
Formal Specification F28FS2, Lecture 6
The rest of Chapter 4, and Chapter 5

Jamie Gabbay

January 27, 2014

1 / 1

Remember

I Propositions: are assigned truth-values.

I Variables: have a type.

I Sets: have elements.

I Schemas: a judgement-form. Pre- and post-conditions. ∆S
and ΞS . Input and output variables. Combining schemas.
Totalising schemas.

2 / 1

Remember

If S is a schema then S ′ is the schema written out with primed
(dashed) variables. By convention, S represents the universe before
(before whatever action we are specifying) and S ′ the universe
after.

∆S is the pair of S and S ′ side-by-side with no commitment to
any connection between them.

ΞS is a no-op; it puts S and S ′ side-by-side and asserts that the
state is unchanged.

3 / 1

Preconditions

Suppose a schema is of the form

Op
∆State
morevariables

someconditions

Then pre Op is the conditions on State and input, and post Op is
the conditions on State ′ and output.

If we assign pre Op truth-value T then Op is total — any state,
any output.

4 / 1

Preconditions

pre (S ∨ T) is always equal to (pre S) ∨ (pre T) (not a definition;
a fact).

S \ x is S is x hidden. x is existentially quantified. That means
that S \ x will give its private copy of x whatever value is necessary
to make the spec true.

\x is an abstract form of search. No algorithm — just a search for
a suitable x .

5 / 1

Recall: AddMember

AddMember
badminton : PSTUDENT, hall : PSTUDENT
badminton′ : PSTUDENT, hall′ : PSTUDENT
newmember? : STUDENT

hall ⊆ badminton #hall ≤ maxplayers
hall′ ⊆ badminton′ #hall′ ≤ maxplayers′

newmember? 6∈ badminton
badminton′ = badminton ∪ {newmember?}
hall′ = hall

6 / 1

Recall: AddMember

Or more succinctly:

AddMember
∆ClubState
newmember? : STUDENT

newmember? 6∈ badminton
badminton′ = badminton ∪ {newmember?}
hall′ = hall

7 / 1

Recall: AddMember

We calculated pre AddMember by existentially quantifying (hiding)
badminton′ and hall′. So AddMember \ {badminton′, hall′} seeks
some outputs to make the inputs true.

That’s what a precondition does: it returns the condition that
guarantees that some output and ‘after’ state exists. We simplified
and found that we can find some outputs to make the inputs true,
providing that newmember? 6∈ badminton.

8 / 1

Recall: AddMember

So the operation described by AddMember is not defined if
newmember? ∈ badminton.

TotalAddMember =̂

(AddMember ∧ SuccessMessage) ∨ IsMember .

IsMember outputs an error message if newmember? ∈ badminton.

pre TotalAddMember is T .

9 / 1

Totalise RemoveMember

RemoveMember
∆ClubState
member? : STUDENT

member? ∈ badminton
badminton′ = badminton \ {member?}
hall′ = hall \ {member?}

Precondition: member? ∈ badminton

Postconditions:

badminton′ = badminton\{member?} hall′ = hall\{member?}

10 / 1

Totalising RemoveMember

Let MESSAGE ::= success | notMember.

NotMember
ΞClubstate
member? : STUDENT
outcome! : MESSAGE

member? 6∈ badminton
outcome! = notMember

SuccessMessage
outcome! : MESSAGE

outcome! = success

TotalRemoveMember =̂

(RemoveMember ∧ SuccessMessage) ∨ NotMember

11 / 1

Totalising LeaveHall

LeaveHall
∆ClubState
leaver? : STUDENT

leaver? ∈ hall
hall′ = hall \ {leaver}
badminton′ = badminton

Precondition: leaver? ∈ hall.

12 / 1

Totalising LeaveHall

MESSAGE ::= success | notInHall

NotInHall
ΞClubstate
leaver? : STUDENT
outcome! : MESSAGE

leaver? 6∈ hall
outcome! = notInHall

SuccessMessage
outcome! : MESSAGE

outcome! = success

TotalLeaveHall =̂ (LeaveHall ∧ SuccessMessage) ∨ NotInHall

13 / 1

Totalising operations with more than one predicate

Our examples so far have only had one precondition, for example:

I leaver? ∈ hall

I member? ∈ badminton

I newmember? 6∈ badminton (from lecture 5)

14 / 1

Totalising operations with more than one predicate

EnterHall has three preconditions.

EnterHall
∆ClubState
enterer? : STUDENT

enterer? ∈ badminton
enterer? 6∈ hall
#hall < maxplayers
hall′ = hall ∪ {enterer?}
badminton′ = badminton

15 / 1

EnterHall (expanded)

EnterHall
badminton, hall, badminton′, hall′ : PSTUDENT,
enterer? : STUDENT

enterer? ∈ badminton
enterer? 6∈ hall
#hall < maxplayers
hall′ = hall ∪ {enterer?}
badminton′ = badminton

16 / 1

EnterHall (hidden)

pre EnterHall
badminton, hall : PSTUDENT,
enterer? : STUDENT

∃ badminton′, hall′ : PSTUDENT•
enterer? ∈ badminton
∧ enterer? 6∈ hall
∧ #hall < maxplayers
∧ hall′ = hall ∪ {enterer?}
∧ badminton′ = badminton

17 / 1

EnterHall (hidden, simplified)

pre EnterHall
badminton, hall : PSTUDENT,
enterer? : STUDENT

enterer? ∈ badminton
enterer? 6∈ hall
#hall < maxplayers

Unexpectedly easy, really. Bit long, but not too painful.

What about the disappearing logical conjunction (∧)?

18 / 1

Totalising operations with more than one predicate

Three preconditions:

enterer? ∈ badminton enterer? 6∈ hall #hall < maxplayers

Don’t panic! (What TV series is that from?)

