
Autonomous Mobile Programs

Xiao Yan Deng, Phil Trinder and Greg Michaelson
School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, EH14 4AS,Scotland,
{xyd3,trinder,greg}@macs.hw.ac.uk

Abstract

To manage load on large and dynamic networks we pro-
pose Autonomous Mobile Programs (AMPs) that periodi-
cally use a cost model to decide where to execute in the
network. Unusually this form of autonomous mobility af-
fects only where the program executes and not what it does.
We present a generic AMP cost model, together with a val-
idated instantiation and comparative performance results
for two AMPs. Experiments on a homogeneous network
show that collections of AMPs quickly obtain and maintain
optimal or near-optimal balance. The advantages of our
decentralised approach are scalability to very large and dy-
namic networks, improved balance, and guaranteed max-
imum overhead. The disadvantages are higher overheads
and the necessity of both a cost model and explicit mobility
control.

1 Introduction

Most distributed environments are shared by multiple
users. In particular, distributed agent-based systems must
also contend with external competition for resources, not
least for the processing elements they share. However,
agent mobility in such distributed systems tends to be driven
by concerns relating to the collective goal of the agent sys-
tem, independent of the actual environment in which the
system is running. Thus, such systems tend not to be aware
of, or respond to, environmental changes which impact on
the effectiveness with which they may contribute to the col-
lective goal.

For example, if the external load on a shared processing
element increases, and the agent’s activity does not require
its presence on that specific processing element, then it may
advantageously move to a more lightly loaded processing
element without otherwise affecting its behaviour. In the ab-
sence of self- and environmental awareness, however, such
systems may suffer widely varying processing and response
times as the local environment changes, and accurate pre-

Agents Mobile
Agents

Autonomous
SystemsAMPs

Figure 1: Agents and Autonomous Systems

diction of their behaviours becomes problematic.
We have been exploring what we term autonomous mo-

bile programs(AMPs) which are aware of their processing
resource needs and sensitive to the environment in which
they execute. Our experiments suggest that AMPs are able
to dynamically relocate themselves to minimise processing
time in the presence of varying external loads on shared pro-
cessing elements.

Our work is novel in that:

• mobility is truly autonomous as the AMPs themselves
use local and external load information to determine
when and where to move rather than relying on a cen-
tral scheduler;

• AMPs combine analytic cost models with empirical
observation of their own behaviours to determine their
current progress;

• The cost of movement may be kept to a very small
proportion of the overall execution time.

2 Context

While AMPs have strong connections with both Agents
and Autonomous Systems, as shown in Figure 1, they also
have important differences.

Firstly, unlike previous mobile agents approaches [11,
7, 4], AMPs have cost models and are autonomous, mak-
ing decision themselves when and where to move accord-
ing to the cost model. AMPs also differ from tradition au-

tonomous systems [6, 1, 9], which use schedulers to decide
whether to move. For AMPs there is no scheduler at all:
AMPs themselves can make the decision when and where
to move according to the cost model.

Some autonomous systems are based on mobile agents
[11] which can migrate from one location to another. AMPs
are similar to ethological models like Ant Algorithms[8]
which are distributed computations using mobile agent
technology. Both systems are searching for resources; in
Ant algorithms for ”food”. But where an Ant algorithm is
going to find the fastest path to get to the food, AMPs are
going to find resources and decide which one is better.

Next, where most autonomous mobile agent systems
adapt the computation, AMPs adapt their coordination. Ac-
cording to conditions given by the programmer, AMPs de-
cide when and where to move by checking the environment
where they are executing.

Finally, a collection of AMPs performs decentralised[13]
dynamic load balancing. This differs from traditional static
and dynamic load balancing systems such as LSF [12] and
Sun Grid Engine [5]. Firstly, each AMP collects load in-
formation and decides when and where to move rather than
the decision being taken by a special load balancer process
or processes. Secondly, AMP autonomous load balancing
may operate on a dynamic network. Finally, autonomous
load balancing aims to minimise execution time of the ap-
plications. But the goal of dynamic load balancing is max-
imising utilisation of the processing power.

3 A Cost Model for AMPs

For AMPs a cost model is used to inform the decision
whether to move to a new location. Cost model are typically
parameterised on: system architecture including processor
speed and interconnect speed; cost of processing data; cost
of communicating data; data size; and number of proces-
sors. In the AMP cost model the total execution time of a
process, Ttotal, has three components:
Ttotal = Tcomp [+ Tcomm] [+ Tcoord]

• Tcomp is the computation time for finishing the task.

