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Abstract 
 

The Unified Modeling Language (UML) is the de facto standard for designing models of 
software systems in both industry and academia.  UML has many advantages, and is 
often the tool of choice when conveying information between various stakeholders.  
UML’s main disadvantage is that it is too abstract – resulting in ambiguous models.  In 
safety critical systems, ambiguity could result in the loss of property or be detrimental to 
life.  With the continuous use of UML in the software industry, there is a need to amend 
the informality of software models produced.   
 
The objective of this research is to use formal specification to enhance the shortcomings 
of UML and analyze its significance to safety critical systems.  The proposed approach is 
to design a UML class diagram of a safety critical system and remodel it using formal 
methods.  From this process, an assessment can be made of the inherent benefits of 
formalizing models of safety critical systems. 
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1.  INTRODUCTION 
 
Graphical models of software systems are designed in the early phase of the Software 
Development Life Cycle (SDLC).  In the software industry, models are important 
because they: 1) serve as a blueprint of the proposed system, 2) aid in the understanding 
of the project, and; 3) act as a guideline for developers.  The nature of the proposed 
system will determine how complex its models will be and the tactics used to design and 
test them.  Safety critical systems can be regarded as a complex system and models of 
complex systems are built because one cannot comprehend any such system in its entirety 
[1].  Models serve as an abstract view of the system and suppress any details pertaining to 
implementation.  Its purpose is to represent the system at a high-level; and in achieving 
this level of abstraction, it is possible to over-look or misrepresent critical aspects of the 
system.  Therefore, it is important that the correctness of software models be ascertained 
at an early stage in the software development life cycle – especially if these models are of 
safety critical systems. 
 
A safety critical system is one in which any loss or misrepresentation of data could result 
in injury, loss of lives and/or property.  This type of system is common in industries such 
as:  

• Aeronautics:- systems used to regulate the flight of aerial vehicles,  
• Medicine:- systems which diagnose and treat patients, 
• Space Exploration: - systems that transport or support life form and objects into 

outer-space. 
 
The software development community has recognized the Unified Modeling Language 
(UML) [1] as the de facto standard for designing graphical models of software systems in 
both industry and academia.  UML has many strong points.  It is technical enough to 
model a system’s internal and external components; yet simple enough to explain to non-
technical stakeholders – such as customers.  UML has a wide variety of models and 
notations that is intended to equip the developer with the appropriate tools to capture the 
static and dynamic aspects of a system.  Its flexibility and object oriented modeling 
capability are among the primary reasons for its acceptance.  However, its weaknesses 
have posed many challenges and ambiguity among software developers. 
 
UML’s disadvantage lies in the lack of rigorous rules and precise semantics when 
designing models [3].  For this reason, many decisions on how user requirements are 
modeled are left to the modeling technique adopted by the software engineer.  Ambiguity 
is caused when these models are circulated among software engineers and each interprets 
them differently.  To overcome prominent limitations of UML, formal specification 
techniques have been proposed by [4] and are often used to describe and verify models.  
Formal methods involve the use of a specification language to design models that are 
mathematically tractable and unambiguous.  To amend the informality of graphical 
models, model transformation will be done and the formal models will be analyzed by a 
proof tool to check its syntax and semantics.  Any errors found will be amended to the 
original graphical models; and this process will be repeated until the proof tool does not 
detect any errors in the model.  The specification language that will be used is called Z 
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(“Zed”) [2].  Z is a notation that is used in describing software systems based on the 
mathematical principles of set theory and predicate logic.  It was created by Jean-
Raymond Abrial [3] in 1977.   
 
This paper encompasses the development of a UML class diagram of a safety critical 
system.  This aspect of the work was inspired from research currently being conducted at 
the University of North Dakota (UND).  The focus of their research is on designing an 
air-truth system that acts as a guide for the operation of unmanned aerial vehicles (UAVs) 
in the US National Airspace [9].  In such systems, the integrity and correctness of data is 
crucial to its operation and acceptance by, not just the Federal Aviation Administration 
(FAA), but by all interested parties.  In the realm of software development, no perfect 
software development strategy exists.  However, finding an optimal approach to a 
particular application domain is fundamental to acceptance.  In the design of safety 
critical system, its very nature requires that an optimal methodology and technique be 
sought and applied – especially if a loss in life or property may occur.   

