Formal Specification F28FS2, Lecture 9 Relation operations; operation schema composition

Jamie Gabbay

March 5, 2014

Remember

- A relation is a set of maplets.
- A (partial) function is (partial) functional relation.

Remember:

$f: S \rightarrow T=\mathbb{P}(S \times T)$ maps each $s: S$ to at most one thing on the right.
$f: S \rightarrow T$ maps each $s: S$ to precisely one thing on the right.
$f(s)$ (function application to an element). $R(U)$ (relational image of a set of elements).

If $S^{\prime} \subseteq S$ and $T^{\prime} \subseteq T$ then we have

- $S^{\prime} \triangleleft f$ and $S^{\prime} \notin f$ (domain restriction and anti-restriction) and
- $f \triangleright T^{\prime}$ and $f \triangleright T^{\prime}$ (range restriction and anti-restriction).

Sequences

seq $T \subseteq \mathbb{N}_{1} \rightarrow T$. seq T is sequences; finite lists of elements in T. Know the predicate which characterises the elements of $\operatorname{seq} T$.
Suppose L : seq T. Then head $(L): T$ (first element) tail $(L): \operatorname{seq} T$ (rest of the list).

There is also rev L (reverse L), $L \oplus L^{\prime}$ (overwrite L with L^{\prime}), $L^{\wedge} L^{\prime}$ (concatenate L and L^{\prime}).
There is also seq ${ }_{1} L$ (nonempty sequences) and iseq L (injective sequences).

Even more funky things to do with sequences

Suppose L: seq T.
$\operatorname{last}(L): T$ returns the last element of L. If L is empty $\operatorname{last}(L)$ is undefined.

For example last $(($ tom, dick, harry $))=$ harry : T.
front (L) : seq T returns all but the last element of L. If L has fewer than two elements, $\operatorname{front}(L)$ is undefined.

For example front $(($ tom, dick, harry $))=($ tom, dick $):$ seq T.

Filtering and squashing

Suppose L : seq T and suppose $T^{\prime} \subseteq T$ (note: equivalently we can suppose $\left.T^{\prime}: \mathbb{P} T\right)$.

Then $L \upharpoonright T^{\prime}$ is the sequence of elements in L that are also in T^{\prime}.
For example (tom, dick, harry) $\mid\{$ tom, harry, jones $\}=($ tom, harry $)$.
If $f: \mathbb{N}_{1} \rightarrow T$ is defined on finitely many elements, then squash (f) : seq T is the sequence which returns the list of those elements.

For example $\operatorname{squash}(\{2 \mapsto$ dick, $3 \mapsto$ tom, $7 \mapsto$ harry $\})=$ $\{1 \mapsto$ dick, $2 \mapsto$ tom, $3 \mapsto$ harry $\}$.

Generic constants

How to define things like seq, \upharpoonright, head, tail, and so on?
T cat

$$
\begin{aligned}
& \frown: \text { seq } T \times \operatorname{seq} T \rightarrow \operatorname{seq} T \\
& \forall s, t: \operatorname{seq} T \bullet \\
& s \frown t=s \cup\{n \in \operatorname{dom}(t) \bullet(n+\# s) \mapsto t(n)\}
\end{aligned}
$$

Try defining head, tail, last, front, rev, and so on.

Squashing, defined explicitly in Z, just for fun:

$$
\begin{aligned}
& \text { T squash } \\
& \text { squash }:(\mathbb{N} \rightarrow T) \rightarrow \operatorname{seq} T \\
& \forall f: \mathbb{N} \rightarrow T \bullet \\
& \# \text { squash }(f)=\# f \wedge \\
& \forall n: \operatorname{dom}(f) \bullet \operatorname{squash}(f)(\#(0 . . n \triangleleft f))=f(n)
\end{aligned}
$$

Why is \#squash $(f)=\# f$ in there; what does it do?

Disjointness

Suppose $A_{1}, \ldots, A_{n}: \mathbb{P} S$.
$\operatorname{disjoint}\left(A_{1}, \ldots, A_{n}\right)$ is true when

$$
\forall i, j \in 1 \ldots n \bullet A_{i} \cap A_{j} \neq \varnothing \Rightarrow i=j
$$

or equivalently (taking the contrapositive)

$$
\forall i, j \in 1 \ldots n \bullet i \neq j \Rightarrow A_{i} \cap A_{j}=\varnothing
$$

In words:
"The elements of $\left(A_{1}, \ldots, A_{n}\right)$ are pairwise disjoint."
(The contrapositive of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$.
Exercise: using truth-tables verify that these are logically equivalent.)

Partition

If $U: \mathbb{P} S$ then the predicate ' $\left(A_{1}, \ldots, A_{n}\right)$ partition U ' holds when $\operatorname{disjoint}\left(A_{1}, \ldots, A_{n}\right)$
and furthermore
$\bigcup\left(A_{1}, \ldots, A_{n}\right)=U$.
In words
" $\left(A_{1}, \ldots, A_{n}\right)$ partition U is true when A_{1} to A_{n} really do partition U."

For example $(\{1,2\},\{5\},\{3,4\})$ partition $\{1,2,3,4,5\}$ holds.

Labour-saving: let

Suppose we have some long expression - e.g. primes
$\{x: \mathbb{N} \mid(x \neq 0 \wedge \forall y, z: \mathbb{Z} \bullet y * z=x \Rightarrow 1 \in\{y, z\}) \bullet x\}: \mathbb{P N}$

- which we use many times in another expression BLAH.

We can write this as let primes $=\{\ldots\}$ in BLAH.
You can use this in your schemas, if you like.

Labour-saving: operation schema composition

$$
\left[\begin{array}{l}
A, \overline{a^{\prime}, c!: \mathbb{Z}} \\
\hline a^{\prime}=a+42 \\
c!=a^{\prime} \\
\hline
\end{array}\right.
$$

$$
\left[\begin{array}{l}
B \\
a, a^{\prime}, b ?: \mathbb{Z} \\
\hline b ?<10 \\
a^{\prime}=a+b ?
\end{array}\right.
$$

Labour-saving: operation schema composition

Then $A ; B$ is this:

$$
\begin{aligned}
& A ; B \\
& a, c!: \mathbb{Z} \\
& a^{\prime}, b ?: \mathbb{Z} \\
& \exists d: \mathbb{Z} \bullet \\
& d=a+42 \wedge c!=d \wedge b ?<10 \wedge a^{\prime}=d+b
\end{aligned}
$$

