Formal Specification F28FS2, Lecture 7 Relations

Jamie Gabbay

February 17, 2014

An ordered pair $a \mapsto b : A \times B$ is a pair of a : A and b : B, in order. For example, $Jack \mapsto Jill : PERSON \times PERSON$.

For comparison, $\{a, a'\}$: $\mathbb{P}A$ is an unordered pair.

If A and B are types, then $A \times B$ is the type of ordered pairs of terms of type A and terms of type B.

Relations

A relation R is an element of the powerset of a product type. In symbols:

$$R: \mathbb{P}(A \times B)$$

or more briefly (just a shorthand)

 $R:A\leftrightarrow B.$

For example $\{Jack \mapsto Jill\}$: *PERSON* \leftrightarrow *PERSON*. Also $\{Jack \mapsto Jill, Jill \mapsto Jack\}$: *PERSON* \leftrightarrow *PERSON*. Which one is suitable for modelling 'loves'?

Homogeneity

A relation R of type $A \leftrightarrow A$ is homogeneous. $\{Jack \mapsto Jill, Jill \mapsto Jack\} : PERSON \leftrightarrow PERSON$ is homogeneous. $\{2 \mapsto d\} : \mathbb{Z} \leftrightarrow Door$ is not homogeneous, where [Door].

Example: doors

Declare free types [PERSON, MODULE].

We can use $PERSON \leftrightarrow MODULE$ to describe who is taking what course.

Let taking : $PERSON \leftrightarrow MODULE$.

Then we say 'p is taking module m' when $p \mapsto m \in taking$.

Note that $PERSON \times MODULE = \{p : PERSON, m : MODULE \bullet p \mapsto m\}.$ This is the total relation.

Example

Suppose a set *firstYear* : $\mathbb{P}PERSON$.

Here's an expression for 'the first years taking *programming* : *MODULE*':

 $\{x : PERSON \mid x \in firstYear \land x \mapsto programming \in taking \bullet x\}.$

Here's an expression for 'the first years taking some module':

 $\{x : PERSON \mid x \in firstYear \land (\exists m : MODULE \bullet x \mapsto m \in taking) \bullet x\}.$

Is this set equal to *firstYear*?

Difference between relations and binary predicates

A binary predicate P(x, y) where x : X and y : Y and can be 'identified' with its graph

$$\{x: \mathbb{X}, y: \mathbb{Y} \mid P(x, y) \bullet x \mapsto y\}: \mathbb{X} \leftrightarrow \mathbb{Y}.$$

However, relations are sets so we can use the full vocabulary of ${\sf Z}$ to manipulate them.

That is, relations internalise predicates; we can manipulate predicates by manipulating relations.

Terminology that you need to know: Source, target, domain, range

The source of $R : A \leftrightarrow B$ is A. The target of $R : A \leftrightarrow B$ is B. The domain dom(R) of $R : A \leftrightarrow B$ is $\{a: A \mid (\exists b: B \bullet a \mapsto b \in R) \bullet a\}.$ The range range(R) of $R : A \leftrightarrow B$ is $\{b: B \mid (\exists a: A \bullet a \mapsto b \in R) \bullet b\}.$ $dom({Jack \rightarrow Jill}) = {Jack}$ $range({Jack \rightarrow Jill}) = {Jill}$

A schema to make somebody love somebody else

_ LovePotion loves, loves' : PERSON ↔ PERSON person1?, person2? : PERSON

 $loves' = loves \cup \{person1? \mapsto person2?\}$

Relational image

If $R : A \leftrightarrow B$ and $S \subseteq A$ then R(S) is those elements of B that are related to by some $a \in S$.

In symbols:

$$R(S) = \{b : B \mid (\exists a \in S \bullet a \mapsto b \in R)\}$$

For example $loves({Jack}) = Jill$. If $ego = \{p : PERSON \bullet p \mapsto p\}$ then ego(S) = S. Fix some saint : PERSON. If saintlylove = $\{q : PERSON \bullet saint \mapsto q\}$ then saintlylove(S) = PERSON if and only if saint $\in S$. We may write $R(\{s\})$ as just R(s). Just turn it round. ${Jack \mapsto Jill}^{-1} = {Jill \mapsto Jack}.$

Who can answer the question "write a schema to input a relation and return the inverse of that relation?".

Who can answer the question "write a schema to input a relation and return the symmetric closure of that relation, which is the union of the relation with its inverse?".

Inverse of a relation

$$\begin{array}{c} _ Invert _ \\ R : A \leftrightarrow B \\ R' : B \leftrightarrow A \\ \hline \\ R' = \{a : A, b : B \mid a \mapsto b \in R \bullet b \mapsto a\} \end{array}$$

$$SymmetricClosure$$

$$R, R' : A \leftrightarrow A$$

$$R' = \{a : A, a' : A \mid a \mapsto a' \in R \bullet a' \mapsto a\} \cup R$$

Domain and range restriction

 $S \lhd R = \{a \mapsto b : A \times B \mid a \mapsto b \in R \land a \in S\}.$

(Notice the notation $a \mapsto b$ on the left. Can you expand it out?) For example if

$$\textit{loves} = \{\textit{Jack} \mapsto \textit{Jill}, \textit{Jill} \mapsto \textit{Jack}, \textit{Sally} \mapsto \textit{Suzie}, \textit{Tony} \mapsto \textit{Tony}\}$$

and

 $men = \{Jack, Tony\}$ women = $\{Jill, Sally, Suzie\}$

then $men \triangleleft loves = \{Jack \mapsto Jill, Tony \mapsto Tony\}$ and $women \triangleleft loves = \{Jill \mapsto Jack, Sally \mapsto Suzie\}.$

Range restriction, subtraction

There is also range restriction $R \triangleright S$.

Exercise: what should that be?

There are domain and range anti-restriction

$$S \triangleleft R = \{a \mapsto b : A \times B \mid a \mapsto b \in R \land a \notin S\}$$
$$R \models T = \{a \mapsto b : A \times B \mid a \mapsto b \in R \land b \notin T\}.$$

loves \triangleright {*Tony*} is 'everybody who does not love Tony'. *loves* \triangleright *men* is 'everybody who loves only women'.

Composition

Aha! But do you love somebody who loves Tony? Suppose $R : A \leftrightarrow B$ and $S : B \leftrightarrow C$. R composed with S is: $R; S = \{a \mapsto c : A \times C \mid (\exists b : B \bullet (a \mapsto b \in R \land b \mapsto c \in S)) \bullet a \mapsto c\}.$ Take R = loves = S. Then *loves*: *loves* is the relation 'a loves

somebody (the *b* above) who loves c'.

Composition

More general if R is homogeneous, so $R : A \leftrightarrow A$, then

$$R^n = \overbrace{R; \ldots; R}^{n \text{ times}}.$$

In the case n = 0 take $R^0 = \{a : A \mid a \mapsto a\}$.

The transitive closure $R^+ = \bigcup \{n : \mathbb{N} \mid n > 0 \bullet R^n \}$.

The reflexive transitive closure $R^* = R^+ \cup R^0$.