
F28PL1 Programming 
Languages

Lecture 13: Standard ML 3



Type variable

• all types so far have been ground

– i.e. all details known

• SML provides type variables to express unknown 
types

• Greek names

– α - alpha  - written ‘a

– β - beta - written ‘b

– γ  - gamma - written ‘c

– etc



Type variable

•  in a type expression, all occurrences of the same 
type variable must refer to the same type 

• e.g. ‘a * ‘a * ‘a

• tuple with 3 elements of same unknown type

• all ‘a refer to same type

• satisfied by: 

(1,2,3) : int * int * int

• i.e. ‘a == int



Type variable

•  e.g. ‘a * ‘a * ‘a

• satisfied by:

((1,”one”),(2,”two”),(3,”three”)) : 

(int * string)*(int*string)* int*string) 

• i.e. ‘a == int * string



Type variable

• e.g. (‘a * ‘b) * (‘a * ‘b)

• tuple with 2 elements of same type

• 1st sub-element of each sub-tuple have same 
unknown type

– ‘a could be any type

• 2nd sub-element of each sub-tuple have same 
unknown type

– ‘b could be any type

•  ‘a and ‘b could refer to same type but need



Type variable
• e.g. (‘a * ‘b) * (‘a * ‘b)

• satisfied by: 

((“Francis”,1.7),(“Frances”,1.65))  :

 (string * real) * (string * real) 

• i.e. ‘a == string, ‘b == real 

((1,(“even”,false)),(2,(”even”,true)))  :  

(int*(string*bool))*int*(string*bool))

• i.e. ‘a == int, ‘b == string * bool

((1,1),(2,4)) : (int * int) * (int * int)

• i.e. ‘a == ‘b == int



Tuple pattern

• extend patterns to include tuples of patterns

• e.g. join two strings in tuple together with a space 
in between

- fun tJoin (s1,s2) = s1^” “^s2;

> val tJoin = 

   fn : string * string -> string

• ^ takes 2 strings so s1 and s2 must be string

- tJoin (“hello”,”there”);

> “hello there” : string



Tuple pattern

• e.g. swap elements of pair tuple 

- swap (e1,e2) = (e2,e1);

> val swap = fn : ‘a * ‘b -> ‘b * ‘a

• can’t deduce type for e1; call it ‘a

• can’t deduce type for e2; call it ‘b

- swap (1,”two”);

> (“two”,1) : string * int

• for ‘a * ‘b to be consistent with 

• (1,”two”) : int * string 

• ‘a must be int ; ‘b must be string 



Tuple pattern

- swap ((1,”two”),(”one”,2));

> ((“one”,2),(1,”two”) : 

  (string * int) * (int * string)

• swap : ‘a * ‘b -> ‘b * ‘a

• for a * ‘b to be consistent with

((1,”two”),(”one”,2)) : 

(int * string) * (string * int)

• ‘a must be int * string

• ‘b must be string * int



Tuple pattern

• e.g. select first element from 2 element tuple

- fun first (e1,_) = e1

> val first = fn : ‘a * ‘b -> ‘a

- first (“hello”,”there”);

> “hello” : string

• e.g. select second from 2 element tuple

- fun second (_,e2) = e2

> val second = fn : ‘a * ‘b -> ‘b

- second (true,42);

> 42 : int



Lists

• arbitrary length sequence of same type

• if ‘a is a type then ‘a list is a list of ‘a

• lists are polymorphic

– list of any type, including lists & functions

• empty list 

– [] or nil 

• list constructor: :: - infix binary 

• if h is ‘a and t is ‘a list then h::t is ‘a list

• h is head of list

• t is tail of list



Lists

• NB all lists must end with empty list

• system shows list in bracketed shorthand

elem1::(elem2::...(elemN::[])...) ==>

[elem1,elem2...elemN]

- 1::(2::(3::[]));

> [1,2,3] : int list

- “Ann”::(“Bill”::(“Cyd”::[]));

> [“Ann”,”Bill”,”Cyd”] : string list



Lists

• don’t need (...) with ::

- (1,”one”)::(2,”two”)::(3,”three”)::[];

> [(1,”one”),(2,”two”),(3,”three”)] : 

  (int * string) list

• singleton list elem::[] ==> [elem]

- 42::[];

> [42] : int list

• :: has lower precedence than function calls



Lists

• e.g. generate list of integers from n to 1

- fun ints 0 = [] |

      ints n = n::ints (n-1);

> val ints = fn : int -> int list

• 0 is int so n must be int

• n is int so :: must return int list

- ints 4;

> [4,3,2,1] : int list

ints 4 ==> 4::ints 3 ==> 4::3::ints 2 ==> 

4::3::2::ints 1 ==> 4::3::2::1::ints 0 ==>

4::3::2::1::[] ==> [4,3,2,1]



Lists

• e.g. generate list with n copies of value s

• base case: n=0 ==> return empty list

• recursion case: n>0 ==> put s on front of n-1 copies of 
s

- fun nCopies 0 _ = [] |

      nCopies n s = s::nCopies (n-1) s;

