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Overview

• logic programming language

• roots in predicate logic

• developed by Alan Colmerauer & collaborators in 
Marseilles, in early 1970s

• ISO standard derived from University of Edinburgh

• adapted for Japanese 5th Generation programme, 
1980s

• now widely used for Artificial Intelligence research & 
education



Overview

• based on logic programming

– use of predicate logic as a specification language 

– an implementation of predicate logic would enable the 
use of specifications directly as programs

• concentrate on describing a problem solution as an 
input/output relation 

– not an input/output process 

– i.e. in a descriptive rather than a prescriptive manner



Overview

• enables a high degree of abstraction and of 
implementation independence 

• emphasis is on what is to be done rather than how it is 
to be done

• predicate logic has a well developed proof theory

– use formal techniques to manipulate/verify specifications

• specification can be used to :

– check that outputs correspond to inputs

– find outputs from inputs

– find  inputs from outputs 



Overview

• not a pure logic programming language

• known evaluation order for predicate manipulation 

– implementation considerations are used by 
programmers

• many predicates can only be used for checking or for 
finding outputs from inputs but not both

• quantification must be made explicit



Overview

• differences with imperative languages:

– no necessary distinction between programs 
and data

– there is no concept of a statement as a 
state change, for example, through 
assignment

– like functional languages

– evaluation order is not necessarily linear



Prolog resources

• we will use SICStus Prolog interpreter

– from the Swedish Institute of Computer Science

– licenses cost real money – don’t buy one!

• SICStus documentation from:

– http://www.sics.se/isl/sicstuswww/site/documentation.html

• free Prologs from:

– http://www.gprolog.org/

– http://www.swi-prolog.org/

• W. F. Clocksin & C. S. Mellish, Programming in Prolog: 
Using the ISO Standard, (5th edition), Springer, 2003

http://www.sics.se/isl/sicstuswww/site/documentation.html
http://www.gprolog.org/
http://www.swi-prolog.org/


Running Prolog

• to run Prolog on Linux:
$ sicstus

SICStus 4.2.1 (x86_64-linux-glibc2.7): 

 Wed Feb  1 01:15:06 CET 2012

Licensed to SP4macs.hw.ac.uk

| ?- 

•  | ?- - Prolog prompt

• system commands are Prolog terms

– end with a .



Running Prolog

• system does not support interactive editing

– use separate windows for program & 
interpreter

• to load a program

| ?- [file name].

• file name is any valid Linux path

• if not a single word then in ‘...’

• file name convention

– Prolog files end with .pl



Running Prolog

• to turn on tracing:

| ? – trace.

to turn off tracing:

| ? – notrace.

• to leave Prolog

| ?- ^D



Prolog summary

• weak types

– i.e. can change type associated with variable

• dynamic typing

– i.e. types checked at run time

• ad-hoc polymorphism

– variable can be bound to different types as program 
runs

• non-linear evaluation

– programs may backtrack to unbind and rebind 
variables



Memory model

• database

– holds asserted facts and rules

– searched and manipulated to answer questions

– may change arbitrarily during program

• stack

– variable bindings

– information about current position(s) in database

• heap

– space allocated to data structures



Programs

• Prolog program consists of series of clauses 
specifying:

– facts

– rules

– questions

• load program from file

• system will:

– remember facts & rules in database

–  attempt to satisfy questions using facts & rules in 
database



Terms

• clauses made up of terms

• atom

– words or symbols

• sequence of lower case letters, digits & _s 

– starting with a lower case letter

• sequence of characters in ‘...’

e.g. size top45 -- +++ fish_finger 

   ‘one hundred'



Terms

• integer

• e.g. 0 777 42 -199

• variable

– sequence of letters, digits and _s

– starting with an upper case letter or a _

• e.g. Cost X_11 _Property



Terms

• structure

– constructs for program and data structures

functor(arguments)

• functor – atom

• arguments – one or more terms separated by ,s

• e.g. wet(water) cost(milk,95)

• recursive definition

– nested structures as arguments

• e.g. parents(mark,mother(margaret),

               father(dennis))



Terms

• infix structures

term atom term

• atom usually a symbol

• used for infix operations

• e.g. 7*8 X=99

• NB these are structures not expressions

– * and = are symbols 



Facts

• a fact is a structure

• e.g. fly(pigs) 

• e.g.ordered(1,3,2)

• NB facts have no necessary meanings



Questions 1

• suppose l16.pl holds:

wet(water).

cost(milk,95).

| ?- [‘l16.pl’].

