
Formal Specification F28FS2, Lecture 8
Functions

Jamie Gabbay

March 3, 2014

1 / 16



Functions

Remember: a relation is a set of maplets.

An ordered pair (or maplet) looks like this: 17→2 : N× N.

A relation looks like this {1 7→2, 17→3} : N↔ N (a set of maplets).

If R is a relation then dom(R) is the set
{a : A | ∃ b : B • a 7→b ∈ R} (‘the set of a related to some b’).

2 / 16



Use of functions

Every time we want to assign some information to something else
(e.g. patient ID to patient; have function ID of (patient)).

Represent programs that compute values deterministically given an
input (or fail, if the function is partial; e.g. 2 ∗ x ,

√
−1).

Indexes and arrays: map index to array value (a[0], a[1], . . . ).

Memory: N→ 〈0..7〉 is a pretty good model of computer memory
(contents of (cell)).

Pointers (! is a function from a pointer l to a value !l).

Sequences: map natural number to a value, to model infinite lists
(an infinite array is modelled as a function a(0), a(1), a(2), . . . ).

3 / 16



Functions

A partial function f : A 7→ B is a relation f : A↔ B such that
every element of A is related to at most one element of B. In
symbols:

I ∀ a : A • (∃ b : B • a 7→b ∈ f )⇒ (∃1 b : B • a 7→b ∈ f ).
“For every a of type A, if there is some b of type B such that
f (a) = b then there is exactly one such b.”

I or. . . ∀ a : A • (¬∃ b : B • a 7→b ∈ f ) ∨ (∃1 b : B • a 7→b ∈ f ).
“For every a of type A, either there are zero b of type B such
that f (a) = b, or there is exactly one such b.”

I or. . . ∀ a : A •#{b : B | a 7→b ∈ f } ≤ 1.
“For every a of type A, the number of b of type B such that
f (a) = b, is at most 1.”

I or. . . ∀ a : A •#({a}C f ) ≤ 1.
“For every a of type A, there is at most one tuple in f whose
left-hand side is a.”

4 / 16



Total functions

A total function f : A→ B is such that:

I ∀ a : A • ∃1 b : B • a 7→b ∈ f .
“For every a of type A there exists exactly one b such that
f (a) = b.”

I or. . . dom(f) = A.
“The domain of f is equal to the set of elements of type A.”

Write f (a) = b for a 7→b ∈ f . Read this as f of a equals b.

If ∀ b : B • a 7→b 6∈ f (i.e. a 6∈ dom(f)) call f undefined on a.

5 / 16



Function overriding

Suppose f , g : A 7→ B. Define:

f ⊕ g =

{a 7→b : A× B | g(a) = b ∨ (a 6∈ dom(g) ∧ f(a) = b) • a 7→b}

Read f ⊕ g as g , otherwise f . Read the predicate above in detail:

I If g(a) = b then (f ⊕ g)(a) = g(a).

I Otherwise, if f (a) = b then (f ⊕ g)(a) = f (a).

I Otherwise, f ⊕ g is undefined at a.

Note: dom(f ⊕ g) = dom(f) ∪ dom(g). Logically equivalently:

f ⊕ g = {a 7→b : A× B | (a ∈ dom(g)⇒ g(a) = b) ∧
(a ∈ (dom(f) \ dom(g))⇒ f(a) = b) • a 7→b}

6 / 16



Injections, surjections

Call f : A 7→ B an injection when

I ∀ b : B •#{a : A | f (a) = b} ≤ 1.
For every b of type B, there is at most one a of type A such
that f (a) = b.

I ∀ a, a′ : A • f (a) = f (a′)⇒ a = a′.
For every a and a′ of type A, if f (a) = f (a′) then a = a′.

I ∀ b : B •#(f B {b}) ≤ 1.

Another way of reading this: ‘no two elements of A map to the
same element of B’.

λ n : N.2.n is injective; 2.n = 2.n′ implies n = n′.

λ n : N.2 is not injective; 2 = 2 does not imply n = n′!

Think of an injection as ‘losing no information’.

7 / 16



Injections, surjections

Call f : A 7→ B a surjection when

I ∀ b : B •#{a : A | f (a) = b} ≥ 1.
For every b of type B, there is at least one a of type A such
that f (a) = b.

I ∀ b : B • ∃ a : A • f (a) = b.
For every b of type B there is some a of type A such that
f (a) = b.

I 7 7range (f ) = B (though you may need to define 7 7range).

Thus: ‘every element of B is mapped to by something in A’.

λ n : N.2.n is not surjective; ¬∃ n : N • 2.n = 3.

λ n : N.n is surjective.

A surjection ‘possibly throws away information, but captures all
possible information in B’.

8 / 16



Sequences

Suppose T is any type (e.g. PERSON). Recall
N1 = {x : Z | x > 0}.

Write seq T for the type populated by elements in the set

I {f : N1 7→ T | ∀ n : N1 • (n+1) ∈ dom(f)⇒ n ∈ dom(f)}.
I or. . . {f : N1 7→ T | dom(f) = 1..#dom(f)}. (What’s wrong

with this?)

For example, {17→t1} and {1 7→t1, 27→t2, 37→t3} are sequences. So
is ∅.

{27→t2} and {2 7→t2, 3 7→t3} are not sequences.

(Thanks to Ugis for his corrections.)

9 / 16



Nonempty sequences

Write seq1 T for the type populated by elements in the set

I {f : seq T | ∃ a : A • f (a) defined}.
I or. . . {f : seq T | dom(f) 6= ∅}.

For example {1 7→t1} is a non-empty sequence. ∅ : A 7→ B is not a
non-empty sequence — it is the empty sequence.

10 / 16



Injective sequences

iseq T is the type populated by elements of N1 7→ T which are
injective; it is the set of sequences of elements of T that do not
repeat.

11 / 16



Things to do to sequences: restrict them

{1, 2} � f is the initial two elements of f (or the first element, or
the empty sequence, depending on f ).

{1, 3} � f need not be a sequence, unless f consists of at most
two elements.

For example {1, 2} � {1 7→t1, 2 7→t2, 3 7→t3} = {1 7→t1, 27→t2}.

12 / 16



Things to do to sequences: overwrite them

f ⊕ g is the sequence which starts as g , and then carries on as f
(if any of f is left).

13 / 16



Head and tail

If f : seq T then

head(f) = f(1) (‘pop f ’)

tail(f) = {i7→t : N1 × T | f(i + 1) = t} (‘the stack afterwards’).

14 / 16



Reverse a sequence

If f : seq T then rev f is the sequence f , reversed.

So (revf )i = f (#dom(f) + 1− i).

15 / 16



Concatenate sequences

If f , g : seq T then f a g is the sequence f , followed by the
sequence g .

One way to specify this in Z:

f a g = f ∪ {i : N1 | i ≤ #g • (i +#f )7→g(i)}

More on sequences later.

16 / 16