> val nCopies = 

   fn : int -> ‘a -> ‘a list

• 0 is int so n must be int

• don’t know s’s type; call it ‘a; :: returns ‘a list



Lists

- nCopies 3 “o”;

> [“o”,”o”,”o”] : string list 

• nCopies : int -> ‘a -> ‘a list

• to be consistent when s is a string, ‘a == string

nCopies 3 “o” ==> 

“o”::nCopies 2 “o” ==>

“o”::”o”::nCopies 1 “o” ==>

“o”::”o”::”o”::nCopies 0 “o” ==>

“o”::”o”::”o”::[] ==> 

[“o”,”o”,”o”]



Lists

- nCopies 3 9;

> [9,9,9] : int list

• nCopies : int -> ‘a -> ‘a list

• to be consistent when s is an int, ‘a == int

nCopies 3 9 ==> 

9::nCopies 2 9 ==>

9::9::nCopies 1 9 ==> 

9::9::9::nCopies 0 9 ==> 

9::9::9::[] ==>

[9,9,9]



Recursion 2: lists

• list is either

– empty

– non-empty with a head and a tail

• can use list patterns in function definitions

• use [] as a constant

• make patterns with other patterns and ::

• (h::t)

– h is a pattern to match list head

– t is a pattern to match list tail

• must be bracketed



Recursion 2: lists

• recursion on lists

• base case: []

– return final value

• recursion case: (h::t)

– do something to h

– recurse on t

• e.g. sum elements of integer list

• base case: [] ==> 0

• recursion case: (h::t) ==> add h to summing t



Recursion 2: lists

- fun sum [] = 0 |

      sum (h::t) = h+sum t;

> int list -> int

• 0 is int so...

•  + must be int addition so...

•  h must be int so...

•  h::t must be int list



Recursion 2: lists

- sum [2,4,6];

> 12 : int

sum [2,4,6] ==> 

sum 2::[4,6] ==> 

2+sum [4,6] ==> 

2+sum 4::[6] ==> 

2+4+sum [6] ==> 

2+4+sum 6::[] ==>

2+4+6+sum [] ==> 

2+4+6+0 ==> 12



Recursion 2: lists

e.g. join all strings in list

• base case: [] ==> “”

• recursion case: (h::t) ==> join h to joining 
up all in t

- fun sJoin [] = “” |

      sJoin (h::t) = h^sJoin t;

> val sJoin =fn : string list -> string

• ^ takes 2 strings so h must be string so 
h::t must be string list



Recursion 2: lists
- sJoin [“a”,”bc”,”def”];

> “abcdef” : string

sJoin [“a”,”bc”,”def”] ==> 

sJoin “a”::[“bc”,”def”] ==> 

“a”^sJoin [“bc”,”def”] ==> 

“a”^sJoin “bc”::[“def] ==> 

“a”^”bc”^sJoin [“def”] ==> 

“a”^”bc”^sJoin “def”::[] ==>

“a”^”bc”^”def”^sJoin [] ==>

“a”^”bc”^”def”^”” ==> 

“abcdef”



Recursion 2: lists

• e.g. double all elements of integer list

• base case: [] ==> []

• recursion case: (h::t) ==> put twice h onto list 
from doubling all t

- fun double [] = [] |

     double (h::t) = 2*h::double t;

> val double = fn : int list -> int list

• 2 is int so * must be int so h must be int so h::t 
must be int list

• :: must be int list construction



Recursion 2: lists

- double [5,3,1];

> [10,6,2] : int list

double [5,3,1] ==> 

2*5::double [3,1] ==> 

2*5::2*3::double [1] ==> 

2*5::2*3::2*1::double [] ==> 

2*5::2*3::2*1::[] ==> 

[10,6,2]



Recursion 2: lists

• e.g. count how often 0 appears in a list

• base case: [] ==> 0

• recursion case1: (h::t) - h=0 ==> 1 + count 0 in t

• recursion case 2: (h::t) - h<>0 ==> count 0 in t

- fun count0 [] = 0 |

      count0 (0::t) = 1+count0 t |

      count0 (_::t) = count0 t;

> val count0 = fn : int list -> int

• 0 is int so 0::t must be int list 

• 0 is int so + must be int addition



Recursion 2: lists
- count0 [1,0,2,0,3,0];

> 3 : int

count0 [1,0,2,0,3,0] ==>

count0 [0,2,0,3,0] ==>

1+count0 [2,0,3,0] ==>

1+count0 [0,3,0] ==>

1+1+count0 [3,0] ==>

1+1+count0 [0] ==>

1+1+1+count0 [] ==>

1+1+1+0 ==> 

3



Equality type

• e.g. count how often value v appears in list

• base case: [] ==> 0

• recursion case1: (h::t) - h=v ==> 1 + count v in t  

• recursion case2: (h::t) - h<>v ==> count v in t 

- fun count _ [] = 0 |

      count v (h::t) =

   if v=h

   then 1+count v t

   else count v t;

> val count = fn : ‘’a -> ‘’a list -> int



Equality type

- fun count _ [] = 0 |

      count v (h::t) =

   if v=h

   then 1+count v t

   else count v t;

