# Formal Specification F28FS2, Lecture 7 Relations 

Jamie Gabbay

February 17, 2014

## Ordered pairs

An ordered pair $a \mapsto b: A \times B$ is a pair of $a: A$ and $b: B$, in order.
For example, Jack $\mapsto$ Jill : PERSON $\times$ PERSON.
For comparison, $\left\{a, a^{\prime}\right\}: \mathbb{P} A$ is an unordered pair.
If $A$ and $B$ are types, then $A \times B$ is the type of ordered pairs of terms of type $A$ and terms of type $B$.

## Relations

A relation $R$ is an element of the powerset of a product type. In symbols:

$$
R: \mathbb{P}(A \times B)
$$

or more briefly (just a shorthand)

$$
R: A \leftrightarrow B
$$

For example $\{$ Jack $\mapsto$ Jill $\}:$ PERSON $\leftrightarrow P E R S O N$.
Also $\{$ Jack $\mapsto$ Jill, Jill $\mapsto$ Jack $\}:$ PERSON $\leftrightarrow$ PERSON.
Which one is suitable for modelling 'loves'?

## Homogeneity

A relation $R$ of type $A \leftrightarrow A$ is homogeneous.
\{Jack $\mapsto$ Jill, Jill $\mapsto$ Jack \} : PERSON $\leftrightarrow$ PERSON is homogeneous.
$\{2 \mapsto d\}: \mathbb{Z} \leftrightarrow$ Door is not homogeneous, where [Door].

## Example: doors

Declare free types [PERSON, MODULE].
We can use PERSON $\leftrightarrow M O D U L E$ to describe who is taking what course.

Let taking : PERSON $\leftrightarrow$ MODULE.
Then we say ' $p$ is taking module $m$ ' when $p \mapsto m \in$ taking.
Note that
PERSON $\times$ MODULE $=\{p:$ PERSON $, m: M O D U L E \bullet p \mapsto m\}$. This is the total relation.

## Example

Suppose a set firstYear : $\mathbb{P} P E R S O N$.
Here's an expression for 'the first years taking programming : MODULE':

$$
\{x: \text { PERSON } \mid x \in \text { first Year } \wedge x \mapsto \text { programming } \in \text { taking } \bullet x\}
$$

Here's an expression for 'the first years taking some module':
$\{x: P E R S O N \mid x \in$ firstYear $\wedge(\exists m:$ MODULE $\bullet \mapsto \mapsto m \in$ taking $) \bullet x\}$.
Is this set equal to firstYear?

## Difference between relations and binary predicates

A binary predicate $P(x, y)$ where $x: \mathbb{X}$ and $y: \mathbb{Y}$ and can be 'identified' with its graph

$$
\{x: \mathbb{X}, y: \mathbb{Y} \mid P(x, y) \bullet x \mapsto y\}: \mathbb{X} \leftrightarrow \mathbb{Y}
$$

However, relations are sets so we can use the full vocabulary of $Z$ to manipulate them.

That is, relations internalise predicates; we can manipulate predicates by manipulating relations.

Terminology that you need to know: Source, target, domain, range

The source of $R: A \leftrightarrow B$ is $A$.
The target of $R: A \leftrightarrow B$ is $B$.
The domain $\operatorname{dom}(\mathrm{R})$ of $R: A \leftrightarrow B$ is $\{a: A \mid(\exists b: B \bullet a \mapsto b \in R) \bullet a\}$.

The range range $(\mathrm{R})$ of $R: A \leftrightarrow B$ is $\{b: B \mid(\exists a: A \bullet a \mapsto b \in R) \bullet b\}$. $\operatorname{dom}(\{$ Jack $\mapsto$ Jill $\})=\{$ Jack $\}$
range $(\{$ Jack $\mapsto$ Jill $\})=\{$ Jill $\}$

## A schema to make somebody love somebody else

LovePotion
loves, loves' : PERSON $\leftrightarrow P E R S O N$ person?, person 2?: PERSON
loves ${ }^{\prime}=$ loves $\cup\{$ person $1 ? \mapsto$ person $2 ?\}$

## Relational image

If $R: A \leftrightarrow B$ and $S \subseteq A$ then $R(S)$ is those elements of $B$ that are related to by some $a \in S$.

