
F28PL1 Programming
Languages

Lecture 16: Prolog 1

Overview

• logic programming language

• roots in predicate logic

• developed by Alan Colmerauer & collaborators in
Marseilles, in early 1970s

• ISO standard derived from University of Edinburgh

• adapted for Japanese 5th Generation programme,
1980s

• now widely used for Artificial Intelligence research &
education

Overview

• based on logic programming

– use of predicate logic as a specification language

– an implementation of predicate logic would enable the
use of specifications directly as programs

• concentrate on describing a problem solution as an
input/output relation

– not an input/output process

– i.e. in a descriptive rather than a prescriptive manner

Overview

• enables a high degree of abstraction and of
implementation independence

• emphasis is on what is to be done rather than how it is
to be done

• predicate logic has a well developed proof theory

– use formal techniques to manipulate/verify specifications

• specification can be used to :

– check that outputs correspond to inputs

– find outputs from inputs

– find inputs from outputs

Overview

• not a pure logic programming language

• known evaluation order for predicate manipulation

– implementation considerations are used by
programmers

• many predicates can only be used for checking or for
finding outputs from inputs but not both

• quantification must be made explicit

Overview

• differences with imperative languages:

– no necessary distinction between programs
and data

– there is no concept of a statement as a
state change, for example, through
assignment

– like functional languages

– evaluation order is not necessarily linear

Prolog resources

• we will use SICStus Prolog interpreter

– from the Swedish Institute of Computer Science

– licenses cost real money – don’t buy one!

• SICStus documentation from:

– http://www.sics.se/isl/sicstuswww/site/documentation.html

• free Prologs from:

– http://www.gprolog.org/

– http://www.swi-prolog.org/

• W. F. Clocksin & C. S. Mellish, Programming in Prolog:
Using the ISO Standard, (5th edition), Springer, 2003

http://www.sics.se/isl/sicstuswww/site/documentation.html
http://www.gprolog.org/
http://www.swi-prolog.org/

Running Prolog

• to run Prolog on Linux:
$ sicstus

SICStus 4.2.1 (x86_64-linux-glibc2.7):

 Wed Feb 1 01:15:06 CET 2012

Licensed to SP4macs.hw.ac.uk

| ?-

• | ?- - Prolog prompt

• system commands are Prolog terms

– end with a .

Running Prolog

• system does not support interactive editing

– use separate windows for program &
interpreter

• to load a program

| ?- [file name].

• file name is any valid Linux path

• if not a single word then in ‘...’

• file name convention

– Prolog files end with .pl

Running Prolog

• to turn on tracing:

| ? – trace.

to turn off tracing:

| ? – notrace.

• to leave Prolog

| ?- ^D

Prolog summary

• weak types

– i.e. can change type associated with variable

• dynamic typing

– i.e. types checked at run time

• ad-hoc polymorphism

– variable can be bound to different types as program
runs

• non-linear evaluation

– programs may backtrack to unbind and rebind
variables

Memory model

• database

– holds asserted facts and rules

– searched and manipulated to answer questions

– may change arbitrarily during program

• stack

– variable bindings

– information about current position(s) in database

• heap

– space allocated to data structures

Programs

• Prolog program consists of series of clauses
specifying:

– facts

– rules

– questions

• load program from file

• system will:

– remember facts & rules in database

– attempt to satisfy questions using facts & rules in
database

Terms

• clauses made up of terms

• atom

– words or symbols

• sequence of lower case letters, digits & _s

– starting with a lower case letter

• sequence of characters in ‘...’

e.g. size top45 -- +++ fish_finger

 ‘one hundred'

Terms

• integer

• e.g. 0 777 42 -199

• variable

– sequence of letters, digits and _s

– starting with an upper case letter or a _

• e.g. Cost X_11 _Property

Terms

• structure

– constructs for program and data structures

functor(arguments)

• functor – atom

• arguments – one or more terms separated by ,s

• e.g. wet(water) cost(milk,95)

• recursive definition

– nested structures as arguments

• e.g. parents(mark,mother(margaret),

 father(dennis))

Terms

• infix structures

term atom term

• atom usually a symbol

• used for infix operations

• e.g. 7*8 X=99

• NB these are structures not expressions

– * and = are symbols

Facts

• a fact is a structure

• e.g. fly(pigs)

• e.g.ordered(1,3,2)

• NB facts have no necessary meanings

Questions 1

• suppose l16.pl holds:

wet(water).

cost(milk,95).

| ?- [‘l16.pl’].

