
F28PL1 Programming
Languages

Lecture 17: Prolog 2

Search summary

• question is:

– term or a conjunction of terms

– goal which the system tries to satisfy

• satisfying a goal will usually involve the
satisfaction of sub-goals

• for a conjunction of terms, system
attempts to satisfy each as a sub-goal
from left to right

Search summary

• for a (sub-)goal:

– the data base is searched for a clause with a head
with a functor that matches the goal's functor

– arguments of the clause head are then matched
against the arguments of the goal

– if the clause is a rule then an attempts to satisfy the
body as a new sub-goal

– body satisfaction may complete goal/clause head
matching

– matching results passed back to the parent goal

Search summary

• decisions made in satisfying a sub-goal:

– carried over to subsequent sub-goals

– can only be undone by the failure to
satisfy a subsequent sub-goal

– resulting in backtracking to that
preceding sub-goal

Matching summary
clause

goal atom/integer variable structure

atom/integer fail if not same instantiate (2) fail

variable instantiate (1) share (3) instantiate(1)

structure fail instantiate (2) match (*)

(1)goal argument variable instantiated to
clause atom, integer or structure

(2)clause argument variable instantiated to
goal atom, integer or structure

(3)goal variable and clause variable share:
as soon as one is instantiated so is the
other

(*) structure matching is recursive

Variable summary

• Prolog has no concept of assignment as a change to a
variable's value

– variables are instantiated to values by matching

– instantiation can only be undone by backtracking.

• all occurrences of a variable in a term are references
to the same variable

• a variable may be instantiated as a result of the
satisfaction of any sub-goal from the term

Variable summary
• the instantiation of a variable in a rule body results in:

– all references to the variable accessing that value

– the occurrences in the rule head are instantiated

• matching results in the instantiation in the corresponding goal
argument through sharing

• variable/structure instantiation will delay until the variables in
the structure are instantiated.

Example

• Phil & Robin are friends. Chris & Robin are
friends. Phil & Pat are friends. Jo & Chris are
friends.

• friendship is symmetric: if X is Y’s friend then Y
is X’s friend.

• Phil has an invitation to the party. Pat has an
invitation to the party.

• You can go to the party if you have an
invitation or you have a friend who has an
invitation.

Example
friends(phil,robin).

friends(chris,robin).

friends(phil,pat).

friends(jo,chris).

friends(F1,F2) :- friends(F2,F1).

invitation(phil).

invitation(pat).

party(P) :- invitation(P).

party(P) :- friends(P,F),invitation(F).

Example
• can Robin go to the party?

| ?- party(robin).

yes

• try: party(robin) :- invitation(robin)

– try: invitation(robin)

...

– fail & backtrack

• try: party(robin) :- friends(robin,F),invitation(F)

– try: friends(robin,F)

– ...

– fail & backtrack

Example

– try: friends(robin,F2) :- friends(F2,robin)

– try : friends(F2,robin)

• ...

• matches: friends(phil,robin)

– try: invitation(phil)

– matches: invitation(phil)

Example
• can Chris go to the party?

| ?- party(chris).

yes

• try: party(chris) :- invitation(chris)

– try: invitation(chris)

...

– fail & backtrack

• try: party(chris) :- friends(chris,F),invitation(F)

– try: friends(chris,F)

– ...

– matches: friends(chris,robin)

– try: invitation(robin)

– ...

– fail & backtrack

Example
– try: friends(chris,F2) :- friends(F2,chris)

– try : friends(F2,chris)

• ...

• matches: friends(jo,chris)

– try: invitation(jo)

– ...

– fail & backtrack

– try: friends(F2,chris) :- friends(chris,F2)

– ...

• but already failed with friends(chris,F)

friends(F1,F2) :- friends(F2,F1).

• this never terminates if right hand side fails...!

Limit choices

• only interested in two possibilities: X and Y
are friends or Y and X are friends:

party(X) :- friends(X,Y), invitation(Y).

party(X) :- friends(Y,X), invitation(Y).

• but...

• if invitation(Y) in first clause fails then
will try invitation(Y) again in 2nd
clause

Refactor

• general case:

a(...) :- c(...), b(...).

a(...) :- d(...), b(...).

