
Formal Specification F28FS2, Lecture 15
Operations in ML, especially those on lists

Jamie Gabbay

March 23, 2014

1 / 10



Playing games with ML types

Often, you can deduce what a ‘reasonable’ function must do, just
by looking at its type.

Try this with the type (’a -> ’b) -> ’a list -> ’a list?

So this is a function that takes two arguments: a function from
α→ β and a list of αs.

What could such a function do? Well, there is only one possibility:

fun map f [] = []

| map f (hd::tl) = (f hd)::(map f tl);

val map = fn : (’a -> ’b) -> ’a list -> ’b list

You need to get used to parsing these things.

2 / 10



Another example

Consider this type: ((’a * ’b) -> ’b) -> ’b -> ’a list ->

’b.

This is a function that takes a function from α× β to β, and a β,
and a list of αs, and returns a β.

What could such a function do? Again, there is an obvious
possibility.

Try to work it out first, then look at the next slide.

3 / 10



Another example

fun foldl f b [] = b

| foldl f b (hd::tl) = (foldl f (f(hd,b)) tl);

val foldl = fn : ((’a * ’b) -> ’b) -> ’b -> ’a list

-> ’b

We can use foldl to write an iterative function over a list, such as
this:

I Sum: fn l => foldl (fn (x,y) => x+y) 0 l;
I Sum squares: fn l => foldl (fn (x,y) => x*x+y) 0 l;
I Sum squares (using map): fn l => foldl (fn (x,y) =>

x+y) 0 (map (fn x => x*x) l);

4 / 10



More examples

How about int -> ’a list -> ’a?

Seems to me this has to be a program that chooses the nth
element of l . Try to write this yourself.

5 / 10



More examples

fun take 1 (hd::tl) = hd

| take n (hd::tl) = take (n-1) tl;

Of course this is a partial function. Do we care? Well if we do we
can use an exception:

exception IndexOutOfBounds;

fun take 1 (hd::tl) = hd

| take n (hd::tl) = take (n-1) tl

| take n [] = raise IndexOutOfBounds;

val take = fn : int -> ’a list -> ’a

We get this: - take 1 [1];

val it = 1 : int

- take 1 [1];

uncaught exception IndexOutOfBounds

6 / 10



Max

Write as many functions as you can to calculate the maximum of a
list of integers. The type should be int list -> int.

7 / 10



Max

Here are two of mine:

fun max (hd::tl) = if hd>(max tl) then hd else (max

tl);

fun max (hd::tl) = fn tl => foldl (fn (x,y) => if x>y

then x else y) hd tl;

Of course we can write more elaborate programs that gracefully
handle max of the empty list. Have a go.

8 / 10



Filter

How about a program of type (’a -> bool) -> ’a list -> ’a

list?

Clearly this is filter:

fun filter P [] = []

| filter P (hd::tl) = if (P hd) then hd::(filter P

tl) else (filter P tl);

Try writing a function that inputs a list of predicates (a list of
functions in α→ bool) and a list of αs and outputs the sublist of
elements satisfying all of these predicates. So the type should be
(’a -> bool) list -> ’a list -> ’a list.

9 / 10



Exercises

I Write the obvious polymorphic function of type ’a -> int.
I Recall that in Z, relations A↔ B can be modelled as sets of

tuples P(A× B). As discussed in previous lectures, this has
two models in ML: (A*B) list and (A*B) -> bool. The
first is an equality type if A and B are, the second is not an
equality type but can contain infinite elements.
Recall that predicates on A are modelled as A -> bool, and
similarly for B.
For the first model, (A*B) list, implement the functions
size of relation (the length of the list), domain, range, domain
restriction, and range anti-restriction, and state their types.

10 / 10