…

yes

• facts now in database

Question matching

• question is a structure

• if no variables in question then system:

– looks for a database clause

– with the same functor and arguments as
the question

– displays yes or no

Question matching

• is wet(water) a fact?

| ?- wet(water).

yes

• try wet(water)

– water matches water

Question matching

• does milk cost 85?

| ?- cost(milk,85).

no

• try cost(milk,95)

– milk matches milk

– 85 doesn’t match 95

Questions with variables

• if variables in question then system:

– looks for a clause in the database with:

– same functor as question

– atoms in same argument positions as in
question

– instantiates variables in question to terms in
same positions in assertion

– displays question variable instantiations

• use this form to search database for values in
clauses satisfying query

Questions with variables

• for what X is wet true?

| ?- wet(X).

X = water ? – press Return

yes

• match wet(X)

• try wet(water)

– X instantiated to water

Questions with variables

• what X has cost 95?

| ?- cost(X,95).

X = milk ? – press Return

yes

• try cost(milk,95)

– cost matches cost

– 95 matches 95

– X instantiated to milk

Questions with variables

• what X has cost Y?

| ?- cost(X,Y).

X = milk

Y = 95 ? – press Return

yes

• try cost(milk,95)

– cost matches cost

– X instantiated to milk

– Y instantiated to 95

Multiple facts

• can have multiple facts with same functor
and different arguments

• e.g.

wet(water).

wet(milk).

wet(orange_juice).

Multiple facts

• multiple facts with the same functor are
logical disjunctions

functor (argument1).

functor (argument2).

...



functor (argument1) or functor (argument2)
or ...

Backtracking

• when system offers solution

1. press Return

– accept solution

– system displays yes

2. enter no

– reject solution

– system will backtrack

– uninstantiate any variables in question

– try to find another clause matching question

Backtracking

| -? wet(X)

• match wet(X)

• try wet(water)

– X instantiated to water

X = water ? no

• uninstantiate X from water

• try wet(milk)

– X instantiated to milk

X = milk ?

Backtracking

X = milk ? no

• uninstantiate X from milk

• try wet(orange_juice)

– X instantiated to orange_juice

X = orange_juice ? no

• uninstantiate X from orange_juice

• no more matches

no

Terms and variables

• all occurrences of a variable in a term are
the same instance

• whenever one occurrence of a variable is
bound to a value

– all occurrences now reference that value

• e.g. same(X,X).

– both X’s are the same variable

Matching variables

• when a question term with variables matches a
database term with variables

– variables in the same position share

| ?- same(fish,Y).

• match same(X,X)

• try same(fish,Y)

– X instantiated to fish

– X shares with Y

Y = fish ?

Rules

• rules are superficially similar to methods or functions

– fundamental differences...

• a rule has the form:

head :- body

• means:

1. the head is true if the body is true

2. the body implies the head

• head – term, usually an atom or structure

• body – term, often a conjunction of terms separated
by , i.e. , behaves like logical and

Variables in rules

• all occurrences of a variable in a term are the
same instance

• so occurrences of variables in the head are the
same instance as occurrences in the body

• whenever an occurrence of a variable in the body
is bound to a value

– all other occurrences reference that value

– including occurrences in the head

• use this to get results back from body of rule to
head

Rules
• suppose we have the facts:

mother(betty,ann).

mother(delia,betty).

• X is Y’s parent if they are Y’s mother

parent(X,Y) :- mother(X,Y).

• X’s are same variable

• Y’s are same variable

Rule matching

• to match a rule, try to match the body

• to match the body, try all body options in
turn

• if matching the body fails:

– backtrack, undoing any variable
instantiations

– try the next rule option

Rule matching

| ?- parent(delia,P).

• try parent(X,Y) :- mother(X,Y)

• X instantiated to delia

• Y and P share

– match mother(delia,Y)

– try mother(betty,ann)

– delia does not match betty

Rule matching

– backtrack

– match mother(delia,Y)

– try mother(delia,betty)

– delia matches delia

– bind Y to betty

• P shares with Y so:

P = betty ?

