Formal Specification F28FS2, Lecture 8 Functions

Jamie Gabbay

March 3, 2014

Functions

Remember: a relation is a set of maplets.
An ordered pair (or maplet) looks like this: $1 \mapsto 2: \mathbb{N} \times \mathbb{N}$.
A relation looks like this $\{1 \mapsto 2,1 \mapsto 3\}: \mathbb{N} \leftrightarrow \mathbb{N}$ (a set of maplets).
If R is a relation then $\operatorname{dom}(\mathrm{R})$ is the set
$\{a: A \mid \exists b: B \bullet a \mapsto b \in R\}$ ('the set of a related to some b ').

Use of functions

Every time we want to assign some information to something else (e.g. patient ID to patient; have function ID_of (patient)).

Represent programs that compute values deterministically given an input (or fail, if the function is partial; e.g. $2 * x, \sqrt{-1}$).

Indexes and arrays: map index to array value ($a[0], a[1], \ldots$).
Memory: $\mathbb{N} \rightarrow\langle 0 . .7\rangle$ is a pretty good model of computer memory (contents_of (cell)).
Pointers (! is a function from a pointer I to a value !/).
Sequences: map natural number to a value, to model infinite lists (an infinite array is modelled as a function $a(0), a(1), a(2), \ldots$).

Functions

A partial function $f: A \leftrightarrow B$ is a relation $f: A \leftrightarrow B$ such that every element of A is related to at most one element of B. In symbols:

- $\forall a: A \bullet(\exists b: B \bullet a \mapsto b \in f) \Rightarrow\left(\exists_{1} b: B \bullet a \mapsto b \in f\right)$.
"For every a of type A, if there is some b of type B such that $f(a)=b$ then there is exactly one such b."
- or... $\forall a: A \bullet(\neg \exists b: B \bullet a \mapsto b \in f) \vee\left(\exists_{1} b: B \bullet a \mapsto b \in f\right)$. "For every a of type A, either there are zero b of type B such that $f(a)=b$, or there is exactly one such b."
- or... $\forall a: A \bullet \#\{b: B \mid a \mapsto b \in f\} \leq 1$.
"For every a of type A, the number of b of type B such that $f(a)=b$, is at most 1 ."
- or... $\forall a: A \bullet \#(\{a\} \triangleleft f) \leq 1$.
"For every a of type A, there is at most one tuple in f whose left-hand side is a."

Total functions

A total function $f: A \rightarrow B$ is such that:

- $\forall a: A \bullet \exists_{1} b: B \bullet a \mapsto b \in f$.
"For every a of type A there exists exactly one b such that $f(a)=b$."
- or... $\operatorname{dom}(f)=A$.
"The domain of f is equal to the set of elements of type A."
Write $f(a)=b$ for $a \mapsto b \in f$. Read this as f of a equals b.
If $\forall b: B \bullet a \mapsto b \notin f$ (i.e. $a \notin \operatorname{dom}(f))$ call f undefined on a.

Function overriding

Suppose $f, g: A \rightarrow B$. Define:

$$
\begin{aligned}
& f \oplus g= \\
& \quad\{a \mapsto b: A \times B \mid g(a)=b \vee(a \notin \operatorname{dom}(\mathrm{~g}) \wedge \mathrm{f}(\mathrm{a})=\mathrm{b}) \bullet \mathrm{a} \mapsto \mathrm{~b}\}
\end{aligned}
$$

Read $f \oplus g$ as g, otherwise f. Read the predicate above in detail:

- If $g(a)=b$ then $(f \oplus g)(a)=g(a)$.
- Otherwise, if $f(a)=b$ then $(f \oplus g)(a)=f(a)$.
- Otherwise, $f \oplus g$ is undefined at a.

Note: $\operatorname{dom}(\mathrm{f} \oplus \mathrm{g})=\operatorname{dom}(\mathrm{f}) \cup \operatorname{dom}(\mathrm{g})$. Logically equivalently:

$$
\begin{aligned}
& f \oplus g=\{a \mapsto b: A \times B \mid(a \in \operatorname{dom}(g) \Rightarrow g(\mathrm{a})=\mathrm{b}) \wedge \\
& \quad(a \in(\operatorname{dom}(\mathrm{f}) \backslash \operatorname{dom}(\mathrm{g})) \Rightarrow \mathrm{f}(\mathrm{a})=\mathrm{b}) \bullet \mathrm{a} \mapsto \mathrm{~b}\}
\end{aligned}
$$

Injections, surjections

Call $f: A \rightarrow B$ an injection when

- $\forall b: B \bullet \#\{a: A \mid f(a)=b\} \leq 1$.

For every b of type B, there is at most one a of type A such that $f(a)=b$.

- $\forall a, a^{\prime}: A \bullet f(a)=f\left(a^{\prime}\right) \Rightarrow a=a^{\prime}$.