 
The remainder of the report is as follows; Section 2 presents the background research 
areas, Section 3 outlines the proposed methodology and Section 4 concludes the report. 
 
 

2.  Background 
 
 

2.1  The Unified Modeling Language 
 
The UML is a language for specifying, visualizing, constructing, and documenting the 
artifacts of software systems [1] and serves as a blueprint for software engineers.  UML is 
an object-oriented modeling language that promotes some of the best software 
development practices; and this very quality is among the primary reasons for its 
acceptance.  UML's usefulness is felt in the early phase of the software development life 
cycle (SDLC) where it is used to depict a high-level representation of the proposed 
system.   
 
The UML helps developers to obtain an abstract view of the proposed system.  This 
abstract representation is achieved through the design of various types of models, which 
capture the structure and behavior of the system and its internal and external components.  
Its intent is to facilitate improved communication among members of the development 
team as each can comprehend the project as a whole before dividing the work, and; it 
helps developers to identify if user requirements will be adequately addressed by the 
system.  UML is widely accepted because of its simplicity, which makes it easily 
understood by developers thereby making it easily conveyed to their customers [6].   
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2.1.1  UML Diagrams and Relationships 
 
Diagrams in UML are grouped into the following three categories: structure, behavior, 
and interaction diagrams.  Structure diagrams represent the static composition of the 
system [5].  These diagrams illustrate the role of objects and classes – along with their 
respective attributes and operations.  They also show the flow of data between objects 
and classes; and the relationships that exist between them. Examples of structure 
diagrams include class, component, object, deployment and package diagrams.   
Behavior diagrams represent the dynamic features of the system by showing how the 
system is acted upon.  Behavior diagrams include use case, activity, and state diagrams. 
Interaction diagrams are an extension of behavior diagrams but focuses mainly on the 
internal elements of the system.  Examples of interaction diagrams include sequence and 
collaboration diagrams. 

 
Class diagrams and use case diagrams facilitate communication between non-technical 
stakeholders (i.e. customers) and developers.  The more complex UML diagrams such as 
sequence and state chart diagrams are more technical and suitable for astute stakeholders; 
such as engineers and developers. 
 
The scope of this paper will be on the static UML models – more specifically, the class 
diagram.  Creation of a new class diagram in UML begins with a class.  By UML 
standards, a class is represented as a rectangular box with three compartments: the class 
header, list of attributes, and list of operations.  For demonstration purposes, classes will 
be depicted with two sections: a header and a suppressed list of attributes and operations.  
Figure 1 illustrates a UML class diagram, in which the generalization/specialization 
relationship is represented, with classes Class B and Class C are specialized classes of the 
generalized class Class A. 
 
 
 
 
 

 
 
 
 
 

Figure 1: Example of a UML class diagram 
 
In the UML, class diagrams relationships are depicted by lines that connect two or more 
classes.  These lines specify the types of relationships that exist between the classes, the 
flow of information, and restrictions on the relationships.  Relationships include, but are 
not limited to, associations (bidirectional and unidirectional), aggregations (strong and 
weak) and hierarchical (generalization/specialization, or parent-child).  Figure 2 
illustrates a class diagram with a simple association between classes Class A and Class D, 

Class A 

Class B Class C 
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and an aggregation relationship between classes Class A, Class B, and Class C – Wherein 
class Class A is composed of classes Class B and Class C. 

 
 
 
 

 
 
 
 
 
 

 
Figure 2: Example of UML class diagram relationship 

 
 

2.1.2  Disadvantages of UML 
 
UML, like many other software development tools, has its weaknesses.  UML lacks 
precise semantics, which results in the models being subject to multiple interpretations.  
Due to UML's innate flexibility, developers are given much leeway when designing 
models.  This is both positive and negative.   This freedom enables the developer to 
capture and model requirements based on the modeling technique they have adopted.  
Problems arise when these models are circulated among the development team and each 
developer interprets the models incorrectly – which could affect the latter stages of the 
SDLC.  Annotations can be used to alleviate this; however, annotations can be 
misinterpreted because it is expressed in natural language [3].  
  
