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Search summary

• question is:

– term or a conjunction of terms

– goal which the system tries to satisfy 

• satisfying a goal will usually involve the 
satisfaction of sub-goals

• for a conjunction of terms, system 
attempts to satisfy each as a sub-goal 
from left to right



Search summary

• for a (sub-)goal:

–  the data base is searched for a clause with a head 
with a functor that matches the goal's functor

– arguments of the clause head are then matched 
against the arguments of the goal

– if the clause is a rule then an attempts to satisfy the 
body as a new sub-goal

– body satisfaction may complete goal/clause head 
matching

– matching results passed back to the parent goal



Search summary

• decisions made in satisfying a sub-goal:

– carried over to subsequent sub-goals 

– can only be undone by the failure to 
satisfy a subsequent sub-goal 

– resulting in backtracking to that 
preceding sub-goal



Matching summary
clause

goal atom/integer variable structure

atom/integer fail if not same instantiate (2) fail

variable instantiate (1) share (3) instantiate(1)

structure fail instantiate (2) match (*)

(1)goal argument variable instantiated to 
clause atom, integer or structure

(2)clause argument variable instantiated to 
goal atom, integer or structure

(3)goal variable and clause variable share: 
as soon as one is instantiated so is the 
other

(*) structure matching is recursive



Variable summary

• Prolog has no concept of assignment  as a change to a 
variable's value

– variables are instantiated to values by matching

– instantiation can only be undone by backtracking.

• all occurrences of a variable in a term are references
to the same variable

• a variable may be instantiated as a result of the
satisfaction of any sub-goal from the term



Variable summary
• the instantiation of a variable in a rule body results in:

– all references to the variable accessing that value

– the occurrences in the rule head are instantiated 

• matching results in the instantiation in the corresponding goal 
argument through sharing

• variable/structure instantiation will delay until the variables in 
the structure are instantiated. 



Example

• Phil & Robin are friends. Chris & Robin are 
friends. Phil & Pat are friends. Jo & Chris are 
friends.

• friendship is symmetric: if X is Y’s friend then Y 
is X’s friend.

• Phil has an invitation to the party. Pat has an 
invitation to the party.

• You can go to the party if you have an 
invitation or you have a friend who has an 
invitation.



Example
friends(phil,robin).

friends(chris,robin).

friends(phil,pat).

friends(jo,chris).

friends(F1,F2) :- friends(F2,F1).

invitation(phil).

invitation(pat).

party(P) :- invitation(P).

party(P) :- friends(P,F),invitation(F).



Example
• can Robin go to the party? 

| ?- party(robin).

yes

• try: party(robin) :- invitation(robin)

– try: invitation(robin)

...

– fail & backtrack

• try: party(robin) :- friends(robin,F),invitation(F)

– try: friends(robin,F)

– ...

– fail & backtrack



Example

– try: friends(robin,F2) :- friends(F2,robin)

– try : friends(F2,robin)

• ...

•  matches: friends(phil,robin)

– try: invitation(phil)

– matches: invitation(phil)



Example
• can Chris go to the party? 

| ?- party(chris).

yes

• try: party(chris) :- invitation(chris)

– try: invitation(chris)

...

– fail & backtrack

• try: party(chris) :- friends(chris,F),invitation(F)

– try: friends(chris,F)

– ...

– matches: friends(chris,robin)

– try: invitation(robin)

– ...

– fail & backtrack



Example
– try: friends(chris,F2) :- friends(F2,chris)

– try : friends(F2,chris)

• ...

•  matches: friends(jo,chris)

– try: invitation(jo)

– ...

– fail & backtrack

– try: friends(F2,chris) :- friends(chris,F2) 

– ...

• but already failed with friends(chris,F)

friends(F1,F2) :- friends(F2,F1).

• this never terminates if right hand side fails...!



Limit choices

• only interested in two possibilities: X and Y 
are friends or Y and X are friends:

party(X) :- friends(X,Y), invitation(Y).

party(X) :- friends(Y,X), invitation(Y).

