
Higher-Order Symb Comput
DOI 10.1007/s10990-011-9067-y

Hume box calculus: robust system development through
software transformation

Gudmund Grov · Greg Michaelson

© Springer Science+Business Media, LLC 2011

Abstract Hume is a contemporary programming language oriented to systems with strong
resource bounds, based on autonomous concurrent “boxes” interacting across “wires”.
Hume’s design reflects the explicit separation of coordination and computation aspects
of multi-process systems, which greatly eases establishing resource bounds for programs.
However, coordination and computation are necessarily tightly coupled in reasoning about
Hume programs. Furthermore, in Hume, local changes to coordination or computation,
while preserving input/output correctness, can have profound and unforeseen effects on
other aspects of programs such as timing of events and scheduling of processes. Thus, tra-
ditional program calculi prove inappropriate as they tend to focus exclusively either on the
coordination of interacting processes or on computation within individual processes.

The Hume box calculus offers a novel approach to manipulating multi-process systems
by accounting seamlessly for both coordination and computation in individual rules. Further-
more, the “Hierarchical Hume” extension enables strong locality of the effects of program
manipulation, as well as providing a principled encapsulation mechanism.

In this paper, we present an overview of the Hume box calculus and its applications in
program development. First of all, a base set of rules for introducing, changing, composing,
separating and eliminating Hume boxes and wires, possibly within hierarchies, is presented.
Next additional strategies are derived and a constructive approach to program development
is illustrated through two examples of system elaboration from truth tables. Finally, at a
considerably higher level, the use of the Hume box calculus to verify a generic transfor-
mation from a single box to an equivalent multi-box program, offering a balanced parallel
implementation, is discussed.

Keywords Box calculus · Hume · Program transformation

G. Grov
University of Edinburgh, Edinburgh, UK
e-mail: ggrov@inf.ed.ac.uk

G. Michaelson (�)
Heriot-Watt University, Edinburgh, UK
e-mail: G.Michaelson@hw.ac.uk

mailto:ggrov@inf.ed.ac.uk
mailto:G.Michaelson@hw.ac.uk

Higher-Order Symb Comput

1 Introduction

1.1 Overview

Functional languages have long been heralded as a bridge between foundational theories of
computing and practical system development. Lacking state, and drawing directly on classic
theories of λ calculus and recursive functions, they are reputedly more amenable to formal
manipulation than their imperative relations. Furthermore, the absence of stateful time de-
pendencies gives rise to pervasive implicit parallelism, with the promise of minimising the
complexities of constructing multi-process(or) systems.

Implicit parallelism in functional programs has generally proved too fine grain for ef-
fective exploitation. Instead, explicit coarser grain language constructs may be introduced,
for example in Haskell through GpH’s par combinator [32]. Similarly, Eden [6] extends
Haskell with explicit process and channel constructs. A different approach is to take advan-
tage of the close correspondence between higher order constructs and parallel algorithmic
skeletons, either implicitly as in the PMLS compiler for Standard ML [28], or explicitly by
crafting skeletons from lower level parallel constructs [23]. In both approaches, however, all
aspects of parallelism are captured within a unitary notation.

Hume [17] is a contemporary programming language in the functional tradition, oriented
to systems with strong resource bounds and well suited to multi-process systems. Unlike
other multi-process functional languages, Hume’s design, based on autonomous concurrent
“boxes” interacting across “wires”, reflects the explicit separation of coordination and com-
putation aspects of multi-process systems, which greatly eases establishing resource bounds
for programs. Nonetheless, coordination and computation are necessarily tightly coupled in
reasoning about Hume programs. In particular, in Hume, local changes to coordination or
computation, while preserving input/output correctness, can have profound and unforeseen
effects on other aspects of programs such as timing of events and scheduling of processes.
Thus, traditional program calculi prove inappropriate as they tend to focus exclusively either
on the coordination of interacting processes or on computation within individual processes.

