in 1837. A famous early statistical
application, by von Bortkewitsch, was to the number of deaths of Prussian soldiers resulting
from being kicked by a horse. More recently, applications of Poisson limits are found in biology,
communications and social sciences.

Throughout this section we will let X1, . . . , Xn be (possibly dependent) Bernoulli random vari-
ables. We will write pi = EXi and λ =

∑n
i=1 pi. We are interested in the approximation of

W = X1 + · · ·+Xn by a Poisson random variable Z ∼ Po(λ).

For the most part, we will assess closeness of non–negative, integer–valued random variables
using the total variation distance:

dTV (W,Z) =
1

2

∞∑
j=0

|P(W = j)− P(Z = j)| = sup
‖f‖∞≤1

|Ef(W )− Ef(Z)| .

2.1 A coupling approach

We begin with a Poisson approximation bound derived using coupling techniques.

Definition 1 A coupling of random variables X and Y is a bivariate random variable (X̂, Ŷ )

such that X̂ d
= X and Ŷ d

= Y . Such a coupling is maximal if

P(X̂ = Ŷ ) = sup
{
P(X̃ = Ỹ ) : (X̃, Ỹ ) is a coupling of (X, Y )

}
.

Before we give a Poisson approximation bound, we note some properties of maximal couplings
(which we state without proof).
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Lemma 1 Let (X̂, Ŷ ) be a maximal coupling of the non–negative, integer–valued random vari-
ables X and Y . Then

P(X̂ = Ŷ ) =
∞∑
j=0

min{P(X = j),P(Y = j)} .

Lemma 2 If (X̂, Ŷ ) is a maximal coupling of X and Y

dTV (X, Y ) = P(X̂ 6= Ŷ ) .

We are now in a position to state and prove the following well–known Poisson approximation
result.

Theorem 2 (Le Cam) Let X1, . . . , Xn be independent Bernoulli random variables, with EXi =
pi. Let W = X1 + · · ·+Xn and λ = EW = p1 + · · ·+ pn. If Z ∼ Po(λ)

dTV (W,Z) ≤
n∑
i=1

p2
i .

Proof Write Z =
∑n

i=1 Zi, where Zi ∼ Po(pi). We can couple Xi and Zi maximally for each i
(using Lemma 1) to get (X̂i, Ẑi) with

P(X̂i = Ẑi) =
∞∑
j=0

min{P(Xi = j),P(Zi = j)}

= min{1− pi, e−pi}+ min{pi, pie−pi} = 1− pi + pie
−pi ≥ 1− p2

i .

Then, since
(∑n

i=1 X̂i,
∑n

i=1 Ẑi

)
is a coupling of W and Z,

dTV (W,Z) ≤ P

(
n∑
i=1

X̂i 6=
n∑
i=1

Ẑi

)
≤ P

(
n⋃
i=1

{
X̂i 6= Ẑi

})
≤

n∑
i=1

P(X̂i 6= Ẑi) ≤
n∑
i=1

p2
i .

This is an elegant result, but there is much room for improvement. To see this, consider the
following results, established by Le Cam (1960) using operator techniques:

dTV (W,Z) ≤ 4.5 max
i
pi ,

dTV (W,Z) ≤ 8λ−1

n∑
i=1

p2
i , (9)

this last inequality proved under the assumption maxi pi ≤ 1/4. We are most interested in the
second of these inequalities, which can represent a substantial improvement over the bound of
Theorem 2 when λ is large, achieved by the inclusion of the “magic factor” of λ−1

Many other techniques have been employed to tackle the Poisson approximation problem of
Theorem 2. The vast majority, however, rely on the independence of the summands X1, . . . , Xn.
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2.2 Stein’s method for Poisson approximation

Stein’s method for Poisson approximation was first developed by Chen (1975). There have been
numerous developments since then: see Barbour et al. (1992) and Barbour and Chen (2005) for
surveys. As in the case of normal approximation, Stein’s method has the advantage of being
able to handle dependence between the random variables Xi. We will also see that results here
include “magic factors” akin to that in Le Cam’s result (9) and that were missing in the coupling
argument of Theorem 2.