Multiple rules

• multiple rules with the same functor are like
logical disjunctions

functor (arguments1) :- body1.

functor (arguments2) :- body2.

...



functor (arguments1) :- body1 or

 functor (arguments2) :- body2 or ...

Rules

• suppose we have the facts:

mother(betty,ann).

mother(delia,betty).

father(chris,ann).

father(eric,betty).

• X is Y’s parent if they are Y’s mother or Y’s father

parent(X,Y) :- mother(X,Y).

parent(X,Y) :- father(X,Y).

Rules

| ?- parent(P,Q).

• try parent(X,Y) :- mother(X,Y)

– P shares with X

– Q shares with Y

– match mother(X,Y)

– try mother(betty,ann)

– X instantiated to betty (shares with P)

– Y instantiated to ann (shares with Y)

P = betty

Q = ann? no

Rules

– backtrack

– match mother(X,Y)

– try mother(delia,betty)

– X insantiated to delia (shared with P)

– Y instantiated to betty (shared with Q)

P = delia

Q = betty ? no

– backtrack

Rules

• try parent(X,Y) :- father(X,Y)

– P shares with X

– Q shares with Y

– match father(X,Y)

– try father(chris,ann)

– X instantiated to chris (shared with P)

– Y instantiated to ann (shared with Q)

P = chris

Q = ann? no

...

Rules

• if the body is a conjunction:

functor(arguments) :- term1,term2...

• body is equivalent to: term1 and term2 and ...

• to match conjunctive body, match each termi in turn

• if matching termi fails then backtrack to termi-1 and try
again

• NB system must remember how far each termi has
progressed

• NB termi will also involve nested terms for nested rules

Rule example

• consider the train from Dundee to Aberdeen:

Dundee->Arbroath->Montrose->Stonehaven->Aberdeen

next(dundee,arbroath).

next(arbroath,montrose).

next(montrose,stonehaven).

next(stonehaven,aberdeen).

• X is before Y if X is next to Y or

 X is next to W and W is before Y

before(X,Y) :- next(X,Y).

before(X,Y) :- before(X,W),next(W,Y).

Rule example
| ?- before(arbroath,aberdeen).

yes

• try before(arbroath,aberdeen) :- next(arbroath,aberdeen)

– try next(arbroath,aberdeen)

– fail & backtrack

• try before(arbroath,aberdeen) :-

 before(arbroath,W),next(W,aberdeen)

– try before(arbroath,W),next(W,aberdeen)

– try before(arbroath,W) :- next(arbroath,W)

• next(arbroath,W)

• matches next(arbroath,montrose)

– before(arbroath,W) succeeds with W instantiated to montrose

– try next(montrose,aberdeen)

– fail & backtrack

Rule example
– try before(arbroath,W) :-

– before(arbroath,W’),next(W’,W)

– - where W’ is a new variable

try before(arbroath,W’) :- next(arbroath,W’)

– try next(arbroath,W’)

– matches next(arbroath,montrose)

before(arbroath,W’) succeeds with W’ instantiated to montrose

 try next(montrose,W)

– matches next(montrose,stonehaven)
– before(arbroath,W) succeeds with W instantiated to stonehaven

– try next(stonehaven,aberdeen)

• matches next(stonehaven,aberdeen)

• before(arbroath,aberdeen) succeeds

	Slide 1
	Overview
	Overview
	Overview
	Overview
	Overview
	Prolog resources
	Running Prolog
	Running Prolog
	Running Prolog
	Prolog summary
	Memory model
	Programs
	Terms
	Terms
	Terms
	Terms
	Facts
	Questions 1
	Question matching
	Question matching
	Question matching
	Questions with variables
	Questions with variables
	Questions with variables
	Questions with variables
	Multiple facts
	Multiple facts
	Backtracking
	Backtracking
	Backtracking
	Terms and variables
	Matching variables
	Rules
	Variables in rules
	Rules
	Rule matching
	Rule matching
	Rule matching
	Multiple rules
	Rules
	Rules
	Rules
	Rules
	Rules
	Rule example
	Rule example
	Rule example