• if c succeeds but b fails in 1st clause will backtrack, match
d and try to match b again in second clause

• gather together common sub-goals

a :- e,b

e :- c.

e :- d.

• now, if first clause of e fails (c) will try second clause (d)
but not retry b

Example

pals(X,Y) :- friends(X,Y).

pals(X,Y) :- friends(Y,X).

party(X) :- pals(X,Y), invitation(Y).

Cut

• ! - cut operator

• prevent backtracking where it is
unnecessary or incorrect

• commits the system to any choices:

– made since the start of the satisfaction of the goal

– which matched the rule containing the cut

• backtracking over a cut causes that goal to fail

Cut

• someone is popular if they can go to the
party and they don’t talk about computing

popular(P) :-

 party(P), no_computer_talk(P).

• consider Eric, who can go to the party but is
a computer buff:

invitation(eric).

Cut

• try: popular(eric)

– try: party(eric)

– try: invitation(eric)

• matches: invitation(eric)
– try: no_computer_talk(eric)

– fail: so backtrack

– try: party(eric) again

Cut

• backtracking may be prevented by:

popular(P) :- party(P),!,no_computer_talk(P).

• if:

no_computer_talk(P)

• fails then the goal which matched the rule:

popular(P)

• will fail, in this case:

popular(erik)

Anonymous variable

• _ - underline

• matches anything

• nothing is shared or instantiated

Equality

X = Y

• compares X and Y for structural equality

• works for all terms

• = same as: equal(X,X)

X \= Y

• succeeds if X not equal to Y

Arithmetic expressions

+ - addition

- - subtraction

* - multiplication

/ - division

brackets:

(...)

used to impose an explicit evaluation order

Arithmetic expressions

• "arithmetic expressions" are just infix structures

• not normally evaluated

• may be treated in the same way as any other
structure

– e.g. pattern matching

| ?- operands(X+Y,X,Y).

| ?- operands(66+77,O1,O2).

O1 = 66

O2 = 77

Arithmetic evaluation

is

• operator to enforce evaluation

X is Y

• X is a variable

• Y is a term with all variables instantiated

• the “expression” Y is evaluated

• if the variable X is instantiated

– then X's value and the result are compared

• otherwise, X is instantiated to the result

Arithmetic evaluation

| ? - sumsq(X,Y,Z) :-

 Z is (X*X)+(Y*Y).

| ?- sumsq(3,4,25).

yes

| ?- sumsq(5,5,F).

F = 50

Arithmetic evaluation

• right hand side of is must be fully instantiated

• can’t use is to find left hand side values which
make an “expression” evaluate to a right hand
side value

• so, above example can be used to:

– check that an X, Y and Z have the sumsq
relationship

– find Z from X and Y

• can’t be used to find X or Y from Z

Arithmetic evaluation

• is is not an assignment operator

X is X+1

• will always fail

• if X is uninstantiated

– then X+1 fails

– X can’t be incremented

• if X is instantiated

– then X can never match X+1

Numeric recursion

• find sum of first N integers:

• sum of first 0 is 0

• sum of first N is N more than sum of first N-1

sum(0,0).

sum(N,S) :- N1 is N-1, sum(N1,S1),S is S1+N.

• NB can’t just invoke rule with expression argument

– must evaluate expression explicitly

Numeric recursion

| ?- sum(3,S).

s = 6

• try: sum(3,S) :- N1 is 3-1, sum(N1,S1),S is S1+3

– try: N1 is 3-1 – N1 is 2

– try: sum(2,S1)

– try: sum(2,S1) :- N1’ is 2-1,sum(N1’,S1’),S1 is S1’+2

• try: N1’ is 2-1 – N1’ is 1

• try: sum(1,S1’)

– try: sum(1,S1’) :- N1’’ is 1-1,sum(N1’’,S1’’),

– S1’ is S1’’+1

try: N1’’ is 1-1 – N1’’ is 0
try: sum(0,S1’’)