Before proceeding further, we need a definition. For any function g : Z+ 7→ R we let ∆ be the
forward difference operator, so that ∆g(j) = g(j + 1)− g(j).

As in the normal case, the starting point of Stein’s method is a characterization of the Poisson
distribution. We note that for X a non-negative, integer–valued random variable, X ∼ Po(λ) if
and only if

λE [g(X + 1)] = E [Xg(X)] , ∀ bounded g : Z+ 7→ R .

From this we can define the characterising operator A for the Po(λ) distribution: Ag(j) =
λg(j + 1)− jg(j). So,

X ∼ Po(λ) ⇐⇒ E [Ag(X)] = 0 ∀ bounded g : Z+ 7→ R .

The next step is to solve the Stein equation. For a given function h : Z+ 7→ R, we solve

h(j)− Eh(Z) = λf(j + 1)− jf(j) , (10)

to find the function f = fh. Replacing j with W and taking expectations we have that

Eh(W )− Eh(Z) = E [λf(W + 1)−Wf(W )] .

If W ≈ Po(λ), then the LHS should be small for a suitably large class of functions h. So, the
RHS should also be small. We can ‘measure how close W is to Poisson’ by looking at how large
the RHS can become for h in some suitable class. To make this idea precise (in the case of total
variation distance; other metrics may be treated similarly) let

H = HTV = {h : Z+ 7→ R | ‖h‖∞ ≤ 1}

Then
dTV (W,Z) = sup

h∈H
|Eh(W )− Eh(Z)| = sup

h∈H
|E [λf(W + 1)−Wf(W )]| . (11)

It is not clear that bounding the RHS of this is any more straightforward than the problem we
started with. However, it turns out that it is.

In order to effectively bound E [λf(W + 1)−Wf(W )] we will need some properties of the
solution f = fh of the Stein equation for h ∈ H. The properties that we need are stated (without
proof) in Lemma 3 below.
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Lemma 3 Let f = fh solve the Stein equation (10). Then

sup
h∈H
‖f‖∞ ≤ min

{
1,

√
2

eλ

}
, sup

h∈H
‖∆f‖∞ ≤ min

{
1,

1− e−λ

λ

}
.

These bounds are known as Stein factors, or magic factors. Note that such bounds depend only
on the Stein equation (10) and not on the random variable W of interest.

To see how we may bound (11) in practice, we first consider the case where W is a sum of
independent Bernoulli random variables.

2.2.1 Independent summands

In the following theorem, note the improvement over previous results. We retain the magic factor
of λ−1 appearing in (9), but without the restriction on the pi.

Theorem 3 Let X1, . . . , Xn be independent Bernoulli random variables, with EXi = pi. Let
W = X1 + · · ·+Xn and λ = EW = p1 + · · ·+ pn. If Z ∼ Po(λ)

dTV (W,Z) ≤
(

1− e−λ

λ

) n∑
i=1

p2
i .

Proof For each i we write Wi = W −Xi. We begin by noting that

E [λf(W + 1)−Wf(W )] =
n∑
i=1

E [pif(W + 1)−Xif(W )] .

For each i, E[Xif(W )] = piE[f(Wi + 1)] and so

E [λf(W + 1)−Wf(W )] =
n∑
i=1

piE [f(W + 1)− f(Wi + 1)] .

Since

|E [f(W + 1)− f(Wi + 1)]| ≤ sup
h∈H
‖∆f‖∞E|W −Wi|

≤
(

1− e−λ

λ

)
EXi

=

(
1− e−λ

λ

)
pi ,

(using Lemma 3) we have that

|E [λf(W + 1)−Wf(W )]| ≤
(

1− e−λ

λ

) n∑
i=1

p2
i .
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It is worth noting that the bound given by Theorem 3 is of the right order. We have the corre-
sponding lower bound

dTV (W,Z) ≥ 1

32
min

{
1,

1

λ

} n∑
i=1

p2
i .