Another disadvantage is, after the initial stage of the project, updating models is often 
deemed tedious and time-consuming.  As a result, critical changes are often not reflected 
in the model; albeit the source-code reflects the change.  Therefore, when the software 
maintenance is required and developers need to obtain a general overview of the project, 
the UML models are often inconsistent with the source code and its significance is lost. 
[7] 
 
In some systems, these disadvantages may not have a significant effect on the quality of 
software produced.  However, in safety critical systems a flaw could result in the loss of 
property or be detrimental to life.  Since UML is widely accepted within the industry, 
there is a need for methods to test the correctness of its models.  This can be achieved 
with the use of formal specification techniques (FSTs).   
 
 
  

Class A 

Class B Class C 

Class D 
0..n 0..* 

0..n 1..n 
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2.2  Formal Specification Techniques 
 
Formal specification involves the use of a specification language to describe and model 
software more accurately.  It uses mathematical concepts and principles to model both the 
static and dynamic aspects of a system; which results in software models that are not just 
sound but tractable.  FSTs allow developers to analyze the syntax and semantics of 
models using a proof tool and make any necessary changes in an evolutionary manner.  
The specification language that will be used is called Z.  To transform UML models into 
Z notation, a Z schema is created for each UML class, association and relationship.  The 
attributes and operations of the UML class are also included in the schema.  Constraints 
are defined on the relationships between schemas.  This prohibits or permits a schema 
access to its environs.   
 
A schema in Z has two parts: a declaration and a predicate part [11].  The declaration part 
consists of variables which are synonymous to the definition of attributes in a UML class.  
The fundamental difference, however, is that the variable declaration types are expressed 
as mathematical notations unless they are user defined types.  The predicate part imposes 
constraints on the variables defined in the declaration part.  Figure 3 illustrates the 
structure of a Z schema. 
 

 
 

Figure 3: Example of a Z schema 
 

After the models are transformed into Z notation, they will be analyzed by Z/EVES.  
Z/EVES is a proof tool which tests the syntax and semantics of the models.  This process 
is called software testing.  Software testing is the process by which software models 
undergo a series of analysis to check for errors.  It is also used to determine if the quality 
of the software produced meets user requirements and if it performs as expected – even 
under stress.  It is impractical for testing to detect all types of errors; and even the most 
rigorous testing procedure will, as Edsger Dijkstra stated, show the presence of bugs but 
never their absence [8].  However, it is still important for software models to undergo 
testing – especially if they are models of a safety critical system. 

 

 

2.3  Model Transformation 
 
The level of abstraction provided by models helps developers and stakeholders visualize 
different aspects of the system while avoiding the details of implementation. For any 
given system, a large number of models can exist and it is important to ensure their 
overall consistency [10].  Model transformation uses a set of rules called transformation 
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rules, which accepts one or more models as input and produce one or more target models 
as output [10].   

Model transformation can be either manual – i.e. defining custom transformation rules; or 
it can be automatic – applying predefined transformation rules.  It is important, however, 
that the software engineer have a good understanding of the scope of the project, the 
syntax and semantics of the source and target models irrespective of the transformation 
approach taken.  In order to automate the proposed approach, transformation rules will be 
designed and applied to the models.  The source models will be the UML class diagrams 
and the target models will be their equivalent Z schemas.   

 
 

3.  Methodology 
 
There is a plethora of literature in the area of transforming UML class diagrams using 
FSTs.  There are many similarities as well as differences in each approach.  However, 
this research seeks to modify an existing approach and apply it to a real world system.  
This research will also use a theorem prover to verify the formal models in order to 
determine if the approach is sound.  From this analysis, one can determine the best way to 
automate the formalization of safety critical systems.  The proposed approach is inspired 
collectively by the works of [3],[4] and [11].  The highlight of their work is on the 
advantages and disadvantages of a more formal approach to modeling software systems.  
It also demonstrates how to transform UML class diagrams into formal models using Z.   
 
For the purpose of automating this process, the approach taken in this methodology is to 
define a strict set of sequential rules that – if followed correctly – will achieve correct 
formal models.  The fundamental difference between the two approaches is that the 
modified approach will be applied as a case study against a real world safety critical 
system, inspired by research at UND.  From this case study, one can determine the 
suitability of automation and the optimality of the approach taken.   
 