The Hume box calculus offers a novel approach to manipulating multi-process programs
by accounting seamlessly for both coordination and computation in individual rules. It may
be viewed operationally as characterising a rewrite system for program transformation. Fur-
thermore, the “Hierarchical Hume” extension enables strong locality of the effects of pro-
gram manipulation, as well as providing a principled encapsulation mechanism.

In this paper, we present an overview of the Hume box calculus and its applications
in program transformation. First of all, we survey Hume and its execution model, develop
motivating transformations and explain how they impacts on program behaviour in non-
obvious ways. Next we provide a brief overview of Hierarchical Hume before we introduce
the box calculus in Sect. 2. This is followed by a presentation of the syntax, semantics, and
formal reasoning and mechanisation frameworks for the box calculus in Sect. 3. We then
develop an exemplary set of box calculus rules and strategies of generic applicability in
Sect. 4, and illustrate their use in the derivation of two very low level multi-box systems
from truth tables in Sect. 5. We also deploy the box calculus, at a considerably higher level,
to verify a generic transformation from a single box to an equivalent multi-box program,
offering a balanced parallel implementation in Sect. 6. Finally, we discuss the wider context
for this research in Sect. 7, and its limitations and future directions in Sect. 8.

This paper represents a substantive elaboration of [14], where the box calculus was
first presented. In the current paper we provide considerable additional contextualisation,
stronger characterisation of rules via type signatures, greater detail of the derivation of rules
and strategies, and new applications to parallel program derivation.

Higher-Order Symb Comput

1.2 Hume

We have been exploring a new cost-driven, transformational approach to software construc-
tion from certified components which is highly suited to dynamic, reconfigurable embedded
systems. This approach builds on the modern layered programming language Hume [17],
based on autonomous concurrent boxes linked by wires and controlled by generalised tran-
sitions. A major strength of Hume for establishing resource costs of programs lies in the
explicit separation of inter-box coordination and intra-box computation concerns, but this is
not considered further here.

Boxes and wires are defined in the simple finite state coordination language with
transitions defined in the Turing-complete expression language through pattern matching
and associated recursive actions. Both coordination and expression languages share a rich
polymorphic type system, comparable to those of contemporary functional languages like
Haskell and Standard ML.

In Hume, a program consists of unitary boxes connected by wires, where a box consists
solely of stateless transitions from inputs to outputs. The transitions are guided by a list of
matches—each consisting of a pattern and a corresponding expression. A pattern match trig-
gers the corresponding expression which produces the output. ‘∗’ in any pattern/expression
means ignore input/output.

For example, consider a single box program that inputs sequences of 16 integers followed
by a checksum, and displays the sequence sum and checksum:

1. type integer = int 64;

2. stream input from "std_in";
3. stream output to "std_out";

4. box checksum
5. in (n,c,s::integer)
6. out (c’,s’::integer,m::(string,integer,string,integer))
7. match
8. (0,s,n) -> (16,0,("sum: ",s,"checksum: ",n)) |
9. (c,s,n) -> (c-1,s+n,*);

10. wire checksum
11. (checksum.c’ initially 16,checksum.s’ initially 0,input)
12. (checksum.c,checksum.s,output);

Line 1 introduces the alias integer for the sized integer int 64.
Lines 2 and 3 link the streams input and output to standard input and standard output

respectively.
Lines 4 to 9 define the box checksum. Line 5 introduces the input links c for the decre-

menting count of inputs, s for the accumulating sum of inputs and n for inputs. Similarly,
line 6 introduces the outputs c’ for the decrementing count, s’ for the accumulating sum,
and m for a message showing the final accumulating sum and checksum.

Line 8 matches the inputs in the case where the count is 0 and so the current input must
be the checksum. Then the outputs reset the count to 16, the sum to 0, and display the sum
and checksum with appropriate strings.

Line 9 matches the inputs where the count is non-zero. The count is decremented, the
input added to the sum and no message is displayed.

Higher-Order Symb Comput

Fig. 1 Checksum program

Finally, lines 10 to 12 wire the program. Line 11 associates the box inputs c and s with
the outputs c’ and s’, initialising them respectively to 16 and 0. It also associates the input
n with standard input from input.