2.2.2 Dependent summands: the local approach

One of the advantages to Stein’s approach is that the argument of Theorem 3 may be easily
adapted to cover the case where the Xi are no longer independent. In the Poisson case, there are
two widely used approaches to doing this: the ‘local approach’ and the ‘coupling approach’. We
will spend some time on each, beginning with the local approach.

Theorem 4 Let X1, . . . , Xn be Bernoulli random variables, with EXi = pi. Let W = X1 +
· · ·+ Xn and λ = EW = p1 + · · ·+ pn. For each i, divide {1, . . . , i− 1, i + 1, . . . , n} into two
subsets Γi and Θi so that, informally,

Γi = {j : Xj is strongly dependent on Xi} .

Let Zi =
∑

j∈Γi
Xj and Wi =

∑
j∈Θi

Xj . If Z ∼ Po(λ)

dTV (W,Z) ≤
(

1− e−λ

λ

) n∑
i=1

(piE[Xi + Zi] + E[XiZi]) +

√
2

eλ

n∑
i=1

E |pi − E[Xi|Wi]| .

Proof We write

E [λf(W + 1)−Wf(W )] =
n∑
i=1

E [pif(W + 1)−Xif(W )]

=
n∑
i=1

E [pif(W + 1)− pif(Wi + 1)]

+
n∑
i=1

E [pif(Wi + 1)−Xif(Wi + 1)]

+
n∑
i=1

E [Xif(Wi + 1)−Xif(W )] .

For each i we have the bounds

|f(W + 1)− f(Wi + 1)| ≤ ‖∆f‖∞(Xi + Zi) ,

|Xif(Wi + 1)−Xif(W )| ≤ ‖∆f‖∞XiZi ,

|E [pif(Wi + 1)−Xif(Wi + 1)]| ≤ ‖f‖∞E |pi − E[Xi|Wi]| .
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Combining all these we have

|E [λf(W + 1)−Wf(W )]|

≤ ‖∆f‖∞
n∑
i=1

(piE[Xi + Zi] + E[XiZi]) + ‖f‖∞
n∑
i=1

E |pi − E[Xi|Wi]| ,

from which the result follows using Lemma 3.

In the case where Xi are independent, we choose Γi = ∅ for each i and recover the bound of
Theorem 3.

Example (the birthday problem)

Suppose m balls (people) are thrown independently and equiprobably into d boxes (days of the
year). Let W be the number of pairs that go into the same box. How close is W to Poisson?

Let Γ be the set of all 2–subsets of {1, . . . ,m}. That is, Γ = {i ⊂ {1, . . . ,m} : |i| = 2}.
If i = {i1, i2}, we write Xi for the indicator that balls i1 and i2 land in the same box. So,
W =

∑
i∈ΓXi.

Note that EXi = d−1 for all i ∈ Γ, and so λ = EW =
(
m
2

)
d−1. Also, E[XiXj] = d−2 for all

i 6= j.

We choose Γi = {j ∈ Γ \ {i} : i ∩ j 6= ∅}. Then Xi is independent of Xj for all j 6∈ Γi ∪ {i}
and so the final term of the bound in Theorem 4 vanishes.

We obtain

dTV (W,Z) ≤
(

1− e−λ

λ

)∑
i∈Γ

(piE[Xi + Zi] + E[XiZi])

=

(
1− e−λ

λ

)(
m

2

)(
2(m− 1) + 1

d2
+

2(m− 1)

d2

)
=

(
1− e−λ

λ

)(
m

2

)
4m− 3

d2

≤ 8λ(1− e−λ)
m− 1

.