• Tcomm is the communication time for migrating to an-
other location.

• Tcoord is the coordination time for getting or exchang-
ing status informations with other processes or system.

Figure 2 shows the generic cost model for auto-mobile pro-
grams. Formula (2) gives the condition under which the
program will move, i.e. if the time to complete in the cur-
rent location is more than the time to complete in the remote
location.

Formula (3) states that if there are m communications in
a program’s lifetime and it will take Tcomm time for each

Ttotal = TComp + TComm + TCoord (1)

Th > Tcomm + Tn (2)

TComm = mTcomm (3)

TCoord = npTcoord (4)

TCoord < OTstatic (5)

n <
OTstatic

pTcoord

(6)

Te = Wd/Sh (7)

Th = Wl/Sh (8)

Tn = Wl/Sn (9)

Wa =
∑

Wd (10)

Wd = Wa(this) − Wa(last) (11)

Wl = Wall − Wa (12)

O : Overhead e.g. 5%
Ttotal : total time
Tstatic : time for static program running on

the current location
TComm : total time for communication
Tcomm : time for a single communication
TCoord : total time for coordination
Tcoord : time for coordination with a

single processor(location)
TComp : time for computation
Te : time has elapsed at current location
Th : time will take here
Tn : time will take in the next location
Wall : all work
Wa : the total work which has been done
Wd : the work has been done at current location
Wl : the work left
Sh : the current CPU speed
Sn : the next location CPU speed
m : number of communication
n : number of coordination
p : number of processor

Figure 2: Generic Cost Model for Auto Mobile Programs

communication then the total time for communication is
Tcomm by m.

Formula (4) states that if there are p processors and n

checks on the status of the processors in a program’s life-
time and it will take Tcoord time for checking one processor
once then the total time for coordination is Tcoord by p by
n.

Formula (5) gives the condition under which the pro-
gram will do the coordination work. This condition guaran-
tees that the autonomous mobile program performance will
never be worse than 100 + O percent of the static version.
This guarantee is only valid providing that the loads on the
current and target location don’t change dramatically imme-
diately after the move. For example it is easy to construct
a pernicious example where each time an AMP moves to a
location the load on that location becomes very high.

Substituting (4) in (5) we get Formula (6), where n spec-
ifies how many times we can consider moving.

Formulas (7), (8) and (9) relate time, work and CPU
speed. The time equals the work measured by CPU speed.

In formulas (10), Wd is the work that has been done at
one location, so the total work is the sum of all the Wd.
In other words, formula (11) shows that the work done at
the current location equals the total work done before the
program moved to the current location(Wd(last)) minus all
the work that has been done (Wd(this) or Wd).

Formula (12) gives the remaining work, that is the total
work minus all the work that has been done.

4 Individual AMP Evaluation

4.1 Matrix Multiplication Cost Model &

Validation

Following initial experiments[2] with building AMPs in
the functional mobile language Jocaml[4], we are now us-
ing the more mainstream Voyager[10], a version of mo-
bile Java which supports weak mobility. We have devel-
oped two AMPs in Voyager, matrix multiplication and ray
tracing. Here we focus on matrix multiplication. An auto-
mobile matrix multiplication program has been developed
using three for loops:

for(int i=0;i<work;i++){ //first level
for(int j=0;j<work;j++){ //second level

for(int k=0;k<work;k++){ //third level
m3[i][j]=mult(m1[i][k],m2[k][j]);

} } }

Cost Model We use the cubic cost model for naive matrix
multiplication to instantiate the generic auto-mobile cost
model from section 3 as in Figure 3. In equations (17) and
(18) Sec is a constant which converts time to seconds. For-
mula (13) shows that the total work in the matrix multiplica-
tion is n3. Formula (14) shows that the work that has been

Wall = n3 (13)

Wa = f(i, j, k) = (i − 1)n2 + (j − 1)n + k (14)

Wl = Wall−Wa = n3
−f(i, j, k) = n3

−(i−1)n2+(j−1)n+k
(15)

Wd = Wa(this)−Wa(last) = f(i, j, k)this−f(i, j, k)last (16)

Te =
Wd

Sh

=
[f(i, j, k)this − f(i, j, k)last] Sec

Sh

(17)

Th =
Wl

Sh

=

[

n3
− f(i, j, k)

]

Sec

Sh

(18)

Th =

[

n3
− f(i, j, k)

]

Te

f(i, j, k)this − f(i, j, k)last

(19)

Tn =
Wl

Sn

=

[

n3
− f(i, j, k)

]

Sec

Sn

=
ShTh

Sn

(20)

Figure 3: Cost Model for Auto Mobile Matrix
Multiplication

done is a function of i, j, k. Substituting (13) and (14) into
(12) we get formula (15). The remaining time for finishing
the program is a function of i, j, k.