• matches: sum(0,0) – S1’’ instantiated to 0

Numeric recursion
● try: S1’ is 0+1 – S1’ is 1

● try: S1 is 1+2 – S1 is 3

– try: S is 3+3 – S is 6

Numeric comparison

= - equality

\= - inequality

> - greater than

< - less than

>= - greater than or equal to

=< - less than or equal to

• both operands must be instantiated to numbers

– apart from = and \=

Database manipulation

asserta(X)

• X is an instantiated term

• adds X to the database

• before the other clauses with the same functor as X

assertz(X)

• adds X to the database

• after the other clauses with the same functor as X

Database manipulation

retract(X)

• X is a term

• removes first clause matching X from
database

• NB in SICSTUS, cannot assert/retract
clauses with functors like those loaded at
start of program

Database manipulation

• e.g. count how often clauses with the functor

• invitation occur in the database

• need to repeatedly check database

• can’t use recursion to find invitations as each level
will start from database beginning

• can’t combine backtracking with counting

– each backtrack will reverse count

• keep count as clause in database

Database manipulation

check_invitations(N) :-

 asserta(count(0)),

 count_invitations(N).

• puts: count(0)into the database

• calls: count_invitations(N)

Database manipulation
count_invitations(N) :- invitation(_),

 increment.

count_invitations(N) :- retract(count(N)).

• find an invitation

• call increment

– add one to the count

– fail & backtrack to find next invitation

• if finding invitation fails then:

– backtrack to second option

– retract: count(N) from the database

– setting N to the final count

Failure

fail

• always fails

• backtrack to next option for previous sub-
goal

• often use: !,fail to make current goal
fail completely

• NB over use of !,fail can makes
program sequential

Database manipulation

• to keep count:

increment :-

 retract(count(N)), N1 is N+1,

 asserta(count(N1)), !, fail.

• removes: count(N)from the database

– setting N to the current count

• sets N1 to N+1

• puts: count(N1)back into the database

• fail backtracks to ! so increment fails

Database manipulation

| ?- check_invitations(N).

N = 3

• try: check_invitations(N) :-
assert(count(0)),count_invitations(N)

– try: assert(count(0))

– count(0) now in database

– try: count_invitations(N) :- invitation(_),
increment

– try: invitation(_)

• matches: invitation(pat)

Database manipulation
● try: increment :- retract(count(N)), N1
is N+1, assert(count(N1)),!,fail

– try: retract(count(N))
• matches: count(0) - N is 0

– try: N1 is N+1
• N1 is 1

– try: assert(count(N1))
• count(1) now in database

– !, fail - increment fails – backtrack
● try: invitation(_)

– matches: invitation(phil)

Database manipulation
● try: increment :- retract(count(N)), N1
is N+1, assert(count(N1)),!,fail

– try: retract(count(N))
• matches: count(1) - N is 1

– try: N1 is N+1
• N1 is 2

– try: assert(count(N1))
• count(2) now in database

– !, fail - increment fails – backtrack
● try: invitation(_)

– matches: invitation(eric)

Database manipulation
● try: increment :- retract(count(N)), N1
is N+1, assert(count(N1)),!,fail

– try: retract(count(N))
• matches: count(2) - N is 2

– try: N1 is N+1
• N1 is 3

– try: assert(count(N1))
• count(3) now in database

– !, fail – increment fails - backtrack
● try: invitation(_)

– fail & backtrack

Database manipulation

– try: count_invitations(N) :-

– retract(count(N))

matches: count(3) – N is 3

• imperative style of programming

• treating database as memory

• treating assert/retract as assign/get
value

	Slide 1
	Search summary
	Search summary
	Search summary
	Matching summary
	Variable summary
	Variable summary
	Example
	Example
	Example
	Example
	Example
	Example
	Limit choices
	Refactor
	Example
	Cut
	Cut
	Cut
	Cut
	Anonymous variable
	Equality
	Arithmetic expressions
	Arithmetic expressions
	Arithmetic evaluation
	Arithmetic evaluation
	Arithmetic evaluation
	Arithmetic evaluation
	Numeric recursion
	Numeric recursion
	Numeric recursion
	Numeric comparison
	Database manipulation
	Database manipulation
	Database manipulation
	Database manipulation
	Database manipulation
	Failure
	Database manipulation
	Database manipulation
	Database manipulation
	Database manipulation
	Database manipulation
	Database manipulation