…

yes

• facts now in database



Question matching

• question is a structure

• if no variables in question then system:

–  looks for a database clause 

– with the same functor and arguments as 
the question

– displays yes or no



Question matching

• is wet(water) a fact?

| ?- wet(water).

yes

• try wet(water)

– water matches water



Question matching

• does milk cost 85?

| ?- cost(milk,85).

no

• try cost(milk,95)

– milk matches milk

– 85 doesn’t match 95



Questions with variables

• if variables in question then system:

–  looks for a clause in the database with:

– same functor as question

–  atoms in same argument positions as in 
question

– instantiates variables in question to terms in 
same positions in assertion

– displays question variable instantiations

• use this form to search database for values in 
clauses satisfying query



Questions with variables

• for what X is wet true?

| ?- wet(X).

X = water ? – press Return 

yes

• match wet(X)

• try wet(water)

– X instantiated to water



Questions with variables

• what X has cost 95?

| ?- cost(X,95).

X = milk ? – press Return

yes

• try cost(milk,95)

– cost matches  cost

– 95 matches  95

– X instantiated to milk



Questions with variables

• what X has cost Y?

| ?- cost(X,Y).

X = milk

Y = 95 ? – press Return

yes

• try cost(milk,95)

– cost matches  cost

– X instantiated to milk

– Y instantiated to  95



Multiple facts

• can have multiple facts with same functor 
and different arguments

• e.g.

wet(water).

wet(milk).

wet(orange_juice).



Multiple facts

• multiple facts with the same functor are 
logical disjunctions

functor (argument1).

functor (argument2).

... 



functor (argument1) or functor (argument2) 
or ...



Backtracking

• when system offers solution

1. press Return 

– accept solution

– system displays yes

2. enter no

– reject solution

– system will backtrack

– uninstantiate any variables in question

– try to find another clause matching question



Backtracking

| -? wet(X)

• match wet(X)

• try wet(water)

– X instantiated to water

X = water ? no 

• uninstantiate X from water

• try wet(milk)

– X instantiated to milk

X = milk ? 



Backtracking

X = milk ? no

• uninstantiate X from milk

• try wet(orange_juice)

– X instantiated to orange_juice

X = orange_juice ? no

• uninstantiate X from orange_juice

• no more matches

no 



Terms and variables

• all occurrences of a variable in a term are 
the same instance

• whenever one occurrence of a variable is 
bound to a value

– all occurrences now reference that value

• e.g. same(X,X).

– both X’s are the same variable



Matching variables

• when a question term with variables matches a 
database term with variables

– variables in the same position share

| ?- same(fish,Y).

• match same(X,X)

• try same(fish,Y)

– X instantiated to fish

– X shares with Y

Y = fish ?



Rules

• rules are superficially similar to methods or functions

– fundamental differences...

• a rule has the form:

head :- body

• means:

1. the head is true if the body is true 

2. the body implies the head

• head – term, usually an atom or structure

• body – term, often a conjunction of terms separated 
by , i.e. , behaves like logical and



Variables in rules

• all occurrences of a variable in a term are the 
same instance

• so occurrences of variables in the head are the 
same instance as occurrences in the body

• whenever an occurrence of a variable in the body 
is bound to a value

– all other occurrences reference that value

– including occurrences in the head

• use this to get results back from body of rule to 
head



Rules
• suppose we have the facts:

mother(betty,ann).

mother(delia,betty).

• X is Y’s parent if they are Y’s mother

parent(X,Y) :- mother(X,Y).