The work that has been done at the current location is the
total work done at every location minus the total work done
at the last location, giving formula (16). Substituting (16)
in (7) we get the time that has elapsed at current location
giving formula (17).

Substituting (15) in (8) we get the time it will take at the
current location in formula (18). Substituting (17) in (18)
we get formula (19). So the time it will take at the current
location is a function of i, j, k and Te. Substituting (18) in
(8) the time that will be taken in the next location can be
predicted as formula (20).

When this cost model is put into a program, the pro-
gram can determine how much time has elapsed(Te), and
the CPUs speed can be found. So it can predict how much
time,Th, the program will take if it stays in the local loca-
tion, and how much time, Tn, it will take if it moves to a
remote location. According to this information the program
can make a decision about whether to move or not.

Execution Time Validation To show that the cost model
of elapsed time and remaining time are accurate we evalu-
ated the AMP matrix multiplication against a static version.
At every first level loop we use formula (19) to predict the
remaining time and the total time for the program. At the
end of the program we can get the real execution time and
compare the predicted time and real time. Table 1 shows
that we achieve accurate predictions of processing time.

Coordination Time Validation In the simple cost model
in section 3 the total coordination time is one coordination

Size Predict Actual Std Dev(%)
600*600 9.75 9.86 1.2
700*700 15.75 15.57 1.2
800*800 23.00 23.30 1.3
900*900 32.40 32.97 1.7

1000*1000 45.25 45.72 1.0

Table 1: Execution time validation

Locations Predict Actual Std Dev(%)
3 0.76 0.75 1.0
4 1.01 0.89 11.6
5 1.26 1.15 9.0

15 3.78 3.92 3.9
25 6.30 6.55 4.0

Table 2: AMP coordination time validation

time multiplied by p by n; where p is the number of pro-
cessors and n is how many times to check the status of the
processors(TCoord = npTcoord). For the current model we
consider that Tcoord is a constant, and that a program should
not spend much time on this work, which means the smaller
the coordination time the better the efficiency.

From experiments on our local Linux network we esti-
mate the coordination time for checking a single location
once as: Tcoord = 0.25seconds. So the total coordination
time is: TCoord = 0.25 ∗ p ∗ nseconds.

Table 2 shows validation of the AMP coordination time
model for matrix multiplication. The predicted time is very
close to the actual time: the worst is 11.6% of the actual
time and the best is 1.0%.

Communication Time Validation We suppose the time
for communication is a function of the size of the matrix(n).
So we suppose the time for communication should be:

Tcomm = Tcomm1 + Tcomm2 ∗ n2 (21)

Tcomm1 is the time for building a connection from the local
location to a remote location; we call this the lookup time.
Tcomm2 is the time for sending one unit of data to the remote
location.

From experiments, we find that the time for look up is
a constant, and is not related to the size of the matrix. The
time for sending the program to the remote location changes
according to the size of matrix, but if the size of the matrix is
smaller than 50, the time for sending it is almost constant. If
the matrix is bigger than 50, the time for sending is variable;
the bigger the size the more time it takes. If the sending
time(size > 50) is divided by n2(size of matrix) we get
a constant. So we get a formula for communication time

Data Size Predict Actual Std Dev(%)
50*50 0.042 0.047 12.5

100*100 0.081 0.079 2.3
200*200 0.236 0.259 9.9
300*300 0.495 0.510 3.0
400*400 0.857 0.840 2.0
500*500 1.323 1.276 3.5

Table 3: AMP communication time validation

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8

R
E

LA
T

IV
E

 C
P

U
(M

Z
H

)

TIME PERIOD

(1)

(2) (3)

(4)

"program"
Loc1
Loc2
Loc3
Loc4
Loc5

Figure 4: Auto-mobile matrix movement

which is :
Tcomm=0.029 + (if n < 50 then 0 else 5.07*10−6*n2).

