
F28PL1 Programming
Languages

Lecture 13: Standard ML 3

Type variable

• all types so far have been ground

– i.e. all details known

• SML provides type variables to express unknown
types

• Greek names

– α - alpha - written ‘a

– β - beta - written ‘b

– γ - gamma - written ‘c

– etc

Type variable

• in a type expression, all occurrences of the same
type variable must refer to the same type

• e.g. ‘a * ‘a * ‘a

• tuple with 3 elements of same unknown type

• all ‘a refer to same type

• satisfied by:

(1,2,3) : int * int * int

• i.e. ‘a == int

Type variable

• e.g. ‘a * ‘a * ‘a

• satisfied by:

((1,”one”),(2,”two”),(3,”three”)) :

(int * string)*(int*string)* int*string)

• i.e. ‘a == int * string

Type variable

• e.g. (‘a * ‘b) * (‘a * ‘b)

• tuple with 2 elements of same type

• 1st sub-element of each sub-tuple have same
unknown type

– ‘a could be any type

• 2nd sub-element of each sub-tuple have same
unknown type

– ‘b could be any type

• ‘a and ‘b could refer to same type but need

Type variable
• e.g. (‘a * ‘b) * (‘a * ‘b)

• satisfied by:

((“Francis”,1.7),(“Frances”,1.65)) :

 (string * real) * (string * real)

• i.e. ‘a == string, ‘b == real

((1,(“even”,false)),(2,(”even”,true))) :

(int*(string*bool))*int*(string*bool))

• i.e. ‘a == int, ‘b == string * bool

((1,1),(2,4)) : (int * int) * (int * int)

• i.e. ‘a == ‘b == int

Tuple pattern

• extend patterns to include tuples of patterns

• e.g. join two strings in tuple together with a space
in between

- fun tJoin (s1,s2) = s1^” “^s2;

> val tJoin =

 fn : string * string -> string

• ^ takes 2 strings so s1 and s2 must be string

- tJoin (“hello”,”there”);

> “hello there” : string

Tuple pattern

• e.g. swap elements of pair tuple

- swap (e1,e2) = (e2,e1);

> val swap = fn : ‘a * ‘b -> ‘b * ‘a

• can’t deduce type for e1; call it ‘a

• can’t deduce type for e2; call it ‘b

- swap (1,”two”);

> (“two”,1) : string * int

• for ‘a * ‘b to be consistent with

• (1,”two”) : int * string

• ‘a must be int ; ‘b must be string

Tuple pattern

- swap ((1,”two”),(”one”,2));

> ((“one”,2),(1,”two”) :

 (string * int) * (int * string)

• swap : ‘a * ‘b -> ‘b * ‘a

• for a * ‘b to be consistent with

((1,”two”),(”one”,2)) :

(int * string) * (string * int)

• ‘a must be int * string

• ‘b must be string * int

Tuple pattern

• e.g. select first element from 2 element tuple

- fun first (e1,_) = e1

> val first = fn : ‘a * ‘b -> ‘a

- first (“hello”,”there”);

> “hello” : string

• e.g. select second from 2 element tuple

- fun second (_,e2) = e2

> val second = fn : ‘a * ‘b -> ‘b

- second (true,42);

> 42 : int

Lists

• arbitrary length sequence of same type

• if ‘a is a type then ‘a list is a list of ‘a

• lists are polymorphic

– list of any type, including lists & functions

• empty list

– [] or nil

• list constructor: :: - infix binary

• if h is ‘a and t is ‘a list then h::t is ‘a list

• h is head of list

• t is tail of list

Lists

• NB all lists must end with empty list

• system shows list in bracketed shorthand

elem1::(elem2::...(elemN::[])...) ==>

[elem1,elem2...elemN]

- 1::(2::(3::[]));

> [1,2,3] : int list

- “Ann”::(“Bill”::(“Cyd”::[]));

> [“Ann”,”Bill”,”Cyd”] : string list

Lists

• don’t need (...) with ::