Figure 4 highlights the proposed approach.  Initially, UML class diagrams will be created 
for the system.  Model transformation will then take place producing representative 
formal models.  The formal models will be analyzed using Z/EVES to check the syntax 
and semantics of the models.  If errors are found, they will be documented and 
corrections will be made to the original graphical models.  The corrected models will 
undergo model transformation, and the transformed models will be analyzed by the proof 
tool; this process will be repeated until errors are not detected by Z/EVES.  Subsequently, 
programming and code generation can begin. 
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Figure 4: The Transformation Process 
 
An example of the UML class diagram which was derived from the real world system is 
illustrated in Figure 5.  Figure 5 illustrates the Aircraft class as being composed of a 
Coordinate class and specialized as a MAV (Manned Arial Vehicle) and UAV (Un-
manned Arial Vehicle).  These models will be transformed into Z notation then analyzed 
by use of the Z/EVES tool; any corrections found will be amended to the original UML 
models.  

 

 
 

Figure 5: UAS Aircraft Class Diagram 
 
The set of rules for the model transformation are as follows:  
 
A schema will be created for each of the following: 

• Attributes:- The attributes of a class will be grouped together.  Predicates will be 
defined for constraints on each attribute.  In Figure 5, the logitude, latitude and altitude 

MAV

MAV_ID : String
MAV_class : String

UAV

UAV_ID : String
UAV_class : String

Aircraft

call_sign : String
roll : Integer
air_speed : Integer
heading : Integer

Coordinate

longitude : Double
latitude : Double
altitude : Double 1..n1..n 1..n1..n

Model Transformation 

Yes No 

Create or 
Update UML 
Models 

Formal 
Specification 
Models 

Type 
Checking & 
Analysis 

Code 
Generation 

Error 
Reporting 
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attributes will be grouped together in a schema.  This process will be performed for each 
class. 
 

• Classes:- A schema will be created for each UML class which will be comprised of 
their attribute schema and operations.  In Figure 5, a schema will be created for the 
Coordinate class – which will include its attribute schema.  This process will be applied 
to all UML classes. 
 

• Relationships:- This schema definition pertains to the different types of 
relationships that exists in the class diagram, along with their respective multiplicities.  A  
schema will be created for each relationship.  In Figure 5, two relationship schemas will 
be defined.  One for the aggregate relationship and the other for the 
generalization/specialization relationship.  Each schema will define additional constraints 
on the relationship, such as the multiplicities and schema ownership rules.  The 
relationship schema will also define constraints such as the number of objects  that are 
allowed to be instantiated in the system at any given time.   
 
One of the key features of this approach is the processing of UML annotations.  To avoid 
ambiguities, software engineers often attach annotations to their graphical models.  
However, anything expressed in natural language is innately subject to multiple 
interpretations.  Therefore, this work also seeks to formalize constraints and annotations 
imposed on UML graphical models. 
 
After the formal models are created, they will be analyzed by use of the Z/EVES theorem 
prover.  This process is essential for identifying errors and omissions in the original 
graphical models.  If errors are found, they will be documented for the software engineer 
to make changes to the UML models.  This process will be repeated until errors are not 
detected in the models.  An example of the formal models produced by the manual 
transformation of the graphical model in Figure 5 is illustrated below: 
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[RANGE_OBJECT] 
 
[COORDINATE] 
 
[STRING] 
 
»_Aircraft _________________ 
Æaircraft: P RANGE_OBJECT 
Æcall_sign: RANGE_OBJECT f STRING 
Æair_speed: RANGE_OBJECT f N 
Æheading: RANGE_OBJECT © N 
«_______________ 
Ædom call_sign = aircraft 
Ædom air_speed = aircraft 
Ædom heading = aircraft 
ÆA airspeed: N •  airspeed e ran air_speed fi airspeed ¯ 250 
ÆA hdg: N • hdg e ran heading fi hdg ¯ 360 
–_____________________ 
 
»_Coordinate _______________ 
Æcoordinate: P COORDINATE 
Ælongitude: P Z 
Ælatitude: P Z 
Æaltitude: P Z 
Æair_coord: (Z x Z) x Z ß COORDINATE 
«_______________ 
Ædom air_coord = (longitude x latitude) x altitude 
ÆA alt: altitude • alt ¯ 18000 
ÆA lat: latitude • - 90 ˘ lat ¯ 90 
ÆA lon: longitude • - 180 ˘ lon ¯ 180 
–______________________ 
 