• but...

• if invitation(Y) in first clause fails then 
will try invitation(Y) again in 2nd 
clause 



Refactor

• general case:

a(...) :- c(...), b(...).

a(...) :- d(...), b(...).

• if c succeeds but b fails in 1st clause will backtrack, match 
d  and try to match b again in second clause

• gather together common sub-goals

a :- e,b

e :- c.

e :- d.

• now, if first clause of e fails (c) will try second clause (d) 
but not retry b



Example

pals(X,Y) :- friends(X,Y).

pals(X,Y) :- friends(Y,X).

party(X) :- pals(X,Y), invitation(Y).



Cut

• ! - cut operator

• prevent backtracking where it is
unnecessary or incorrect

• commits the system to any choices:

–  made since the start of the satisfaction of the goal

– which matched the rule containing the cut

• backtracking over a cut causes that goal to fail



Cut

• someone is popular if they can go to the 
party and they don’t talk about computing

popular(P) :- 

       party(P), no_computer_talk(P).

• consider Eric, who can go to the party but is 
a computer buff:

invitation(eric).



Cut

• try: popular(eric)

– try: party(eric)

– try: invitation(eric)

• matches: invitation(eric)
– try: no_computer_talk(eric) 

– fail: so backtrack

– try: party(eric) again



Cut

• backtracking may be prevented by:

popular(P) :- party(P),!,no_computer_talk(P).

• if: 

no_computer_talk(P)

• fails then the goal which matched the rule:

popular(P)

• will fail, in this case:

popular(erik)



Anonymous variable

• _ - underline

• matches anything

• nothing is shared or instantiated



Equality

X = Y

• compares X and Y for structural equality

• works for all terms

• = same as: equal(X,X)

X \= Y

• succeeds if X not equal to Y



Arithmetic expressions

+ - addition

- - subtraction

* - multiplication

/ - division

brackets: 

( ...) 

used to impose an explicit evaluation order



Arithmetic expressions

• "arithmetic expressions" are just infix structures

• not normally evaluated

• may be treated in the same way as any other 
structure

– e.g. pattern matching

| ?- operands(X+Y,X,Y).

| ?- operands(66+77,O1,O2).

O1 = 66

O2 = 77



Arithmetic evaluation

is

• operator to enforce evaluation

X is Y

• X is a variable 

• Y is a term with all variables instantiated

• the “expression” Y is evaluated

• if the variable X is instantiated

– then X's value and the result are compared

• otherwise, X is instantiated to the result



Arithmetic evaluation

| ? - sumsq(X,Y,Z) :- 

        Z is (X*X)+(Y*Y).

| ?- sumsq(3,4,25).

yes

| ?- sumsq(5,5,F).

F = 50



Arithmetic evaluation

• right hand side of is must be fully instantiated

• can’t use is to find left hand side values which 
make an “expression” evaluate to a right hand 
side value

• so, above example can be used to:

– check that an X, Y and Z have the sumsq 
relationship 

– find Z from X and Y 

• can’t be used to find X or Y from Z



Arithmetic evaluation

• is is not an assignment operator

X is X+1

• will always fail

• if X is uninstantiated 

– then X+1 fails

– X can’t be incremented 

• if X is instantiated

– then X can never match X+1



Numeric recursion

• find sum of first N integers:

• sum of first 0 is 0

• sum of first N is N more than sum of first N-1

sum(0,0).

sum(N,S) :- N1 is N-1, sum(N1,S1),S is S1+N.

