
Formal Specification F28FS2, Lecture 11
ML as an implementation of Z

Jamie Gabbay

March 11, 2014

1 / 24

Translating the types

Recall the F28PL course on ML. We will now apply this to Z.

Model integers Z, natural numbers N, and nonzero natural
numbers N1 as int.

Model powerset PT as T list (only good for finite sets, but often
that is enough). So for instance, the Z type PPN1 is modelled in
ML as int list list.

Lists are ordered and may contain repetitions. This will be fine so
long as we only write programs on lists that are not sensitive to
order or repititions, they ‘might as well’ be sets.

2 / 24

Translating the types

Model sequence seq T , iseq T , and seq1 T as a list T list. So for
instance, the Z type P(seq(iseq(N))) is modelled in ML as int

list list list.

Model function types as ML function types. So for instance,
N1 → Z is modelled in ML as int -> int.

Model predicates as ML function types to bool. So for instance, a
binary predicate on numbers such as < is modelled in ML as a
term of type int*int -> int.

3 / 24

Fibonacci in Z and in ML

Fibonacci numbers specified in Z:

Fibonacci
fib : seqN

fib(1) = 1
fib(2) = 2
∀ n:N | n ≥ 2 • fib(n) = fib(n − 1) + fib(n − 2)

Translation to ML:

fun fib 1 = 1

| fib 2 = 2

| fib n = fib(n-1) + fib(n-2);

4 / 24

Ackermann function

Ackermann function specified in Z:

Ackermann
ack : N× N→ N

∀ n:N • ack(0, n) = n + 1
∀m:N | m>0 • ack(m, 0) = ack(m−1, 1)
∀m, n:N | m>0∧n>0 • ack(m, n) = ack(m−1, ack(m, n−1))

Translation to ML:

fun ack(0,n) = n+1

| ack(m,0) = ack(m-1,1)

| ack(m,n) = ack(m-1,ack(m,n-1));

5 / 24

Ackermann function: Z and ML

Compare and contrast the Z spec with the ML function:

The Z spec has quantifiers; the ML function does not. In ML,
(universal) quantifiers are implicit in the pattern-matching.

The Z spec has guards, such as m > 0 and n > 0; the ML function
does not. Guards are implicit in the evaluation order in ML.

The Z spec does not have an underlying abstract machine or
evaluation order. ML does.

The Z spec is agnostic about the underlying implementation; it
does not care if we implement in ML, C, or Brainf*ck—or if we
implement at all, or if any implementation even exists. A schema is
not a program!

The ML code is still abstract and high-level, but it assumes an
underlying machine (and more specifically: top-down left-right
eager λ-calculus). For this we sacrifice abstractness.

6 / 24

Sets membership

If x : T and X : PT then ‘x ∈ X ’ is a predicate asserting that x is
an element of X . So for instance,
Andrex ∈ FamousBrandNames : PBRANDNAME is valid.

Sets membership in ML:

fun member x [] = false

| member x (hd::tl) = (x=hd) orelse member x tl;

val member = fn : ’’a -> ’’a list -> bool

member 5 [1,2,3];

val it = false : bool

member 5 [1,5,5,6];

val it = true : bool

7 / 24

Sets subtraction

SetMinusT
\ : PT × PT → PT

∀X ,Y :PT • X \ Y = {x : T | x ∈ X ∧ x 6∈ Y }

Translation to ML:

fun smin [] Y = []

| smin (hd::tl) Y = if (member hd Y)

then (smin tl Y)

else hd::(smin tl Y);

val smin = fn : ’’a list -> ’’a list -> ’’a list

8 / 24

Sets intersection

Just the predicate:

X ∩ Y = {x : T | x ∈ X ∧ x ∈ Y }

Translation to ML:

fun sint [] Y = []

| sint (hd::tl) Y = if (member hd Y)

then hd::(sint tl Y)

else (sint tl Y);

val sint = fn : ’’a list -> ’’a list -> ’’a list

9 / 24

Sets union
Just the predicate:

X ∪ Y = {x : T | x ∈ X ∨ x ∈ Y }

Translation to ML:

fun suni [] Y = Y

| suni (hd::tl) Y = if (member hd Y)

then (suni tl Y)

else hd::(suni tl Y);

val suni = fn : ’’a list -> ’’a list -> ’’a list

Or:

fun suni’ X Y = X @ Y

(See also concatenation below.) Compare and contrast the two
implementations above.

10 / 24

suni and suni’

suni is relatively slow (O(n) where n = #X), whereas suni’ is
relatively quick (depending on implementation; constant time?).

suni tends to eliminate repetitions, e.g. suni X X will return X.
suni’ tends to create repetition, e.g. suni’ X X will return two
copies of X strung together.

So suni is good if we care to operate on the result many times, so
want an economical representation of the set (no repetitions).
suni’ is good if we do not care about efficiency.

11 / 24

suni and suni’

Note that ‘equality’ on int list depends on where the int came
from; if it came from seqN then we care about repetition and
ordering, whereas if it came from PN then we do not, and two ML
lists are ‘equal’ if they are equal up to repetitions and reordering.

In mathematical computer science, equality is typically a more
subtle issue than in pure mathematics.

There may not even be a well-defined notion of equality; e.g. one
way to phrase Gödel’s incompleteness theorem is that even on the
type unit -> unit, there is no computable equality.