2.2.3 Size biasing and coupling

As well as the local approach discussed in the previous section, the other common approach to
Stein’s method for Poisson approximation uses coupling. This approach is discussed in great
detail by Barbour et al. (1992). As an example of the type of result that can be obtained, we have
the following. The proof is very similar to that of Theorem 4.
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Theorem 5 With notation as in Theorem 4, let (W̃ 1
i ,W

1
i ) be a coupling of (Wi|Xi = 1) and Wi.

Then

dTV (W,Z) ≤
(

1− e−λ

λ

) n∑
i=1

(
piE[Xi + Zi] + E[XiZi] + piE

∣∣∣W 1
i − W̃ 1

i

∣∣∣) .
Coupling results simplify considerably if the random variable W of interest is such that a mono-
tone coupling exists. In these cases, computation of the bound in Theorem 5 reduces to knowing
the first two moments of W . Such simplifications are a great advantage of the coupling method,
as monotone couplings do indeed exist in many interesting examples.

In this section we will need the concept of size–biasing. If W is a non–negative, integer–valued
random variable with mean λ > 0, we let W ? have the W–size biased distribution, given by

P(W ? = j) =
jP(W = j)

λ
.

Equivalently, we may define W ? by letting

λE[g(W ?)] = E[Wg(W )] , (12)

for all g : Z+ 7→ R for which the expectations above exist.

With this definition, it is clear that we may write

E[Af(W )] = E [λf(W + 1)−Wf(W )] = λE [f(W + 1)− f(W ?)] .

Note that we may also rewrite our characterization of the Poisson distribution by saying that X
has a Poisson distribution if and only if X + 1 is equal in distribution to X?.

It can be shown that if

E [g(X1, . . . , Xi−1, Xi+1, . . . , Xn)|Xi = 1] ≤ E [g(X1, . . . , Xi−1, Xi+1, . . . , Xn)] , (13)

for all increasing g{0, 1}n−1 7→ R, then there is a coupling (Ŵ (1), Ŵ ?) of W + 1 and W ? such
that Ŵ (1) ≥ Ŵ ? almost surely. The property (13) is called negative relation.

We may write

E [f(W + 1)− f(W ?)] =
∞∑
j=0

f(j) (P(W + 1 = j)− P(W ? = j))

=
∞∑
j=0

∆f(j) (P(W + 1 > j)− P(W ? > j)) .

Then, if X1, . . . , Xn are negatively related we may use our monotone coupling (or stochastic
ordering) to get that

|E[Af(W )]| ≤ λ‖∆f‖∞
∞∑
j=0

|P(W + 1 > j)− P(W ? > j)|

= λ‖∆f‖∞E[W + 1−W ?]

= ‖∆f‖∞(λ− Var(W )) .
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Hence, using Lemma 3, we have the following.

Theorem 6 Let X1, . . . , Xn be negatively related Bernoulli random variables. Let W = X1 +
· · ·+Xn and λ = EW . If Z ∼ Po(λ)

dTV (W,Z) ≤
(

1− e−λ

λ

)
[λ− Var(W )] .

We illustrate the applicability of this result with some examples.

• Suppose we distribute m balls uniformly into N urns (each with capacity for up to one
ball) and let W count the number of the first n urns which are occupied. Then W has a
hypergeometric distribution with

λ =
nm

N
, and Var(W ) =

nm(N − n)

N(N − 1)

(
1− m

N

)
.

WritingXi for an indicator that the ith urn is occupied,W = X1+· · ·+Xn andX1, . . . , Xn

are negatively related.

• Distribute n points uniformly on the circumference of a circle. Let S1, . . . , Sn be the arc–
length distances between adjacent points and Xi = I(Si < a), the indicator that Si falls
below some threshold a. Then X1, . . . , Xn are negatively related and their sum W counts
the number of small spacings on our circle.

• Let ν be a permutation of {1, . . . , n} drawn uniformly from the group of such permutations.
Let Xi = I(ν(i) ≤ ai) for some given a1, . . . , an and W = X1 + · · · + Xn. We have that
X1, . . . , Xn are negatively related.