Then, line 12 associates the box outputs c’ and s’ with c and s respectively, and the
output m with standard output to output.

The program is illustrated in Fig. 1.
Note that the box has feedback wires from c’ to c, and from s’ to s. Such wiring is

also termed self-wiring.

1.3 Hume execution

The Hume execution model is based on two-stage, cyclical execution. On each cycle, all
boxes first attempt to consume inputs to generate outputs once, and then all input/output
changes are resolved in a unitary super-step.

Initially, all boxes are in a Runnable state. In the first execution stage, each box attempts
to match the values on its input wires against successive patterns. When a pattern matches,
variables are bound to corresponding wire values and the associated computation expression
is evaluated. Note that at this stage, no inputs are consumed and no outputs are asserted.

Next, at the second stage (super step), all successfully matched values are consumed
from input wires. Then, provided all relevant output wires from a box are free, its new
output values are asserted on the corresponding wires and the box becomes Runnable once
more.

Boxes which cannot assert all outputs, do not assert any, and become Blocked, buffering
their pending outputs. On the next execution cycle, Blocked boxes do not attempt to match
inputs at the first stage, but may assert their pending outputs on the superstep if other boxes
have consumed appropriate inputs.

Note that the execution model is closely related to call-by-value-result parameter passing.
In this model, execution order is irrelevant: boxes are stateless and have no side effects

on the external environment. However, as every box executes once on each cycle, in a naive
implementation, as the number of boxes grows so does the potential for unnecessary but
nonetheless resource consuming activity, where boxes repeatedly fail to:

– consume inputs until other boxes make them available as outputs;
– assert outputs until other boxes consume the corresponding inputs.

1.4 Transforming Hume programs

Hume offers programmers different programming levels where expressivity is balanced
against accuracy of behavioural modelling. Full Hume is a general purpose, Turing com-

Higher-Order Symb Comput

plete language with undecidable correctness, termination and resource bounds. PR-Hume
restricts Full-Hume expressions to primitive recursive constructs, enabling decidable ter-
mination and bounded resource prediction. Template-Hume further restricts expressions to
higher-order functions with precise cost models, enabling stronger resource prediction. In
FSM-Hume, types are restricted to those of fixed size and expressions to conditions over
base operations, enabling highly accurate resource bounds. Finally, HW-Hume is a basic fi-
nite state language over tuples of bits, offering decidable correctness and termination, and
exact resource analysis.

However, rather than requiring programmers to choose a level from the outset, we have
elaborated an iterative methodology based on cost-driven transformation. An initial Hume
program, designed to meet its specification, is analysed to establish resource bounds. Where
established bounds are unacceptable, the offending program constructs are transformed, usu-
ally to lower levels, and the program is again analysed, with the cycle continuing until the
required analytic precision is reached.

Now, the main loci of transformation from an upper to a lower level is to move activ-
ity from computation to coordination, i.e. from expressions inside a box to wiring between
boxes, typically reducing activity within a box but increasing the number of boxes in com-
pensation. This increases the accuracy of behavioural modelling.

For example, in moving from primitive recursive forms in PR-Hume to iterative forms
in FSM-Hume, using a variant of the well known tail recursion optimisation [27], a call to
recursion within a PR-Hume box:

F x = if T x then U x else F (V x);

is replaced by wires from that box to a new FSM-Hume box using feedback wires to enable
iteration equivalent to:

while not T x do
x := V x;

return U x;

Figure 2 shows the transformation. Wires, represented by labelled directed arcs, are indica-
tive and the labels refer to the name of the output/input in the box.

The original RecBox has transition (x) -> (F x) from input x to output F x.
After the transformation, a modified RecBox’ communicates with a new iterating

IterBpx. RecBox’ has new matches:

– (x,*) -> (*,x), to accept external input x and pass it to IterBox on wire
RecBox.o’/IterBox.i;

– (*,x) -> (x,*), to accept the final x back from IterBox on wire
IterBox.o/RecBox’.i’ and output it.