12 / 24

Stacks and push

Model a stack l of elements of T as seq T .

A schema to push l :

push
l , l ′ : seq T
hd? : T

l ′ = {1 7→ hd?} ∪ {i 7→ x : l • i + 1 7→ x}

Implementation in ML:

fun push hd l = hd::l;

13 / 24

Pop

A schema to pop from l :

pop
l , l ′ : seq T
hd ! : T

#l > 0
hd ! = l(1)
l ′ = {i : dom(l) | i > 1 • i−1 7→ l(i)}

Implementation in ML:

fun pop (hd::tl) = (hd,tl);

14 / 24

Concatenation

Recall concatenation:

T cat
a : seq T × seqT → seq T

∀ s, t : seq T•
s a t = s ∪ {n ∈ dom(t) • (n +#s) 7→t(n)}

Implementation in ML (not what I’m looking for):

fun concat l1 l2 = l1@l2;

Implementation in ML (what I’m looking for):

fun conc [] l = l

| conc (hd::tl) l = hd::(conc tl l);

15 / 24

Filtering

Model a predicate on T as a function T → Bool .

Recall if L : seq T and T ′ ⊆ T then L � T ′ is the sequence of
elements in L that are also in T ′.

For example [tom, dick , harry] � {tom, harry , jones} = [tom, harry].

Implementation of filtering in ML:

fun filter [] P = []

| filter (hd::tl) P = if (P hd)

then hd::(filter tl P)

else (filter tl P);

val filter = fn : ’a list -> (’a -> bool) -> ’a list

filter [1,2,3,4] (fn x => not(x=3));

val it = [1,2,4] : int list

16 / 24

Filtering
The set T ′ ⊆ T became a predicate P : ’a -> bool.

Sets T and predicates P are equivalent in Z. Isomorphism given by:

P 7−→ {x : T | P(x)}
λ x : T .x ∈ T ′ 7−→ T ′

ML has two implementations of a predicate on N: as a function
int -> bool, and as a set int list.

Compare and contrast these two: int list is an equality type;
int -> bool is not. int list only permits finite sets (such as
[1,2,3]); int -> bool permits, and indeed invites, infinite
functions (such as ‘is even’).

int -> bool is the natural model of predicates on N in Z.

int list is the natural model of powerset N in Z.

Even though in Z, predicates and subsets are isomorphic!

p.s. for the keen: see streams; infinite lists.
17 / 24

Sets by range

range m n = if (m>n) then [] else m::(range (m+1) n);

val range = fn : int -> int -> int list

range 0 5; val it = [0,1,2,3,4,5] : int list

This models the set 0..5 : PZ (and also 0..5 : PN).

18 / 24

Quantification

Consider

fun all [] P = true

| all (hd::tl) P = (P hd) andalso (all tl P);

val all = fn : ’a list -> (’a -> bool) -> bool

fun exists [] P = false

| exists (hd::tl) P = (P hd) orelse (exists tl P);

val exists = fn : ’a list -> (’a -> bool) -> bool

Q. Translate the predicate ∀ x : 1..10 • x2 ≥ x into ML.

A. all (range 1 10) (fn x => x*x>=x).

19 / 24

Divisibility

x |y (x divides y) when ∃ z : N | z ≤ y • z ∗ x = y .

In ML:

fun divides x y = exists (range 0 y) (fn z => z*x=y)

- divides 4 10;

val it = false : bool

- divides 5 10;

val it = true : bool

20 / 24

Prime

y is prime when ∀ x : N | x |y • x = 1 ∨ x = y .

In ML:

fun prime y = all (range 2 (y-1)) (fn x => not

(divides x y));

- prime 1;

val it = true : bool

- prime 2;

val it = true : bool

- prime 3;

val it = true : bool

- prime 4;

val it = false : bool

Arguably slight bug in this; 1 is not generally considered a prime
number.

21 / 24

Map

Recall map : (’a -> ’b) -> ’a list -> ’b list.

In ML:

fun map f [] = []

| map f (hd::tl) = (f hd)::(map f tl);

Exercise: specify what ML does as a Z schema, thus

map
map : (T → T ′)→ seq T → seq T ′

. . .

map is the primitive of supercomputer architecture (highly parallel,
stream processor based); guarantee of non-interference given by
the ML language itself, which is purely functional (kind of).

22 / 24

Exercises

Express the following in ML:

1. The elements of X : PPZ are pairwise disjoint (that is,
∀X ,Y : X • X = Y ∨ X ∩ Y = ∅).

2. X covers X (that is,
⋃
X = X).

3. X : PPZ is a partition of X : PZ (that is, X covers X and its
elements are pairwise disjoint).

4. Using filter and divides or otherwise, write a function
which inputs x and returns the list of prime numbers from 1
to x (see the Sieve of Eratosthenes).

23 / 24

Exercises

Express the following in ML:

1. An ML type to model N↔ N = P(N× N).
2. A function to check that x is in the model of this type and

not, say, of Z↔ Z.
3. Domain restriction S C f where S : PN (modelled as a set)

and f : N↔ N.
4. Domain restriction S C f where S : PN (modelled as a

predicate) and f : N↔ N.
5. Range anti-restriction f −B S .

24 / 24