To conclude this section, we note that we say that X1, . . . , Xn are positively related if (13) holds
with the inequality reversed for all increasing g : {0, 1}n−1 7→ R. In this case, there is the
following analogue of Theorem 6.

Theorem 7 Let X1, . . . , Xn be positively related Bernoulli random variables with pi = EXi.
Let W = X1 + · · ·+Xn and λ = EW . If Z ∼ Po(λ)

dTV (W,Z) ≤
(

1− e−λ

λ

)[
Var(W )− λ+ 2

n∑
i=1

p2
i

]
.

This is proved by showing that, under positive relation, there is a coupling (Ŵ (2), Ŵ ?) of W +

1−XV and W ? such that Ŵ ? ≥ Ŵ (2) almost surely, where V is a random index, independent of
all else, such that P(V = j) = pj/λ for j = 1, . . . , n.

3 Stein’s method for normal approximation

We have already seen the basics of Stein’s method for normal approximation in Section 1.1
where we explored Stein’s proof of the central limit theorem (for independent summands) using
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the characterising operator A for the standard normal distribution given by Ag(x) = g′(x) −
xg(x). We spend this section discussing briefly three approaches to Stein’s method for normal
approximation in situations with dependence. Much of this discussion is based on the recent
survey by Chen et al. (2011).

Exchangeable pairs

The approach used in the monograph by Stein (1986) is based on the construction of a random
variable W ′ such that (W,W ′) is an exchangeable pair and E[W ′|W ] = (1 − η)W for some
η ∈ (0, 1). The following theorem (given without proof) is typical of the results one can obtain
using the exchangeable pairs approach.

Theorem 8 Let W and W ′ be mean zero, variance 1 exchangeable random variables satisfying
E[W ′|W ] = (1− η)W for some η ∈ (0, 1). Then

sup
z∈R
|P(W ≤ z)− P(Z ≤ z)| ≤

√
Var(E[(W ′ −W )2|W ])

2η
+ (2π)−1/4

√
E|W ′ −W |3

η
,

where Z ∼ N(0, 1).

The starting point of the proof of such results is the observation that Eg(W,W ′) = 0 for every
antisymmetric function g : R2 7→ R.

Size biasing

Size biasing, as defined in the previous section, may also be used to give normal approximation
results. Suppose we have a non–negative, integer–valued random variable Y with mean µ and
variance σ2. Let Y ? be the size–biased version. Letting

W =
Y − µ
σ

, and W̃ =
Y ? − µ
σ

,

we have that, using (12),

E [Af(W )] = E [f ′(W )−Wf(W )]

= E
[
f ′(W )− µ

σ

(
f(W̃ )− f(W )

)]
= E

[
f ′(W )

(
1− µ

σ
(W̃ −W )

)
− µ

σ

∫ W̃−W

0

(f ′(W + t)− f ′(W )) dt

]
.

Bounding these terms (using Stein factors for normal approximation to bound f and its deriva-
tives) gives us a bound on the distance of W from the standard normal distribution. The bounds
simplify somewhat if we assume the coupling of Y and Y ? is bounded. In this case we obtain the
following.
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Theorem 9 Let Y and Y ? be as above and assume that they are coupled such that |Y − Y ?| ≤ δ
almost surely for some δ ≥ 0. Then if Z ∼ N(0, 1)

sup
z∈R
|P(W ≤ z)− P(Z ≤ z)| ≤ 6µδ2

σ3
+

2µ

σ2

√
Var(E[Y ? − Y |Y ]) .

To illustrate a typical application, consider the lightbulb process, in which n lightbulbs (which
each have two states: on and off) are all switched off at time zero. At time r (for r = 1, . . . , n),
exactly r lightbulbs are chosen uniformly at random to have their states changed. The random
variable of interest Y is the number of lightbulbs switched on at time n. By coupling Y to its
size–biased version it can be shown, for example, that when n ≥ 6 is even and σ2 = Var(Y )

sup
z∈R
|P(W ≤ z)− P(Z ≤ z)| ≤ n

2σ2

(
1

2
√
n

+
1

2n
+ e−n/2

)
+

1.64n

σ3
+

2

σ
,

where W is again the standardized version of Y and Z ∼ N(0, 1).