- (1,”one”)::(2,”two”)::(3,”three”)::[];

> [(1,”one”),(2,”two”),(3,”three”)] :

 (int * string) list

• singleton list elem::[] ==> [elem]

- 42::[];

> [42] : int list

• :: has lower precedence than function calls

Lists

• e.g. generate list of integers from n to 1

- fun ints 0 = [] |

 ints n = n::ints (n-1);

> val ints = fn : int -> int list

• 0 is int so n must be int

• n is int so :: must return int list

- ints 4;

> [4,3,2,1] : int list

ints 4 ==> 4::ints 3 ==> 4::3::ints 2 ==>

4::3::2::ints 1 ==> 4::3::2::1::ints 0 ==>

4::3::2::1::[] ==> [4,3,2,1]

Lists

• e.g. generate list with n copies of value s

• base case: n=0 ==> return empty list

• recursion case: n>0 ==> put s on front of n-1 copies of
s

- fun nCopies 0 _ = [] |

 nCopies n s = s::nCopies (n-1) s;

> val nCopies =

 fn : int -> ‘a -> ‘a list

• 0 is int so n must be int

• don’t know s’s type; call it ‘a; :: returns ‘a list

Lists

- nCopies 3 “o”;

> [“o”,”o”,”o”] : string list

• nCopies : int -> ‘a -> ‘a list

• to be consistent when s is a string, ‘a == string

nCopies 3 “o” ==>

“o”::nCopies 2 “o” ==>

“o”::”o”::nCopies 1 “o” ==>

“o”::”o”::”o”::nCopies 0 “o” ==>

“o”::”o”::”o”::[] ==>

[“o”,”o”,”o”]

Lists

- nCopies 3 9;

> [9,9,9] : int list

• nCopies : int -> ‘a -> ‘a list

• to be consistent when s is an int, ‘a == int

nCopies 3 9 ==>

9::nCopies 2 9 ==>

9::9::nCopies 1 9 ==>

9::9::9::nCopies 0 9 ==>

9::9::9::[] ==>

[9,9,9]

Recursion 2: lists

• list is either

– empty

– non-empty with a head and a tail

• can use list patterns in function definitions

• use [] as a constant

• make patterns with other patterns and ::

• (h::t)

– h is a pattern to match list head

– t is a pattern to match list tail

• must be bracketed

Recursion 2: lists

• recursion on lists

• base case: []

– return final value

• recursion case: (h::t)

– do something to h

– recurse on t

• e.g. sum elements of integer list

• base case: [] ==> 0

• recursion case: (h::t) ==> add h to summing t

Recursion 2: lists

- fun sum [] = 0 |

 sum (h::t) = h+sum t;

> int list -> int

• 0 is int so...

• + must be int addition so...

• h must be int so...

• h::t must be int list

Recursion 2: lists

- sum [2,4,6];

> 12 : int

sum [2,4,6] ==>

sum 2::[4,6] ==>

2+sum [4,6] ==>

2+sum 4::[6] ==>

2+4+sum [6] ==>

2+4+sum 6::[] ==>

2+4+6+sum [] ==>

2+4+6+0 ==> 12

Recursion 2: lists

e.g. join all strings in list

• base case: [] ==> “”

• recursion case: (h::t) ==> join h to joining
up all in t

- fun sJoin [] = “” |

 sJoin (h::t) = h^sJoin t;

> val sJoin =fn : string list -> string

• ^ takes 2 strings so h must be string so
h::t must be string list

Recursion 2: lists
- sJoin [“a”,”bc”,”def”];

> “abcdef” : string

sJoin [“a”,”bc”,”def”] ==>

sJoin “a”::[“bc”,”def”] ==>

“a”^sJoin [“bc”,”def”] ==>

“a”^sJoin “bc”::[“def] ==>

“a”^”bc”^sJoin [“def”] ==>

“a”^”bc”^sJoin “def”::[] ==>

“a”^”bc”^”def”^sJoin [] ==>

“a”^”bc”^”def”^”” ==>

“abcdef”

