
Formal Specification F28FS2, Lecture 2
(Up to section 3.2 of Currie’s book.)

Jamie Gabbay

January 27, 2014

1 / 1

Types

Z is a typed language. Example types:

I Z (integers).

I N (natural numbers).

We’ll see more types in due course.

We can construct types out of other types, or we can declare new
basic types like ‘PERSON’.

2 / 1

Variables

x , y , z are variables. Each variable has a type, which describes the
possible values we can give a variable.

x : Z is a integer variable. If we write ‘x ’, we mean ‘some possibly
negative number’.

x , y : N are two natural number variables. If we write ‘x , y ’, we
mean ‘two numbers, both non-negative’.

By the way, is 0 in N? (Answer: page 20 of “The essence of Z”, or
page 44 of ZBook (Formal Specification and Documentation using
Z).)

x : PERSON corresponds to what we say in English “some guy”.

3 / 1

Predicates

A predicate is a proposition with variables.

A predicate can be assigned a truth-value, and can contain
variables.

So if x , y : N then
x = y + 3

is a predicate.

If x , y : PERSON then x = y and ¬(x = y) are predicates.

4 / 1

Predicates

So x , y : N.

I If we decide that x = 2 and y = 1, then the truth-value of
x = y + 3 is the truth-value of 2 = 1 + 3.

I If we decide that x = 2 and y = −1, then the truth-value of
x = y + 3 is the truth-value of 2 = (−1) + 3.

There is a mistake in the last item. What is it?

5 / 1

Quantifiers

We use quantifiers to express general truths.

To assert ‘for all x , x + 1 > 1’ we use a universal or for all
quantifier:

∀x : N • (x + 1 > 1).

To assert ‘there exists an x , x + 1 > 1’ we use an existential or
there exists quantifier:

∃x : N • (x + 1 > 1).

6 / 1

Quantifiers

Assume a base type PERSON and variables x , y , z : PERSON.

Assume a binary (2-place) predicate-former loves (so loves(x , y)
means ‘x loves y ’). Write down predicates to express the following:

I Everybody loves everybody.

I Everybody loves everybody else (but not necessarily
themselves).

I Everybody has somebody who loves them.

I Everybody has somebody else who loves them.

I There is only one person (hint: use equality).

7 / 1

Quantifiers

Assume a base type PERSON and variables x , y , z : PERSON.
Assume a binary (2-place) predicate-former loves (so loves(x , y)
means ‘x loves y ’). Predicates are:

I ∀x : PERSON • ∀y : PERSON • loves(x , y).

I ∀x : PERSON • ∀y : PERSON • (¬(y = x)⇒ loves(x , y)).

I ∀x : PERSON • ∃y : PERSON • loves(y , x).

I Exercise: Everybody has somebody else who loves them.

I Exercise: There is only one person (hint: use equality).

8 / 1

Get the types right

The type of a variable can make a difference:

∀x : Z • (x + 2 > 1) is false
∀x : N • (x + 2 > 1) is true

9 / 1

A convenient shorthand

Write
∀x : N|P • Q

for
∀x : N • (P ⇒ Q)

Thus,
∀x : N|x > 5 • x > 5 is true.

Read | as ‘such that’.

Is this true or false?

∀x : N|x > 5 • ∀y : N|y < 4 • xy > y x .

Alternative presentation:

∀x : N • ∀y : N • ((x > 5 ∧ y < 4)⇒ xy > y x).

10 / 1

Syntax

∀〈name〉 : 〈type〉 [| 〈constraint〉] • 〈predicate〉

This is read as:

“For all 〈name〉 of type 〈type〉
[such that 〈constraint〉], it is true that
〈predicate〉.”

11 / 1

Existential quantifier

Finally, ∃1 means ‘there exists a unique’.

∃1x : N • x = 25 is true.

∃1x : N | x < 6 ∧ x > 4 • T is true (there is just one number less
than 6 and more than 4).

∃1x : Z • x2 = 25 is false.

Exercise: Express ∃1 using ∃ and =.

Exercise: Express ∃ using ∀ and ¬.

12 / 1

Quantifiers (summarised)

Tell me whether the following are true or false:

I ∀x : N|x < 10 • x + 9 > 12.

I ∃x : N|x < 10 • x + 9 > 12.