Zero biasing

Size biasing is just one member of a whole family of such transformations which may be defined.
Another transformation which has proved useful in conjunction with Stein’s method for normal
approximation is zero biasing. If W is a random variable with EW = 0 and Var(W ) = σ2, we
say that W † has the W–zero biased distribution if

σ2E[g′(W †)] = E[Wg(W )] ,

for all absolutely continuous g : R 7→ R for which the expectations exist. Then it is clear that

E [f ′(W )−Wf(W )] = E
[
f ′(W )− f ′(W †)

]
.

As with size–biasing, results simplify if we assume a bounded coupling. The following result
may then be proved.

Theorem 10 Let W be a mean zero, variance 1 random variable, coupled to its zero–biased
version W † such that |W −W †| ≤ δ almost surely. Then

sup
z∈R
|P(W ≤ z)− P(Z ≤ z)| ≤ 2.03δ ,

where Z ∼ N(0, 1).

To illustrate one result which may be obtained from this, we present without proof a combinatorial
central limit theorem.
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Theorem 11 Let {ai,j}ni,j=1 be an array of real numbers and let ν be a permutation of {1, . . . , n}
chosen uniformly from the group of such permutations. Let Y =

∑n
i=1 ai,ν(i) andW = (Y −µ)/σ,

where

µ = EY = na•,• , σ2 = Var(Y ) =
1

n− 1

∑
i,j

(ai,j − ai,• − a•,j + a•,•)
2 ,

and ai,•, a•,j and a•,• represent the row, column and array averages, respectively. Then, if Z ∼
N(0, 1),

sup
z∈R
|P(W ≤ z)− P(Z ≤ z)| ≤ 16.3

σ
max
i,j
|ai,j − ai,• + a•,j − a•,•| .

Finally, it is also worth noting that the N(0, σ2) distribution is the unique fixed–point of the zero–
biasing transformation.

4 Concluding remarks

Stein’s method applies well beyond the normal and Poisson approximation problems we have
considered here. It has been employed in approximation problems relating to the binomial, geo-
metric, negative binomial, compound Poisson, discretized normal, exponential, gamma, beta and
Fréchet distributions, among others. See Barbour and Chen (2005) and Chen et al. (2011) for
recent surveys which mention many of these.

In each of these cases, the basic ingredients of Stein’s method are the same:

• A characterising operator,

• A solution to the corresponding Stein equation, and

• Stein factors giving bounds on the solution.

Many of the arguments then used to bound the resulting expression have a similar flavour to those
we have used here: a coupling or local dependence approach, for example.

Some classes of distribution may be treated more generally. For example, Brown and Xia (2001)
consider the problem of approximation by the stationary distribution of a birth–death process on
Z+ with birth rates αj and death rates βj for j ≥ 0. One possible characterising operator in this
situation is given byAg(j) = αjg(j+1)−βjg(j). Brown and Xia (2001) show that if β0 = 0 and
αj − αj−1 ≤ βj − βj−1 for j ≥ 1 then the solution of the corresponding Stein equation satisfies

sup
h∈H
|fh(j + 1)− fh(j)| ≤ min

{
1

αj
,

1

βj

}
.

Stein’s method also extends well beyond the univariate setting. Approximation theorems for
multivariate distributions (such as the multivariate normal) and processes (such as Poisson and
compound Poisson processes) have been developed in this same framework. Again, see the recent
surveys by Barbour and Chen (2005) and Chen et al. (2011).
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One recent and exciting development is the combination of Stein’s method with the techniques
of Malliavin calculus to give normal approximation theorems. See the recent book by Nourdin
and Peccati (2012).
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