Recursion 2: lists

• e.g. double all elements of integer list

• base case: [] ==> []

• recursion case: (h::t) ==> put twice h onto list
from doubling all t

- fun double [] = [] |

 double (h::t) = 2*h::double t;

> val double = fn : int list -> int list

• 2 is int so * must be int so h must be int so h::t
must be int list

• :: must be int list construction

Recursion 2: lists

- double [5,3,1];

> [10,6,2] : int list

double [5,3,1] ==>

2*5::double [3,1] ==>

2*5::2*3::double [1] ==>

2*5::2*3::2*1::double [] ==>

2*5::2*3::2*1::[] ==>

[10,6,2]

Recursion 2: lists

• e.g. count how often 0 appears in a list

• base case: [] ==> 0

• recursion case1: (h::t) - h=0 ==> 1 + count 0 in t

• recursion case 2: (h::t) - h<>0 ==> count 0 in t

- fun count0 [] = 0 |

 count0 (0::t) = 1+count0 t |

 count0 (_::t) = count0 t;

> val count0 = fn : int list -> int

• 0 is int so 0::t must be int list

• 0 is int so + must be int addition

Recursion 2: lists
- count0 [1,0,2,0,3,0];

> 3 : int

count0 [1,0,2,0,3,0] ==>

count0 [0,2,0,3,0] ==>

1+count0 [2,0,3,0] ==>

1+count0 [0,3,0] ==>

1+1+count0 [3,0] ==>

1+1+count0 [0] ==>

1+1+1+count0 [] ==>

1+1+1+0 ==>

3

Equality type

• e.g. count how often value v appears in list

• base case: [] ==> 0

• recursion case1: (h::t) - h=v ==> 1 + count v in t

• recursion case2: (h::t) - h<>v ==> count v in t

- fun count _ [] = 0 |

 count v (h::t) =

 if v=h

 then 1+count v t

 else count v t;

> val count = fn : ‘’a -> ‘’a list -> int

Equality type

- fun count _ [] = 0 |

 count v (h::t) =

 if v=h

 then 1+count v t

 else count v t;

> val count = fn : ‘’a -> ‘’a list -> int

• ‘’a - equality type variable

• don’t know anything about v, h or t

• know that v and h are the same equality type, say
‘’a, so h::t must be a ‘’a list

Equality type

- count “a” [“a”,”b”,”a”];

> 2 : int

• count :: ‘’a -> ‘’a list -> int

• for consistency when v is “a” and (h::t) is
[“a”,”b”,”a”], ‘’a must be string

count “a” [“a”,”b”,”a”] ==>

1+count “a” [“b”,”a”] ==>

1+count “a” [“a”] ==>

1+1+count”a” [] ==>

1+1+0 ==> 2

Accumulation variables

• used to pass information from stage to
stage of recursion

• e.g. count how many integer list elements
are negative, zero or positive

• use a tuple to record counts:
(negative,zero,positive)

• pass tuple from call to call

• at end of list return tuple

Accumulation variables

• base case: [] ==> return counts tuple

• recursion case1: (h::t)

– h=0 ==> find counts for t with zero count
incremented

• recursion case2: (h::t)

– h<0 ==> find counts for t with negative count
incremented

• recursion case3: (h::t)

– h>0 ==> find counts for t with positive count
incremented

Accumulation variables

- fun counts (n,z,p) [] = (n,z,p) |

 counts (n,z,p) (0::t) =

 counts (n,z+1,p) t |

 counts (n,z,p) (h::t) =

 if h<0

 then counts (n+1,z,p) t

 else counts (n,z,p+1) t;

> val counts =

 fn : int * int * int ->

 int list -> int * int * int

Accumulation variables
- counts (0,0,0) [1,~2,0,3,~4];

> (2,1,2) : int * int * int

counts (0,0,0) [1,~2,0,3,~4] ==>

counts (0,0,1) [~2,0,3,~4] ==>

counts (1,0,1) [0,3,~4] ==>

counts (1,1,1) [3,~4] ==>

counts (1,1,2) [~4] ==>

counts (2,1,2) [] ==>

(2,1,2)