Table 3 shows validation of our AMP communication
time model. The predicted time is very close to the actual
time: the worst is 12.5% of the actual time and the best is
2.0%. The bigger the data size, the better the prediction. We
have built a similar cost model for a ray tracer AMP. Vali-
dation shows comparable results to matrix multiplication.

4.2 AMP Movement

We conducted experiments to test if the program moves
as we expect. Figure 4 show the movement of the AMP
matrix multiplication during successive execution time pe-
riods with CPU speeds normalised by the local loads. Our
test environment is based on five locations with CPU speeds
(Loc1 534MHZ, Loc2 933MHZ, Loc3 1894MHZ, Loc4
2000MHZ, Loc5 1000MHZ).

We started the mobile programs in time period 0 on
Loc1. In time period 1 it moved to the fastest processor
Loc3. When Loc3 became more heavily loaded the pro-
gram moved to Loc5, the fastest processor in period 2. In
time period 3, Loc4 became less loaded, and was the fastest
location at that moment, so the program moved to it. In time
period 7 Loc5 was a little faster than Loc2. So the program
moved to Loc5 rather than staying on Loc2. Many AMPs
have reproducible behaviour. We get similar results for the
AMP ray tracer. Note that while ray tracing is generally

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 200 400 600 800 1000 1200

T
im

e(
S

ec
)

Size(n)

"mobile"
"static"

Figure 5: Mobile and Static Matrix Multiplication
Execution Time

irregular we evaluated a regular instance.
We draw the following conclusions from Figure 4:

• The program may move repeatedly to adapt to chang-
ing loads and always find the fastest location in one
step.

• Move (1) shows that if there is a faster location then
the AMP moves to it.

• Move (2) shows that AMPs can respond to changes in
current location.

• Move (3) shows that AMPs can respond to changes in
other locations.

• Move (4) shows that even if the speed differential is
small, the AMP moves.

4.3 AMP Performance

Figure 5 compares the execution times of static and
mobile matrix multiplication programs. Our test environ-
ment is based on three locations with CPU speed 534MHZ,
933MHZ and 1894MHZ. The loads on these three comput-
ers are almost zero. We started both the static and the mo-
bile programs on the first CPU. We can see that the bigger
the size of the matrix the faster the mobile version is com-
pared with the static version. We get similar results for the
AMP ray tracer. From all the experiments, we get compa-
rable results to those for the AMPs in Jocaml[2].

5 Collections of AMPs

In this section, we discuss experimental results for col-
lections of AMPs on both homogeneous and heterogeneous
processor networks.

In initial experiments, each AMP obtained load infor-
mation from all other PEs, but we quickly introduced the

LS

......

LS

1

.............

 11

RMI

RMI RMI RMIRMI

 k

 kn
AMP

 1m
AMP

 k1
AMP AMP

 LS : Load Server
 RMI : Java RMI

Figure 6: System with load server structure

architecture depicted in Figure 6 where each location has a
load server that maintains information about location loads.
Specifically, the load server records CPU speed, the number
of AMPs and the load of each location. The advantages of
the load server architecture are reduced time for AMPs to
discover load information, and also reduced network traffic.

For homogeneous systems, we measured AMP be-
haviour on a dedicated network of four locations all with
the same CPU speed (3193MHz) and communications la-
tency.

We initially hypothesised that every location would have
an equal number of AMPs, but experiments showed that
the initiating location, where the AMPs are started is more
heavily loaded than the others, and hence has fewer AMPs.
We define optimal balance as each location having the same
number of AMPs, except the initiating location which may
have fewer. For small numbers of AMPs the initiating loca-
tion has just one AMP and other locations have a−1

p−1 AMPs,
where a is the total number of AMPs, p is the total number
of locations.

Our experiments show that collections of AMPs achieve
optimal balance as predicted in Table 4, where the first
row is the number of AMPs started, the first column is the
number of locations used, and the remaining columns sum-
marise the distribution of AMPs on the locations, with the
initiating location listed first. For example, if we run seven
AMPs on three locations and we start all seven AMPs on
Loc1, then we expect that there will be three AMPs on both
Loc2 and Loc3, but just one AMPs on Loc1.

For illustration the movement of 7 AMPs between 3 lo-
cations is shown in Figure 7. The AMPs are started on Loc1

in time period 0. Four AMPs moved to Loc2 and two moved
to Loc3 in time period 1, which is not an optimal balance,
so one AMP in Loc2 moved to Loc3 in time period 2. Af-
ter this move the system achieved an optimal balance and
the AMPs did not move again. We have also done experi-
ments of five AMPs on three location, nine AMPs on three
locations, seven AMPs on four locations, ten AMPs on four
locations and get similar results.