»_MAV___________________ 
ÆAircraft 
Æmav: P RANGE_OBJECT 
Æmav_ID: F STRING 
Æmav_class: F STRING 
Æaircraft_ID: RANGE_OBJECT f STRING 
«_______________ 
Ædom aircraft_ID = aircraft 
Æran aircraft_ID = mav_ID 
–______________________ 
 

»_UAV___________________ 
ÆAircraft 
Æuav: P RANGE_OBJECT 
Æuav_ID: F STRING 
Æuav_class: F STRING 
Æaircraft_ID: RANGE_OBJECT f STRING 
«_______________ 
Ædom aircraft_ID = aircraft 
Æran aircraft_ID = uav_ID 
–______________________ 
 
»_Aircraft_Hierarchy _____________ 
ÆMAV 
ÆUAV 
Æuav1, mav1: P RANGE_OBJECT 
«_______________ 
ÆA i, j: MAV • i.mav_ID = j.mav_ID ¤ i = j 
ÆA i, j: UAV • i.uav_ID = j.uav_ID ¤ i = j 
ÆA u: uav1; m: mav1 • u e aircraft ¶ m e aircraft ¶ u e uav ¶ 
m e mav 
Æmav I uav = 0 
Æmav U uav c aircraft 
–_________________________ 
 
»_Aircraft_Coordinate_Rel____________ 
ÆCoordinate 
ÆAircraft 
Ærel: COORDINATE j RANGE_OBJECT 
«_______________ 
ÆA i, j: Coordinate • i.coordinate = j.coordinate ¤ i = j 
Ædom rel = coordinate 
Æran rel = aircraft 
ÆA a: aircraft • 0 ¯ # (rel ~ · {a} ‚) ¯ 1 
ÆA c: coordinate • # (rel · {c} ‚) ˘ 1 
–__________________________ 

 

Figure 6: UAS Aircraft Z Schemas 

 

The collection of schemas in Figure 6 depicts the formal model of the class diagram 
represented in Figure 5.  From the aircraft class, an Aircraft schema was derived.  In the 
first half of the Aircraft schema, variables were declared, however primitive data types 
were not used.  In the second half of the Aircraft schema, constraints on the variables 
were defined; a similar approach was taken for the coordinate class in Figure 5.   

 

The children of the aircraft class, i.e. MAV and UAV, where defined in terms of its 
parent Aircraft schema.  This relationship is shown, where each child includes the parent 
schema in the variable declaration part, and in the predicate part constraints are defined 
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on the relationship.  The Aircraft_Hierarchy schema further constrains this relationship 
by describing the uniqueness of the children and their objects.  A similar approach was 
taken for the schema definition of the Coordinate class and its relationship with the 
Aircraft class. 

The syntax and semantics of the schemas in Figure 6 were checked by use of the Z/EVES 
analysis tool.  The proof tool essentially determined the validity of the schemas and their 
respective constraints.  Any errors found were amended to both the original graphical 
models and the formal models.   

The schemas in Figure 6 are cumbersome because the process applied in defining them 
did not adhere to the sequence of steps outlined earlier.  Therefore, the automated 
transformation will not only speed up the formalization process but also simplify the 
schema definitions. 

 

 

4.  Conclusion 
 
In the software development industry, the benefits of formal methods are known.  
However, unlike its counterpart graphical models, it is not quickly gravitated to because 
it is not very easy to learn.  In order to circulate formal models among the software 
development team, each member is required to be adept in not just the area of formal 
methods but the specification language chosen.  For this reason, the use of FSTs is not 
entertained unless it is deemed absolutely necessary. One such case is in the development 
of safety and mission critical systems. 

Currently, formalization is conducted manually.  In order to move from research to 
productive use of this technique, there has to be some high degree of automation.  
Therefore, conducting a case study in the area of automated tools for FSTs in safety 
critical systems will enlighten researchers on the complexity, advantages and possible use 
of such software.  

In conclusion, the use of FSTs can be advantageous in the development of complex 
software systems.  FSTs have existed before the conception of UML, its graphical 
counterpart.  However, unlike UML it does not have that high level of simplicity that 
makes its models easily conveyed to both technical and non-technical stakeholders.  It 
also requires a certain level of detail in order to exploit its full potential.  Therefore, this 
case study will determine an optimal approach in the design of tools, which automate 
FSTs, their advantages and possible use.  
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