• NB can’t update individual fields of tuple

• must copy tuple with changes

Accumulation variables

• e.g. generate list of squares from m to n in ascending
order

• base case: m>n ==> return []

• recursion case m<=n ==> put m squared onto list of
squares from m+1 to n

- fun squares m n =

 if m>n

 then []

 else sq m::squares (m+1) n;

> val squares =

 fn : int -> int -> int list

Accumulation variables

- squares 1 4;

> [1,4,9,16] : int list

squares 1 4 ==>

sq 1::squares 2 4 ==>

sq 1::sq 2::squares 3 4 ==>

sq 1::sq 2::sq 3::squares 4 4 ==>

sq 1::sq 2::sq 3::sq 4::squares 5 4 ==>

sq 1::sq 2::sq 3::sq 4::[] ==> [1,4,9,16]

• m is accumulation variable to pass start of new range
from call to call

Local definitions

let definition

in expression

end

• definition establishes name/value associations for
use in expression only

• scope of definition is expression

- let val x = 12

 in x*x*x

 end;

> 1728 : int

Local definitions

• very useful for tuple matching and selection

- let val ((given,family),age) =

 ((“Clark”,”Kent”),29)

 in given

 end;

> “Clark” : string

• particularly useful when function returns tuple and only want
some elements

• NB don’t forget:

– val before variable

– end at end of definition

Exceptions

• break flow of control

• typically after some error

• when exception is raised

– control is transferred to handler

exception identifier

• defines an exception with type constructor
identifier

Exceptions

raise identifier

• initiates the exception

• transfers control to immediately enclosing
handler

• if no handler then control is transferred to the
system and program stops

• e.g. divide by 0

- exception DIVIDE_BY_ZERO;

> exception DIVIDE_BY_ZERO

Exceptions

- fun divide x y =

 if y=0

 then raise DIVIDE_BY_ZERO

 else x div y;

> val divide = fn: int -> int

- divide 3 0;

> exception DIVIDE_BY_ZERO

uncaught exception DIVIDE_BY_ZERO

Type aliases

• type aliases

type identifier = type expression

• identifier is an alias for type expression

• i.e. both denote same type

Type aliases

- type family = string;

> type family = sting

- type given = string;

> type given = string

- type person = family * given;

> type person = family * given

- type people = person list;

> type people = person list

• family and given are both aliases for string

Type aliases
- type family = string;

> type family = sting

- type given = string;

> type given = string

- type person = family * given;

> type person = family * given

- type people = person list;

> type people = person list

• person is an alias for

family * given is an alias for

string * string

Type aliases
- type family = string;

> type family = sting

- type given = string;

> type given = string

- type person = family * given;

> type person = family * given

- type people = person list;

> type people = person list

• people is an alias for person list is an alias for

(family * given) list is an alias for

 (string * string) list

NJSML print depth

• NJSML will only print data structures to fixed
depth

• thereafter indicates unprinted structure
with #

• to change print depth:

- Control.Print.printDepth := integer;

	Slide 1
	Type variable
	Type variable
	Type variable
	Type variable
	Type variable
	Tuple pattern
	Tuple pattern
	Tuple pattern
	Tuple pattern
	Lists
	Lists
	Lists
	Lists
	Lists
	Lists
	Lists
	Recursion 2: lists
	Recursion 2: lists
	Recursion 2: lists
	Recursion 2: lists
	Recursion 2: lists
	Recursion 2: lists
	Recursion 2: lists
	Recursion 2: lists
	Recursion 2: lists
	Recursion 2: lists
	Equality type
	Equality type
	Equality type
	Accumulation variables
	Accumulation variables
	Accumulation variables
	Accumulation variables
	Accumulation variables
	Accumulation variables
	Local definitions
	Local definitions
	Exceptions
	Exceptions
	Exceptions
	Type aliases
	Type aliases
	Type aliases
	Type aliases
	NJSML print depth