IterBox repeatedly applies V to x until T holds and then returns U x to RecBox’.
Note that the original RecBox box would execute once for a recursion of depth N ;

now both RecBox’ and IterBox will execute N times with the original box RecBox’
executing needlessly so long as IterBox has not produced any outputs. Furthermore, while
box execution is order independent, it is time dependent: changing the number of boxes and
hence the time for each overall execution cycle may have unpredictable effects on other
boxes with explicit time constraints.

Even at the same level, simple local transformations may have substantial unintened ef-
fects on the rest of the program. For example, consider splitting (or joining boxes) vertically

Higher-Order Symb Comput

Fig. 2 Recursion to box iteration

Fig. 3 Horizontal and vertical split/join transformations

or horizontally as shown in Fig. 3. In the horizontal case (b), the single box containing the
tuple (f x,g y) may be split to enable concurrent execution of two auxiliary boxes to
execute f x and g y independently. Here, although one box is introduced there will be no
impact on execution as both will be in the same super step.

However, in the vertical case (a), there is considerable impact on the rest of the program.
Here, one box containing a function composition f(g x) is split into a pipeline of boxes
realising first g x and then f(g x). Thus, an additional box and wire are introduced,
and expression evaluation is shared between the first and second box. Note that, while in-
put/output correctness may be preserved, without the introduction of hierarchy there will be
a delay, maximally equivalent to executing the entire program for one cycle, between the
first box asserting an output and the second box consuming it as an input.

1.5 Hierarchical Hume

In the Hierarchical Hume extension [15], a box may contain an entire Hume program, so one
box may be composed from a hierarchy of nested boxes. At the top level, the program is still
scheduled by a single superstep. However, nested boxes may now be scheduled repeatedly
for one cycle of the nesting box.

The introduction of nested boxes greatly mitigates the impact of transformation. If one
box is replaced by a hierarchy, then timing effects are localised and may be considered
independently of the rest of the program, provided the transformed box retains the same or
compatible top-level timing behaviour.

Hierarchical Hume is a minimal extension, allowing nested constructs of the form:

box name
in links out links match matches
boxes
box id1 ...

Higher-Order Symb Comput

-- Only 0 and 1
type Bit = int 1;

box half1
in (x,y::Bit)
out (s,c::Bit)

match
(0,0) -> (0,0) |
(0,1) -> (1,0) |
(1,0) -> (1,0) |
(1,1) -> (0,1);

a. Half Adder 1: Truth Table

b. Half Adder 2: (Graphic)
XOR and AND gates

box half2
in (x,y::Bit) out (s,c::Bit)

match
(_,_) -> (_,_)

boxes
box fanout

in (x,y::Bit)
out (x1,y1,x2,y2::Bit)

match
(x,y) -> (x,y,x,y);

wire fanout (half1.x,half2.y)
(xor.x,xor.y,and.x,and.y);

box xor
in (x,y::Bit) out (z::Bit)

match
(0,0) -> 0 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 0;

wire xor(fanout.x1,fanout.y1)
(half1.s);

box and
in (x,y::Bit) out (z::Bit)

match
(0,0) -> 0 |
(0,1) -> 0 |
(1,0) -> 0 |
(1,1) -> 1;

wire and (fanout.x2,fanout.y2)
(half1.c);

end;

c. Half adder 2: Source Code

Fig. 4 Half Adders in Hierarchical Hume

wire id1 ...
box id2 ...
wire id2 ...
...

As before, the box has in and out links to other boxes and the external environment.
However, the matches are now used to express constraints on links (e.g. constant, ignore
(*), accept (_)) rather than to consume and generate values. Then, the new keyword boxes
introduces an encapsulated sequence of box and wire definitions. Here, encapsulated boxes
may be wired to each other, and to the encapsulating box, but not to the outer environment.

This simple Hume extension, as well as providing a valuable encapsulation mechanism
for software design, enables the localisation of the effects of transformations. In particular,
Hume hierarchies avoid timing disruption and additional global box scheduling attendant on
the introduction of new boxes with local behaviours.

