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Question 7: Pythagorean Triples 
 
For the Pythagorean triples question, my initial idea was to simply use 3 for loops to find 
a, b and c, such that . As a maths student, this felt extremely inefficient. So Ia2 + b2 = c2  
decided to do some research on the subject of generating Pythagorean triples. 
 
I found that Euclid’s formula states that a, b and c can be determined by two arbitrary 
integers, such that , m and n are coprime (in concrete terms, ), n 0m >  >  cd(m, ) 1g n =   
and either m or n is even. Then  m , b mn, c m  a =  2 − n2  = 2  =  2 + n2   
 
The reason for or being even makes sure that the triple is ​primitive, ​ this means that m  n  
it is unique, for example, can be made by multiplying  by 2, in my6, 8, 10) (   3, 4, 5)(    
eyes, triples that are not primitive are pointless to calculate.  
 
To generate the coprime tuples , I found there is also a concrete method for doingm, )( n  
so, using two disjoint ternary trees, one starting at  (for even-odd, and odd-even2, )( 1  
pairs) and the other at  (for odd-odd) pairs. However, due to our previous definition3, )( 1  
of , one of them must be even, therefore we do not need the second tree.m, )( n  
 
Initially, I was going to try and find a tree data structure for Python, but there wasn’t one 
built in, and as I have never used trees outside of maths, I decided against this, and 
started making a generator that mimicked the process and gave me the tuples I needed. 
 
I wrote a class for a generator, with its main data structure being a list, where the 
coprime tuples would be stored. When initialised it would set  as the first tuple in2, )( 1  
the list. The function that does the calculation in the generator is the ranches(self, )b t  
function, it takes a tuple, then returns a list of three more tuples according to the 
branching rules of the coprime pair tree. The main driving function of the generator is 
the  function, which creates a new list for the current level in the tree, and iteratesext()n  
through the previous level, calculating the three branches from each node, then 
appending that returned list to the list of coprimes on that level. The objects main list is 
then set to the new list, so that it is ready to be iterated through, when  is calledext()n  
again. 
 



For generating the actual triples, I made a generator, when initialised, a coprime 
generator is initialised, and the counter is set to 0. When the  function is calledext()n  
(this is a different to the one in the coprime generator), a pair is taken from theext()n  
coprime generator’s list of tuples, and m and n are set accordingly. If that was the last 
tuple in the list, then a new list of tuples will be created, and the counter set back to 0, if 
not, the counter will increment. will be set by their definition of functions of, b, c a    

, then the triple  will be returned. and nm a, b, c)(     
 
In testing, the program runs exceptionally, I wrote a for loop to call  1,000,000ext()n  
times, then print the one million and first primitive Pythagorean triple. Using the ​time 
command in the linux terminal, I ran ​time python pythag.py ​ to time the execution of my 
program. The results were as follows: 
 
>time python pythag.py 

(73268013, 120102916, 140687285) 

 

real 0m4.697s 

user 0m4.278s 

sys 0m0.302s 
 
Here is the source code for reference: 
 

1. class​ coprimes​()​: 
2.     ​def​ ​__init__​(​self​)​: 
3.         ​self​.​coprimeList​ ​=​ ​[(​2​,​1​)] 
4.   

5.     ​def​ branches​(​self​,​ t​)​: 
6.         m​,​ n ​=​ t​[​0​]​,​ t​[​1​] 
7.         ​return​ ​[(​2​ * m - n​,​ m​)​,​ ​(​2​ * m + n​,​ m​)​,​ ​(​m + ​2​ * n​,​ n​)] 
8.   

9.     ​def​ next​(​self​)​: 
10.         branchList ​=​ ​[] 
11.         ​for​ node ​in​ ​self​.​coprimeList​: 
12.             branchList.​extend(​self​.​branches(​node​)) 
13.         ​self​.​coprimeList​ ​=​ branchList 
14.   

15. class​ triples​()​: 
16.     ​def​ ​__init__​(​self​)​: 
17.         ​self​.​pair_generator​ ​=​ coprimes​() 



18.         ​self​.​i​ ​=​ ​0 
19.   

20.     ​def​ next​(​self​)​: 
21.             pair ​=​ ​self​.​pair_generator​.​coprimeList[​self​.​i] 
22.             m ​=​ pair​[​0​] 
23.             n ​=​ pair​[​1​] 
24.   

25.             ​if​ ​self​.​i​ ​==​ ​(​len​(​self​.​pair_generator​.​coprimeList)​ - ​1​)​: 
26.                 ​self​.​pair_generator​.​next() 
27.                 ​self​.​i​ ​=​ ​0 
28.             ​else​: 
29.                 ​self​.​i​ ​=​ ​self​.​i​ + ​1 
30.   

31.             a ​=​ m*m - n*n 
32.             b ​=​ ​2​*m*n 
33.             c ​=​ m*m + n*n 
34.             ​return​ ​(​a​,​b​,​c​) 
35.   

36. x ​=​ triples​() 
37. for​ i ​in​ ​range​(​1000000​)​: 
38.     next​(​x​) 
39.   

40. print​ next​(​x​) 
 