• NB can’t just invoke rule with expression argument

– must evaluate expression explicitly



Numeric recursion

| ?- sum(3,S).

s = 6

• try: sum(3,S) :- N1 is 3-1, sum(N1,S1),S is S1+3

– try: N1 is 3-1 – N1 is 2

– try: sum(2,S1)

– try: sum(2,S1) :- N1’ is 2-1,sum(N1’,S1’),S1 is S1’+2

• try: N1’ is 2-1 – N1’ is 1

• try: sum(1,S1’)

– try: sum(1,S1’) :- N1’’ is 1-1,sum(N1’’,S1’’), 

–                    S1’ is S1’’+1

try: N1’’ is 1-1 – N1’’ is 0
try: sum(0,S1’’)

• matches: sum(0,0) – S1’’ instantiated to 0



Numeric recursion
● try: S1’ is 0+1 – S1’ is 1

● try: S1 is 1+2 – S1 is 3

– try: S is 3+3 – S is 6



Numeric comparison

=  - equality

\= - inequality

> - greater than

<  - less than

>= - greater than or equal to

=< - less than or equal to

• both operands must be instantiated to numbers

– apart from = and \= 



Database manipulation

asserta(X)

•  X is an instantiated term

• adds X to the database 

• before the other clauses with the same functor as X

assertz(X)

• adds X to the database 

• after the other clauses with the same functor as X



Database manipulation

retract(X)

• X is a term

• removes first clause matching X from 
database

• NB in SICSTUS, cannot assert/retract 
clauses with functors like those loaded at 
start of program



Database manipulation

• e.g. count how often clauses with the functor

• invitation occur in the database

• need to repeatedly check database

• can’t use recursion to find invitations as each level 
will start from database beginning

• can’t combine backtracking with counting 

– each backtrack will reverse count

• keep count as clause in database



Database manipulation

check_invitations(N) :- 

 asserta(count(0)),

 count_invitations(N).

• puts:  count(0)into the database 

• calls:  count_invitations(N)



Database manipulation
count_invitations(N) :- invitation(_),

                        increment.

count_invitations(N) :- retract(count(N)).

• find an invitation 

• call increment

– add one to the count

– fail & backtrack to find next invitation

• if finding invitation fails then: 

– backtrack to second option 

– retract: count(N) from the database

– setting N to the final count



Failure

fail

• always fails

• backtrack to next option for previous sub-
goal

• often use: !,fail to make current goal 
fail completely

• NB over use of !,fail can makes 
program sequential



Database manipulation

• to keep count:

increment :-

 retract(count(N)), N1 is N+1,

 asserta(count(N1)), !, fail.

• removes: count(N)from the database

– setting  N to the current count

• sets N1 to N+1

• puts: count(N1)back into the database

• fail backtracks to ! so increment fails



Database manipulation

| ?- check_invitations(N).

N = 3

• try: check_invitations(N) :- 
assert(count(0)),count_invitations(N)

– try: assert(count(0))

– count(0) now in database

– try: count_invitations(N) :- invitation(_), 
increment

– try: invitation(_)

• matches: invitation(pat)



Database manipulation
● try: increment :- retract(count(N)), N1 
is N+1, assert(count(N1)),!,fail

– try: retract(count(N))
• matches: count(0) - N is 0

– try: N1 is N+1
• N1 is 1

– try: assert(count(N1))
• count(1) now in database

– !, fail - increment fails – backtrack
● try: invitation(_)

– matches: invitation(phil)



Database manipulation
● try: increment :- retract(count(N)), N1 
is N+1, assert(count(N1)),!,fail

– try: retract(count(N))
• matches: count(1) - N is 1

– try: N1 is N+1
• N1 is 2

– try: assert(count(N1))
• count(2) now in database

– !, fail - increment fails – backtrack
● try: invitation(_)

– matches: invitation(eric)



Database manipulation
● try: increment :- retract(count(N)), N1 
is N+1, assert(count(N1)),!,fail

– try: retract(count(N))
• matches: count(2) - N is 2

– try: N1 is N+1
• N1 is 3

– try: assert(count(N1))
• count(3) now in database

– !, fail – increment fails - backtrack
● try: invitation(_)

– fail & backtrack



Database manipulation

– try: count_invitations(N) :-  

–       retract(count(N))

matches: count(3) – N is 3

• imperative style of programming

• treating database as memory

• treating assert/retract as assign/get 
value
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