For every a and a^{\prime} of type A, if $f(a)=f\left(a^{\prime}\right)$ then $a=a^{\prime}$.

- $\forall b: B \bullet \#(f \triangleright\{b\}) \leq 1$.

Another way of reading this: 'no two elements of A map to the same element of B^{\prime}.
$\lambda n: \mathbb{N} .2 . n$ is injective; $2 . n=2 . n^{\prime}$ implies $n=n^{\prime}$.
$\lambda n: \mathbb{N} .2$ is not injective; $2=2$ does not imply $n=n^{\prime}$!
Think of an injection as 'losing no information'.

Injections, surjections

Call $f: A \rightarrow B$ a surjection when

- $\forall b: B \bullet \#\{a: A \mid f(a)=b\} \geq 1$.

For every b of type B, there is at least one a of type A such that $f(a)=b$.

- $\forall b: B \bullet \exists a: A \bullet f(a)=b$.

For every b of type B there is some a of type A such that $f(a)=b$.

- range $(f)=B$ (though you may need to define range).

Thus: 'every element of B is mapped to by something in A '.
$\lambda n: \mathbb{N} .2 . n$ is not surjective; $\neg \exists n: \mathbb{N} \bullet 2 . n=3$.
$\lambda n: \mathbb{N} . n$ is surjective.
A surjection 'possibly throws away information, but captures all possible information in B^{\prime}.

Sequences

Suppose T is any type (e.g. PERSON). Recall $N_{1}=\{x: \mathbb{Z} \mid x>0\}$.

Write seq T for the type populated by elements in the set

- $\left\{f: \mathbb{N}_{1} \rightarrow T \mid \forall n: \mathbb{N}_{1} \bullet(n+1) \in \operatorname{dom}(\mathrm{f}) \Rightarrow \mathrm{n} \in \operatorname{dom}(\mathrm{f})\right\}$.
- or... $\left\{f: \mathbb{N}_{1} \rightarrow T \mid \operatorname{dom}(\mathrm{f})=1\right.$.. \#dom(f) $\}$. (What's wrong with this?)

For example, $\left\{1 \mapsto t_{1}\right\}$ and $\left\{1 \mapsto t_{1}, 2 \mapsto t_{2}, 3 \mapsto t_{3}\right\}$ are sequences. So is \varnothing.
$\left\{2 \mapsto t_{2}\right\}$ and $\left\{2 \mapsto t_{2}, 3 \mapsto t_{3}\right\}$ are not sequences.
(Thanks to Ugis for his corrections.)

Nonempty sequences

Write $\operatorname{seq}_{1} T$ for the type populated by elements in the set

- $\{f: \operatorname{seq} T \mid \exists a: A \bullet f(a)$ defined $\}$.
- or... $\{f: \operatorname{seq} T \mid \operatorname{dom}(\mathrm{f}) \neq \varnothing\}$.

For example $\left\{1 \mapsto t_{1}\right\}$ is a non-empty sequence. $\varnothing: A \rightarrow B$ is not a non-empty sequence - it is the empty sequence.

Injective sequences

iseq T is the type populated by elements of $\mathbb{N}_{1} \rightarrow T$ which are injective; it is the set of sequences of elements of T that do not repeat.

Things to do to sequences: restrict them

$\{1,2\} \triangleleft f$ is the initial two elements of f (or the first element, or the empty sequence, depending on f).
$\{1,3\} \triangleleft f$ need not be a sequence, unless f consists of at most two elements.

For example $\{1,2\} \triangleleft\left\{1 \mapsto t_{1}, 2 \mapsto t_{2}, 3 \mapsto t_{3}\right\}=\left\{1 \mapsto t_{1}, 2 \mapsto t_{2}\right\}$.

Things to do to sequences: overwrite them

$f \oplus g$ is the sequence which starts as g, and then carries on as f (if any of f is left).

Head and tail

If f : seq T then
head $(f)=f(1)\left({ }^{(}\right.$pop $\left.f^{\prime}\right)$
$\operatorname{tail}(\mathrm{f})=\left\{\mathrm{i} \mapsto \mathrm{t}: \mathbb{N}_{1} \times \mathrm{T} \mid \mathrm{f}(\mathrm{i}+1)=\mathrm{t}\right\}$ ('the stack afterwards').

Reverse a sequence

If f : seq T then rev f is the sequence f, reversed.
So $(r e v f) i=f(\# \operatorname{dom}(\mathrm{f})+1-\mathrm{i})$.

Concatenate sequences

If f, g : seq T then $f^{\frown} g$ is the sequence f, followed by the sequence g.

One way to specify this in Z :

$$
f \frown g=f \cup\left\{i: \mathbb{N}_{1} \mid i \leq \# g \bullet(i+\# f) \mapsto g(i)\right\}
$$

More on sequences later.