• X’s are same variable

• Y’s are same variable



Rule matching

• to match a rule, try to match the body

• to match the body, try all body options in 
turn

• if matching the body fails:

– backtrack, undoing any variable 
instantiations

– try the next rule option



Rule matching

| ?- parent(delia,P).

• try parent(X,Y) :- mother(X,Y)

• X instantiated to delia

• Y and P share

– match mother(delia,Y) 

– try mother(betty,ann)

– delia does not match betty



Rule matching

– backtrack

– match mother(delia,Y)

– try mother(delia,betty)

– delia matches delia

– bind Y to betty

• P shares with Y so:

P = betty ?



Multiple rules

• multiple rules with the same functor are like 
logical disjunctions

functor (arguments1) :- body1.

functor (arguments2) :- body2.

... 



functor (arguments1) :- body1 or

 functor (arguments2) :- body2 or ...



Rules

• suppose we have the facts:

mother(betty,ann).

mother(delia,betty).

father(chris,ann).

father(eric,betty).

• X is Y’s parent if they are Y’s mother or Y’s father

parent(X,Y) :- mother(X,Y).

parent(X,Y) :- father(X,Y).



Rules

| ?- parent(P,Q).

• try parent(X,Y) :- mother(X,Y)

– P shares with X

– Q shares with Y

– match mother(X,Y)

– try mother(betty,ann)

– X instantiated to betty (shares with P)

– Y instantiated to ann (shares with Y)

P = betty

Q = ann? no



Rules

– backtrack

– match mother(X,Y)

– try mother(delia,betty)

– X insantiated to delia (shared with P)

– Y instantiated to betty (shared with Q)

P = delia

Q = betty ? no

– backtrack



Rules

• try parent(X,Y) :- father(X,Y)

– P shares with X

– Q shares with Y

– match father(X,Y)

– try father(chris,ann)

– X instantiated to chris (shared with P)

– Y instantiated to ann (shared with Q)

P = chris

Q = ann? no

...



Rules

• if the body is a conjunction:

functor(arguments) :- term1,term2...

• body is equivalent to: term1 and term2 and ...

• to match conjunctive body, match each termi in turn

• if matching termi fails then backtrack to termi-1 and try 
again

• NB system must remember how far each termi has 
progressed

• NB termi will also involve nested terms for nested rules



Rule example

• consider the train from Dundee to Aberdeen:

Dundee->Arbroath->Montrose->Stonehaven->Aberdeen

next(dundee,arbroath).

next(arbroath,montrose).

next(montrose,stonehaven).

next(stonehaven,aberdeen).

• X is before Y if X is next to Y or 

            X is next to W and W is before Y

before(X,Y) :- next(X,Y).

before(X,Y) :- before(X,W),next(W,Y).



Rule example
| ?- before(arbroath,aberdeen).

yes

• try before(arbroath,aberdeen) :- next(arbroath,aberdeen)

– try next(arbroath,aberdeen)

– fail & backtrack

• try before(arbroath,aberdeen) :-   

       before(arbroath,W),next(W,aberdeen)

– try before(arbroath,W),next(W,aberdeen) 

– try before(arbroath,W) :- next(arbroath,W)

• next(arbroath,W)

• matches next(arbroath,montrose)

– before(arbroath,W) succeeds with W instantiated to montrose

– try next(montrose,aberdeen)

– fail & backtrack



Rule example
– try before(arbroath,W) :-  

–        before(arbroath,W’),next(W’,W)

–        - where W’ is a new variable

try before(arbroath,W’) :- next(arbroath,W’)

– try next(arbroath,W’)

– matches next(arbroath,montrose)

before(arbroath,W’) succeeds with W’ instantiated to montrose

 try next(montrose,W)

– matches next(montrose,stonehaven)
– before(arbroath,W) succeeds with W instantiated to stonehaven

– try next(stonehaven,aberdeen)

• matches next(stonehaven,aberdeen)

• before(arbroath,aberdeen) succeeds
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