For example, consider transforming a single box half adder to a multi-box AND/XOR
configuration, as shown in Fig. 4. The original single box (a) on the left is a straight tran-
scription of the equivalent truth table.1 In the new hierarchy (c) on the right, the nesting box
inputs and outputs are wired explicitly to the appropriate nested box inputs and outputs. In
the graphical representation of the hierarchical box (b), the transition details within the box
are elided.

1As are the AND and XOR boxes within the new hierarchy (c).

Higher-Order Symb Comput

Note that, in box half2, the “match” ‘(_,_)->(_,_)’ means that the rule will fire
when all inputs are available and complete when all outputs are available.

Informally, a transformation is correct if the program behaves the same way with respect
to the environment as in the original configuration—i.e. the same values are produced and
consumed for wires connected to external devices. Only first-level boxes can communicate
with external devices, hence an example of a correct transformation is when the top level
boxes observationally implement the first-level boxes before the transformation. In the ex-
ample given in Fig. 4 this means that the transformed box half2 (b/c) must behave as
half1 (a). Due to the hierarchy, top level timing can be ignored, and the focus is within
the new box. Firstly, half1 is defined for all type correct inputs, and produces values on
all outputs. As noted above, this is achieved by the ‘(_,_)->(_,_)’ match of half2. It
is easy to see that the s (first) output of half1 with the given inputs is basically an XOR
gate. Further, c is an AND gate. By “fanning out” the inputs to an XOR/AND pair the same
output will be produced, which is exactly the case in half2 which therefore implements
half1. In the example shown in Fig. 2, if we assume functional correctness, then the trans-
formation is correct if RecBox’ and IterBox are nested inside a first level box, with i
and o wired to the parent box.

2 Overview of the box calculus

The general categories of transformation rules in the box calculus will be familiar from
many comparable calculi. Thus, there are rules to:

– introduce/eliminate identity boxes;
– introduce/eliminate nesting boxes;
– introduce/eliminate wires;
– combine/separate boxes horizontally and vertically;
– expand/contract match patterns and results;
– reorder patterns and results.

Special to Hume are rules for moving activity between result expressions within boxes and
coordination between boxes. Indeed, in Hume, coordination and expression level transfor-
mation are tightly coupled, and there are necessarily strong links between the apparently
distinct categories above.

In Hume, while boxes may be concurrently executed, concurrency is controlled by the
static one-to-one wiring, which ensures freedom of race conditions. However, global anal-
ysis is still required when transforming boxes at the coordination layer since changes of
the topology, although functionally behaviour preserving, may change when values arrive,
which may have impact on the overall system behaviour—mainly since Hume allows us to
ignore values with the * pattern. We have previously discussed this in [15], and this was in
fact our key motivation for introducing Hierarchical Hume.

As a consequence, rules that may change the scheduling/timing properties, require addi-
tional preconditions asserting that the changes will have no effect. To ease the description
of such cases we introduce the notion of context and (un)bounded context.

The context of a box captures the dependencies of a box—that is, where (timing) changes
to a box or cluster of boxes may have an effect. If these can be localised, then the context
is bounded. Unbounded context requires full global analysis of a program. An example of a
box that has a bounded context, is a box nested by another box. Here, the dependent boxes
can only be the siblings and (internal details) of the parent box—however, it may not be

Higher-Order Symb Comput

Fig. 5 Context and (un)bounded context illustration

all the siblings as illustrated in Fig. 5(d). Note that the context of a box in principle always
contains itself in the general case (e.g. due to self-wiring). However, this may be ruled out
by a analysis of the wiring. Figure 5 illustrates four context cases for a box A:

(a) in this case the context of A is at least A and B . The stippled lines illustrates that the
remaining program is unknown—thus, full global analysis are required;

(b) boxes A and B forms a closed network—thus, the context of box A is bounded, and
contains A and B . Note, that A is indirectly wired to itself via box B and is therefore
part of the context;

(c) boxes A and B are nested by box C. Thus, the context of A is bounded and contains A,
B and C (internally);

(d) boxes A and B are nested by box C, and the context of A is thus bounded. However, A

and B are completely independent, thus the context is A and C (internally) only.