Near-optimal balance is when each location except the
initiating location may not have the same number of AMPs,

AMPs 5 AMPs 7 AMPs 9 AMPs 10 AMPs
3 Locs 1/2/2 1/3/3 1/4/4 -
4 Locs - 1/2/2/2 - 1/3/3/3

Table 4: Verified Optimal Balance

Loc1

Loc2

Loc3

0 1 2 3 4 5 6 7 8 9 10 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5
P6
P7

Figure 7: 7 AMPs on 3 Locations

but the number of AMPs on each location differs by no
more than one. In Figure 8, we started six AMPs on Loc1.
Three of them moved to Loc3, two of them moved to Loc2,
one stayed on Loc1, and the AMPs do not move again after
the best distribution. Figure 9 shows that if we add AMPs
to or remove AMPs from a balanced AMPs system, the
AMPs can rebalance themselves. Seven AMPs were ini-
tially started on Loc1. Once the system was balanced, we
started one AMP in each time period of 4, 6 and 8, and we
got balance in time period 12. The rebalancing as AMPs are
removed follows a similar patten.

We have also measured the behaviour of multiple AMPs
on a heterogeneous network of fifteen locations, with CPU
speeds 3193MHz (Loc1-Loc5), 2168MHZ (Loc6-Loc10),
and 1793MHz (Loc11-Loc15). For illustration the move-
ment of 25 AMPs between the 15 locations is shown in Fig-
ure 10. “B” is the balanced status, where every AMP has
similar relative CPU speed. In this state, AMPs will stay in
the current locations and not move any more until the bal-
ance is broken. We started 25 AMPs on Loc1 in time period
“0”. After some movements of each AMPs, we achieved
a balance in time period “k” and the AMPs maintained the
balance and did not move any more until time period “k+x”,
when one of the AMPs is finished and the balance is broken.
So the 24 AMPs moved again and reached a new balance in
time period “l”. Figure 11 shows that every AMP has ef-
fective resource between 150MHZ and 400MHZ with only
three exceptions. Similar results were achieved when there
are 24 AMPs and 23 AMPs. Loc1 is the busiest location for
AMP coordination and there is only 1 AMPs on it. The re-
sults show that collections of independent AMPs rebalance
quickly and with a small number of moves. In a homoge-

Loc1

Loc2

Loc3

0 1 2 3 4 5 6 7 8 9 n

LO
C

A
T

IO
N

S

TIME PERIOD

............

P1
P2
P3
P4
P5
P6

Figure 8: A Near Optimal Balance

Loc1

Loc2

Loc3

Loc4

0 1 2 3 4 5 6 7 8 9 10 11 n

LO
C

A
T

IO
N

S
TIME PERIOD

..........

B A A A B

A:Adding more AMP

B:Optimal Balancing

P0
P1
P2
P3
P4
P5
P6
P7
P8
P9

Figure 9: Rebalancing After Adding AMPs

neous system, if the ratio of AMPs to locations is ideal, an
optimal balance is relatively quickly obtained with every lo-
cation, except the initiating location hosting the same num-
ber of AMPs. Similarly, in a homogeneous system, even if
the ratio of AMPs to locations is not ideal, an near-optimal
distribution can be obtained. Furthermore, the system main-
tains balance as AMPs are added or removed. Finally, in
a heterogeneous system, AMPs can achieve balance with
similar relative CPU speeds.

6 Conclusion and Future Work

The advantages of an AMP model are as follows. The
model scales to medium sized networks (<15 Locations),
with AMPs making decentralised decisions about where to
execute. Indeed on such networks only nearby locations
need be considered as potential targets. The model man-
ages dynamic networks very easily with each AMP select-
ing where to execute from the current set of locations, and
abandoning any location that is leaving the network.