I ∃1x : N|x < 10 • x + 9 > 12.

That’s it for Chapter 2 of “The essence of Z”. Do exercises 2.5
and 2.6.

Get comfortable with writing propositions now. You can do this by
doing the exercises above (and proposing more of your own on
haggis.stackexchange.com).

13 / 1

haggis.stackexchange.com

Types

Every variable in Z has a type, which you must specify when you
declare the variable: x , y : Z.

Z is a built-in type.

You can declare your own types using a free type definition:

I COLOUR ::= red | green | blue.
This declares a type with three elements.

I So does this: FUEL ::= petrol | diesel | electricity.

I So does this: FLAGSTATE = up | down.

14 / 1

Types

You can add a basic type PERSON.

I [PERSON].

I [FLAG].

This just declares a type — and says nothing of what is or is not a
person. You can still declare x : PERSON, but where your people
come from — that’s none of Z’s business.

15 / 1

Nested quantifiers (love)

Assume a binary predicate loves(x , y) on x , y : PERSON. Then:

I ∀x , y : PERSON • loves(x , y) is “everybody loves everybody”
(as in: make love, not war).

I ∀x : PERSON • ∃y : PERSON • loves(x , y) means “everybody
loves somebody” (cf. Elton John 1990: “You Gotta Love
Someone”).

I ∃x : PERSON • ∀y : PERSON • loves(x , y) means “there is
somebody who loves everybody” (Jesus, Mickey Mouse,
Chatty Cathy, . . .).

I ∃x : PERSON • ∃y : PERSON • loves(x , y) means “there is
somebody who loves somebody” (but it might be themselves;
how do you write “there is somebody who loves somebody
else”?).

16 / 1

Nested quantifiers (number theory)

Suppose x , y : N. Define x |y (x divides y) by

x |y for ∃z : N • x ∗ z = y .

Then define even(y) to be 2|y .

Q. How do you write ‘y is prime’? (Hint: y is prime when any
number dividing it is 1 or y .)

17 / 1

Nested quantifiers (number theory)

prime(y) is
∀x : N | x |y • (x = 1 ∨ x = y).

18 / 1

Nested quantifiers (number theory)

Q (relatively easy). Goldbach’s conjecture: every number greater
than 2 is the sum of two primes. Express the conjecture in
predicate logic.

Q (hard). Abraham Lincoln is said to have said “You can fool
some of the people all of the time, and all of the people some of
the time, but you can not fool all of the people all of the time.”.

Assuming x : PERSON and modelling time as t : N, and assuming
a binary predicate canFool(x , t), express this in predicate logic.

19 / 1

Signatures

A signature is a collection of type declarations.

Philosophers call this a universe of discourse; down the pub this is
called ‘what we’re talking about’.

20 / 1

Sets

Given a type T we can form the powerset P T . This is the type of
sets of elements from T .

We declare sets as follows:

numset == {4, 5, 6, 7, 8, 9} : PZ

numset == 4..9 : PZ

numset == {n : Z|n ≥ 4 ∧ n ≤ 9 • n} : PZ

numset == {n : Z|n ≥ 2 ∧ n ≤ 7 • n + 2} : PZ.

(These are all equivalent.)

21 / 1

Sets

If the declared variable is ‘naked’ after the bullet, we may omit it:

numset == {n : Z|n ≥ 4 ∧ n ≤ 9} : PZ

is shorthand for

numset == {n : Z|n ≥ 4 ∧ n ≤ 9 • n} : PZ.

22 / 1

Sets

If the predicate is just true, we may omit it:

evens == {n : Z • 2 ∗ n}

is shorthand for

evens == {n : Z|T • 2 ∗ n}.

23 / 1

The empty set

The emptyset ∅ (or {}) means

{n : Z|F • n}.

Exercise: Is {n : Z|F • n} equal to {n : Z|F • 2 ∗ n}? Why?

24 / 1

Sets vs Types

Sets and types are related; they both ‘collect’ elements.

Types are primitive. Sets are defined. But there is some overlap:
Given Z, we could define:

N == {n : Z|n ≥ 0 • n} : PN
N1 == {n : Z|n ≥ 1 • n} : PN

You can do exercise 3.1 of “The essence of Z” now.

That’s it for lecture 2!

25 / 1

