Formal Specification F28FS2, Lecture 9 Relation operations; operation schema composition

Jamie Gabbay

March 5, 2014

Remember

- A relation is a set of maplets.
- ► A (partial) function is (partial) functional relation.

Remember:

 $f: S \leftrightarrow T = \mathbb{P}(S \times T)$ maps each s: S to at most one thing on the right.

 $f: S \rightarrow T$ maps each s: S to precisely one thing on the right.

f(s) (function application to an element). R(U) (relational image of a set of elements).

If $S' \subseteq S$ and $T' \subseteq T$ then we have

- ▶ $S' \lhd f$ and $S' \lhd f$ (domain restriction and anti-restriction) and
- $f \triangleright T'$ and $f \triangleright T'$ (range restriction and anti-restriction).

Sequences

seq $T \subseteq \mathbb{N}_1 \to T$. seq T is sequences; finite lists of elements in T. Know the predicate which characterises the elements of seq T.

Suppose L : seq T. Then head(L) : T (first element) tail(L) : seq T (rest of the list).

There is also rev L (reverse L), $L \oplus L'$ (overwrite L with L'), $L \cap L'$ (concatenate L and L').

There is also $seq_1 L$ (nonempty sequences) and iseq L (injective sequences).

Even more funky things to do with sequences

Suppose L : seq T.

last(L) : T returns the last element of L. If L is empty last(L) is undefined.

For example last((tom, dick, harry)) = harry : T.

front(L) : seq T returns all but the last element of L. If L has fewer than two elements, front(L) is undefined.

For example front((tom, dick, harry)) = (tom, dick) : seq T.

Filtering and squashing

Suppose L : seq T and suppose $T' \subseteq T$ (note: equivalently we can suppose $T' : \mathbb{P}T$).

Then $L \upharpoonright T'$ is the sequence of elements in L that are also in T'.

For example $(tom, dick, harry) \upharpoonright \{tom, harry, jones\} = (tom, harry).$

If $f : \mathbb{N}_1 \leftrightarrow T$ is defined on finitely many elements, then squash(f) : seq T is the sequence which returns the list of those elements.

For example $squash(\{2 \mapsto dick, 3 \mapsto tom, 7 \mapsto harry\}) = \{1 \mapsto dick, 2 \mapsto tom, 3 \mapsto harry\}.$

How to define things like *seq*, [, *head*, *tail*, and so on?

$$T \operatorname{cat}_{} \\ \widehat{} : seq \ T \times seq \ T \to seq \ T \\ \hline \forall s, t : seq \ T \bullet \\ s \widehat{} : s \cup \{n \in dom(t) \bullet (n + \#s) \mapsto t(n)\}$$

Try defining head, tail, last, front, rev, and so on.

Squashing, defined explicitly in Z, just for fun:

$$T \text{ squash}$$

$$squash : (\mathbb{N} \to T) \to seq T$$

$$\forall f : \mathbb{N} \to T \bullet$$

$$\# squash(f) = \#f \land$$

$$\forall n : dom(f) \bullet squash(f)(\#(0..n \triangleleft f)) = f(n)$$

Why is #*squash*(f) = #f in there; what does it do?

Disjointness

Suppose $A_1, \ldots, A_n : \mathbb{P}S$. $disjoint(A_1, \ldots, A_n)$ is true when $\forall i, j \in 1 \ldots n \bullet A_i \cap A_i \neq \emptyset \Rightarrow i = j$

or equivalently (taking the contrapositive)

$$\forall i,j \in 1 \dots n \bullet i \neq j \Rightarrow A_i \cap A_j = \emptyset.$$

In words:

"The elements of (A_1, \ldots, A_n) are pairwise disjoint."

(The contrapositive of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$. Exercise: using truth-tables verify that these are logically equivalent.)

Partition

If $U : \mathbb{P}S$ then the predicate ' (A_1, \ldots, A_n) partition U' holds when disjoint (A_1, \ldots, A_n)

and furthermore

$$\bigcup(A_1,\ldots,A_n)=U.$$

In words

" (A_1, \ldots, A_n) partition U is true when A_1 to A_n really do partition U."

For example $(\{1,2\},\{5\},\{3,4\})$ partition $\{1,2,3,4,5\}$ holds.

Suppose we have some long expression — e.g. primes $\{x : \mathbb{N} \mid (x \neq 0 \land \forall y, z : \mathbb{Z} \bullet y * z = x \Rightarrow 1 \in \{y, z\}) \bullet x\} : \mathbb{PN}$ — which we use many times in another expression *BLAH*. We can write this as *let primes* = $\{...\}$ *in BLAH*. You can use this in your schemas, if you like. Labour-saving: operation schema composition

Labour-saving: operation schema composition

Then A; B is this:

$$\begin{array}{c} A; B \\ \hline a, c! : \mathbb{Z} \\ a', b? : \mathbb{Z} \\ \hline \exists d : \mathbb{Z} \bullet \\ d = a + 42 \land c! = d \land b? < 10 \land a' = d + b \end{array}$$