Just write a schema describing what to do if the (several)
preconditions are not satisfied, and use disjunction to put them
side-by-side with the ‘main program’ . . .

. . . or . . .

. . . write several schema, one for each precondition.

MESSAGE ::= success | notMember | hallFull | inHall

19 / 1

Exercise 4.5: Totalise EnterHall

EnterHall
∆ClubState
enterer? : STUDENT

enterer? ∈ badminton
enterer? 6∈ hall
#hall < maxplayers
hall′ = hall ∪ {enterer?}
badminton′ = badminton

NotMember
ΞClubState
enterer? : STUDENT
outome! : MESSAGE

enterer? 6∈ badminton
outcome! = notMember

AlreadyInHall
ΞClubState
enterer? : STUDENT
outome! : MESSAGE

enterer? ∈ hall
outcome! = inHall

HallFull
ΞClubState
outome! : MESSAGE

#hall = maxPlayers
outcome! = hallFull

20 / 1

Exercise 4.5: Totalise EnterHall

TotalEnterHall =̂(EnterHall ∧ SuccessMessage)

∨ NotMember

∨ AlreadyInHall

∨ HallFull

21 / 1

Checking whether an operation is total

TotalEnterHall =̂ (EnterHall ∧ SuccessMessage) ∨ NotMember

∨ AlreadyInHall ∨ HallFull

Is TotalEnterHall really total?

To check, calculate pre TotalEnterHall .

If this has truth-value T then for all ‘before’ states and inputs,
TotalEnterHall specifies some ‘after’ state and output — which is
what in the language of functions ‘being total’ means.

22 / 1

Checking whether an operation is total

pre distributes over disjunction:

pre TotalEnterHall =̂
pre (EnterHall ∧ SuccessMessage)

∨ pre NotMember ∨ pre AlreadyInHall ∨ pre HallFull

23 / 1

Checking that TotalEnterHall is total

You need to be able to check that:

I pre NotMember is enterer? 6∈ badminton.

I pre AlreadyInHall is enterer? ∈ hall.

I pre HallFull is hallFull.

But what about EnterHall ∧ SuccessMessage?

24 / 1

Expand! Hide! Simplify!

EnterHall ∧ SuccessMessage
badminton, hall, badminton′, hall′ : PSTUDENT,
enterer? : STUDENT
outcome! : MESSAGE

enterer? ∈ badminton
enterer? 6∈ hall
#hall < maxplayers
hall′ = hall ∪ {enterer?}
badminton′ = badminton
outcome! : success

25 / 1

Expand! Hide! Simplify!

pre (EnterHall ∧ SuccessMessage)

badminton, hall : PSTUDENT,

enterer? : STUDENT

∃ badminton′, hall′ : PSTUDENT, output! : MESSAGE•
enterer? ∈ badminton
∧ enterer? 6∈ hall
∧ #hall < maxplayers
∧ hall′ = hall ∪ {enterer?}
∧ badminton′ = badminton
∧ output! = success

26 / 1

Expand! Hide! Simplify!

pre (EnterHall ∧ SuccessMessage)
badminton, hall : PSTUDENT,
enterer? : STUDENT

enterer? ∈ badminton
enterer? 6∈ hall
#hall < maxplayers

That’s it; each of these three conditions is covered by the other
parts of our disjunction.

27 / 1

Specs education:
“Where do Z specifications come from?”

Gee, I’m glad you asked that son. Pop and Mom love specification
very very much, and so one day they get together and they do the
following:

28 / 1

Specs education time: “Pop . . . where do baby Z
specifications come from?”

I Requirements analysis. Identify the sets and constants.

I Identify what variables you want, and what types they’ll range over.

I Identify the state schema.

I Identify your initial state, and prove it exists (i.e. some values for
the variables can satisfy it; a useful sanity check).

I Identify the operations you want to model.

I Identify the operations’ preconditions. Develop error handling
schema to handle the cases where those preconditions are not
satisfied.

I Totalise the operations.

29 / 1

The badminton club all over again

Basic type: [STUDENT].

Global variable:

maxplayers : N

maxplayers = 20

30 / 1

The badminton club all over again

State schema:

ClubState
badminton : PSTUDENT
hall : PSTUDENT

hall ⊆ badminton
#hall ≤ maxplayers

31 / 1

The badminton club all over again

Initial state:

InitClubState
ClubState ′

badminton′ = {}
hall′ = {}

(Recall convention to use ‘after’ state variables in initial state.)

32 / 1

The badminton club all over again

Preconditions are hall′ ⊆ badminton′ and #hall′ ≤ maxplayers.

{} ⊆ {} and 0 ≤ maxplayers are indeed true.

33 / 1

Operations:

AddMember
(precondition: newMember 6∈ badminton) (error handler:
IsMember)

RemoveMember
(precondition: member ∈ badminton) (error handler:
NotMember)

EnterHall
(precondition: enterer? ∈ badminton, enterer? 6∈ hall,
#hall < maxPlayers) (error handlers:
NotMember[enterer?/member?], AlreadyInHall, HallFull)

LeaveHall
(precondition: leaver? ∈ hall) (error handler: NotInHall)

OutsideHall (no preconditions; just a query)

Location (no preconditions; just a query)

34 / 1

Total operators

TotalAddMember =̂(AddMember ∧ SuccessMessage)

∨ IsMember

TotalRemoveMember =̂(RemoveMember ∧ SuccessMessage)

∨ NotMember

TotalEnterHall =̂(EnterHall ∧ SuccessMessage)

∨ NotMember ∨ AlreadyInHall ∨ HallFull

TotalLeaveHall =̂(LeaveHall ∧ SuccessMessage)

∨ NotInHall

OutsideHall and Location are already total.

35 / 1