In symbols:

$$
R(S)=\{b: B \mid(\exists a \in S \bullet a \mapsto b \in R)\}
$$

For example loves $(\{$ Jack $\})=$ Jill.
If ego $=\{p: P E R S O N \bullet p \mapsto p\}$ then ego $(S)=S$.
Fix some saint : PERSON. If
saintlylove $=\{q: P E R S O N \bullet$ saint $\mapsto q\}$ then saintlylove $(S)=P E R S O N$ if and only if saint $\in S$.

We may write $R(\{s\})$ as just $R(s)$.

## Inverse of a relation

Just turn it round. $\{\text { Jack } \mapsto \text { Jill }\}^{-1}=\{$ Jill $\mapsto$ Jack $\}$.
Who can answer the question "write a schema to input a relation and return the inverse of that relation?".

Who can answer the question "write a schema to input a relation and return the symmetric closure of that relation, which is the union of the relation with its inverse?".

## Inverse of a relation

$$
\begin{aligned}
& \text { Invert } \\
& R: A \leftrightarrow B \\
& R^{\prime}: B \leftrightarrow A \\
& R^{\prime}=\{a: A, b: B \mid a \mapsto b \in R \bullet b \mapsto a\}
\end{aligned}
$$

SymmetricClosure
$R, R^{\prime}: A \leftrightarrow A$

$$
R^{\prime}=\left\{a: A, a^{\prime}: A \mid a \mapsto a^{\prime} \in R \bullet a^{\prime} \mapsto a\right\} \cup R
$$

## Domain and range restriction

$$
S \triangleleft R=\{a \mapsto b: A \times B \mid a \mapsto b \in R \wedge a \in S\} .
$$

(Notice the notation $a \mapsto b$ on the left. Can you expand it out?)
For example if

$$
\text { loves }=\{\text { Jack } \mapsto \text { Jill, Jill } \mapsto \text { Jack, Sally } \mapsto \text { Suzie, Tony } \mapsto \text { Tony }\}
$$

and

$$
\text { men }=\{\text { Jack, Tony }\} \quad \text { women }=\{\text { Jill, Sally, Suzie }\}
$$

then men $\triangleleft$ loves $=\{$ Jack $\mapsto$ Jill, Tony $\mapsto$ Tony $\}$ and women $\triangleleft$ loves $=\{$ Jill $\mapsto$ Jack, Sally $\mapsto$ Suzie $\}$.

## Range restriction, subtraction

There is also range restriction $R \triangleright S$.
Exercise: what should that be?
There are domain and range anti-restriction

$$
\begin{aligned}
& S \notin R=\{a \mapsto b: A \times B \mid a \mapsto b \in R \wedge a \notin S\} \\
& R \triangleright T=\{a \mapsto b: A \times B \mid a \mapsto b \in R \wedge b \notin T\} .
\end{aligned}
$$

loves $\triangleright\{$ Tony $\}$ is 'everybody who does not love Tony'. loves $\triangleright$ men is 'everybody who loves only women'.

## Composition

Aha! But do you love somebody who loves Tony?
Suppose $R: A \leftrightarrow B$ and $S: B \leftrightarrow C . R$ composed with $S$ is:
$R ; S=\{a \mapsto c: A \times C \mid(\exists b: B \bullet(a \mapsto b \in R \wedge b \mapsto c \in S)) \bullet a \mapsto c\}$.
Take $R=$ loves $=S$. Then loves; loves is the relation 'a loves somebody (the $b$ above) who loves $c^{\prime}$.

## Composition

More general if $R$ is homogeneous, so $R: A \leftrightarrow A$, then

$$
R^{n}=\overbrace{R ; \ldots ; R}^{n \text { times }} .
$$

In the case $n=0$ take $R^{0}=\{a: A \mid a \mapsto a\}$.
The transitive closure $R^{+}=\bigcup\left\{n: \mathbb{N} \mid n>0 \bullet R^{n}\right\}$.
The reflexive transitive closure $R^{*}=R^{+} \cup R^{0}$.