The AMP model can obtain a better balance than a classi-
cal distributed load balancer as, unlike the latter, each AMP
has a cost model giving accurate information about the time

Loc1

Loc2

Loc3

Loc4

Loc5

Loc6

Loc7

Loc8

Loc9

Loc10

Loc11

Loc12

Loc13

Loc14

Loc15

0 1 k k+1 k+x k+x+1 l l+1 l+y l+y+1 m m+1 n

LO
C

A
T

IO
N

S

TIME PERIOD

B :Balancing
-n:Removing n AMP(s)

25 1

3

2

2

2

2

2

2

2

2

1

1

1

1

1
B

..... 1

3

2

2

2

2

2

2

2

2

1

1

1

1

1
-1

..... 1

3

2

2

2

2

2

2

2

1

1

1

1

1

1
B

..... 1

3

2

2

2

2

2

2

2

1

1

1

1

1

1
-1

..... 1

3

2

2

2

1

1

2

2

2

1

1

1

1

1
B

.....

Figure 10: 25 AMPs on Heterogeneous Network (15
Locations)

 0

 1

 2

 3

 4

 5

 6

 7

 8

50 100 150 200 250 300 350 400 450 >500

N
um

be
r

of
 A

M
P

CPU speed AMP had

Figure 11: Relative CPU Speed for AMPs

to complete and to communicate the program. Moreover it
is possible to parameterise the AMP cost model with a max-
imum overhead, e.g. 5%, and guarantee under a reasonable
assumption that auto-mobility overheads will not exceed it.

However, the disadvantages of an AMP model are that it
may introduce higher coordination costs as every location
must obtain load information about other locations. AMPs
also require an accurate model of computation and commu-
nication costs. Finally the program contains additional code
to control the autonomous mobility.

There are a number of areas for future work. Firstly,
we are developing auto-mobile skeletons[3] that encapsu-
late the mobility control for common patterns of computa-
tion. Auto mobile skeletons are polymorphic higher order
functions like automap or autofold that make mobility
decisions by combining generic and task specific cost mod-
els. Secondly, so far we have only considered regular prob-
lems, such as matrix multiplication, and wish to generalise
AMPs to irregular problems with cost models and strategies
to adapt to the behaviour of irregular programs. Thirdly, the
collections of AMPs experiments have been performed on
a LAN, and we aim to experiment with large-scale system
e.g. computational Grids.

References

[1] J. Abawajy. Autonomic Job Scheduling Policy for
Grid Computing. In Computationl Science - ICCS
2005, part 3, pages 213–220. Springer, May 2005.

[2] X. Y. Deng, G. Michaelson, and P. Trinder. Towards
High Level Autonomous Mobility. In H.-W. Loidl,
editor, Draft proceedings of Trends in Functional Pro-
gramming, pages 97–112, Munic, Germany, Novem-
ber 2004.

[3] X. Y. Deng, G. Michaelson, and P. Trinder. Au-
tonomous Mobility Skeletons. Journal of Parallel
Computing, accepted March 2006.

[4] C. Fournet, F. L. Fessant, L. Maranget, and
A. Schmitt. Jocaml: a Language for Concurrent Dis-
tributed and Mobile Programming. In Proceedings of
the Fourth Summer School on Advanced Functional
Programming, pages 19–24, St Anne’s College, Ox-
ford, August 2002. Springer-Verlag.

[5] A. Group. Sun’s Grid Computing Solu-
tions Outdistance the Competition, May 2002.
http://www.sun.com/software/grid/docs/Grid competitive.pdf.

[6] J. O. Kephart and D. M. Chess. The vision of auto-
nomic computing. Computer, 36(1):41–50, 2003.

[7] D. B. Lange and M. Oshima. Mobile agents with Java:
The Aglet API. World Wide Web, 1(3):111–121, 1998.
http://dx.doi.org/10.1023/A:1019267832048.

[8] P. E. Merloti. Optimization Algorithms Inspired by
Biological Ants and Swarm Behavior. Technical re-
port, San Diego State University, Artificial Intelli-
gence, CS550, San Diego, June 2004.

[9] C. V. Travis Desell, Kaoutar El Maghraoui. Load
Balancing of Autonomous Actors over Dynamic Net-
works. page 90268.1, 2004.

[10] T. Wheeler. Voyager Architecture Best Prac-
tices. Technical report, Recursion Software, March
2005. http://www.recursionsw.com/Voyager/2005-03-
31-Voyager Architecture Best Practices.pdf.

[11] M. Wooldridge. Agent-based software engineering.
IEE Proceedings Software Engineering, 144(1):26–
37, 1997.

[12] WWW. Platform. http://www.platform/products/LSF.

[13] A. Y. Zomaya and Y.-H. Teh. Observations on Us-
ing Genetic Algorithms for Dynamic Load-Balancing.
IEEE Trans. Parallel Distrib. Syst., 12(9):899–911,
2001.