> val count = fn : ‘’a -> ‘’a list -> int

• ‘’a - equality type variable

• don’t know anything about v, h or t

• know that v and h are the same equality type, say 
‘’a, so h::t must be a ‘’a list



Equality type

- count “a” [“a”,”b”,”a”];

> 2 : int

• count :: ‘’a -> ‘’a list -> int

•  for consistency when v is “a” and (h::t) is 
[“a”,”b”,”a”], ‘’a must be string

count “a” [“a”,”b”,”a”] ==>

1+count “a” [“b”,”a”] ==>

1+count “a” [“a”] ==>

1+1+count”a” [] ==>

1+1+0 ==> 2



Accumulation variables

• used to pass information from stage to 
stage of recursion

• e.g. count how many integer list elements 
are negative, zero or positive

• use a tuple to record counts: 
(negative,zero,positive)

• pass tuple from call to call

• at end of list return tuple



Accumulation variables

• base case: [] ==> return counts tuple

• recursion case1: (h::t) 

– h=0 ==> find counts for t with zero count 
incremented

• recursion case2: (h::t) 

– h<0 ==> find counts for t with negative count 
incremented

• recursion case3: (h::t) 

– h>0 ==> find counts for t with positive count 
incremented



Accumulation variables

- fun counts (n,z,p) [] = (n,z,p) |

     counts (n,z,p) (0::t) = 

        counts (n,z+1,p) t |

     counts (n,z,p) (h::t) =

      if h<0

      then counts (n+1,z,p) t

      else counts (n,z,p+1) t;

> val counts = 

   fn : int * int * int ->

        int list -> int * int * int



Accumulation variables
- counts (0,0,0) [1,~2,0,3,~4];

> (2,1,2) : int * int * int

counts (0,0,0) [1,~2,0,3,~4] ==>

counts (0,0,1) [~2,0,3,~4] ==>

counts (1,0,1) [0,3,~4] ==>

counts (1,1,1) [3,~4] ==>

counts (1,1,2) [~4] ==>

counts (2,1,2) [] ==> 

(2,1,2)

• NB can’t update individual fields of tuple

• must copy tuple with changes



Accumulation variables

• e.g. generate list of squares from m to n in ascending 
order

• base case: m>n ==> return []

• recursion case m<=n ==> put m squared onto list of 
squares from m+1 to n

- fun squares m n =

    if m>n

    then []

    else sq m::squares (m+1) n;

> val squares = 

   fn : int -> int -> int list



Accumulation variables

- squares 1 4;

> [1,4,9,16] : int list

squares 1 4 ==>

sq 1::squares 2 4 ==>

sq 1::sq 2::squares 3 4 ==>

sq 1::sq 2::sq 3::squares 4 4 ==>

sq 1::sq 2::sq 3::sq 4::squares 5 4 ==>

sq 1::sq 2::sq 3::sq 4::[] ==> [1,4,9,16]

• m is accumulation variable to pass start of new range 
from call to call



Local definitions

let definition 

in expression 

end 

• definition establishes name/value associations for 
use in expression only

• scope of definition is expression

- let val x = 12

  in x*x*x

  end;

> 1728 : int



Local definitions

• very useful for tuple matching and selection

- let val ((given,family),age) =

           ((“Clark”,”Kent”),29)

  in given

  end;

> “Clark” : string

• particularly useful when function returns tuple and only want 
some elements

• NB don’t forget:

– val before variable

– end at end of definition



Exceptions

• break flow of control

• typically after some error

• when exception is raised

– control is transferred to handler

exception identifier

• defines an exception with type constructor 
identifier 



Exceptions

raise identifier 

• initiates the exception 

• transfers control to immediately enclosing 
handler

• if no handler then control is transferred to the 
system and program stops

• e.g. divide by 0

- exception DIVIDE_BY_ZERO;

> exception DIVIDE_BY_ZERO 



Exceptions

- fun divide x y =

   if y=0

   then raise DIVIDE_BY_ZERO

   else x div y;

> val divide = fn: int -> int

- divide 3 0;

> exception DIVIDE_BY_ZERO

uncaught exception DIVIDE_BY_ZERO



Type aliases

• type aliases

type identifier = type expression

• identifier is an alias for type expression

• i.e. both denote same type



Type aliases

- type family = string;

> type family = sting

- type given = string;

> type given = string

- type person = family * given;

> type person = family * given

- type people = person list;

> type people = person list

• family and given are both aliases for string



Type aliases
- type family = string;

> type family = sting

- type given = string;

> type given = string

- type person = family * given;

> type person = family * given

- type people = person list;

> type people = person list

• person is an alias for 

family * given is an alias for 

string * string



Type aliases
- type family = string;

> type family = sting

- type given = string;

> type given = string

- type person = family * given;

> type person = family * given

- type people = person list;

> type people = person list

• people is an alias for person list is an alias for

(family * given ) list is an alias for

 (string * string ) list



NJSML print depth

• NJSML will only print data structures to fixed 
depth

• thereafter indicates unprinted structure 
with #

• to change print depth:

- Control.Print.printDepth := integer;
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