3 The rule syntax and semantics

Hume has formal semantics based upon the heap representation of values [22]. This heap
representation underpins the Hume cost model (see e.g. [18]). Indeed, as satisfying resource
bounds is a key motivation behind applying transformations, we plan to further integrate
the calculus with the cost model through the future implementation of the costing-by-
construction paradigm discussed in Sect. 8.

However, the Hume semantics focuses on the expression layer concerned with computa-
tions within boxes, and does not fully reflect the distinctive properties of the coordination
layer. In contrast, the Hierarchical Hume semantics in TLA [24] presented in [12] focuses
on the coordination layer and does not follow the standard heap representation. The TLA
formalisation is also mechanised in Isabelle, and some experiments with integrating the
mechanisation of [22] with the TLA embedding are conducted in [12]. However, this is
based on a shallow embedding of the coordination layer, and is not an appropriate basis
for the box calculus. Instead, here we have returned to [22], extended with hierarchies as
formalised in TLA [12].

For our purposes, a Hume program configuration is considered as consisting of a triple

〈θ, η,bcs〉 :
θ is the wire heap; η is the box heap disjoint from θ ; while bcs is a list of box configurations.
Our rules in [14] focuses on Hierarchical Hume. Here, the wire heap contains all first-level
wires as illustrated in Fig. 6(a). To enable more flexibility, we have instead used the repre-
sentation in Fig. 6(b), i.e. allowing all wires except those connected to external devices to
change. This also enables better support for transforming programs without hierarchies. The

Higher-Order Symb Comput

Fig. 6 Wire heap θ and box
heap η differences between [14]
and this formalisation

distinction between θ and η is important in the formulation of the box calculus since only
η is allowed to change. Note that, to ease the presentation we have omitted features of the
Hume semantics that are not relevant for this discussion.

A heap is represented as a type H , which is a mapping from locations, of type Locs, to
values or locations. To make this (partial) map into a total function, a nil element is also
added. Thus, a heap H has the type:

H = Locs → Vals ∪ Locs ∪ {nil}.
We abstract over the Hume type system, and assume all values (independent of types) are in
the set Vals. However, note that the Hume type system is comparable to that of Haskell and
Standard ML.

Let BCS be the type of a box configuration and [BCS] a list of box configurations. A pro-
gram configuration has then the type:

〈θ, η,bcs〉 :: H × H × [BCS].
Below we will abbreviate this type by PC:

PC = H × H × [BCS].
Each box configuration consists of the elements

〈id, iws,ows,we, rs, ii, io, ibcs〉 :
id is the box’s name; iws is a list of locations holding the input wires; ows is a list of locations
holding the output wires; we is a wire environment linking wire identifiers to the correct
element of the correct list (note that input and output wire names in a box must be distinct);
rs is a list of matches. The three last elements are empty (lists) if the box is not nested: ii is
a list of locations of internal input wires; io is a list of locations of internal output wires; and
ibcs is a list of box configurations of internal (nested) boxes.

Let Id be the identifier type (e.g. string), and RS the type of a Hume match. A match con-
sist of a pattern (type Patt) and expression (type Expr), where match can either be ignored,
consumed, ignored but consumed if existing, a variable, a constructor or a constant:

Patt = {*,_,_*} ∪ Vars ∪ Constr ∪ Consts.

Expr, Vars, Constr and Consts have the obvious meaning. Thus, a match has the type

RS = Patt × Expr.

Higher-Order Symb Comput

The wire environment is of type WE, it maps a variable name (type Id) to a list and an
element of that list. To simplify we number the lists (e.g. 0 for iws and 1 for ows), thus the
result is a pair of naturals. To achieve totality, nil is returned if the given variable is not valid:

WE = Id → (N × N) ∪ {nil}.
A box configuration has then the type:

BCS = Id × [Locs] × [Locs] × WE × [RS] × [Locs] × [Locs] × [Locs].
runbcs represents one execution cycle of the program including the super step. It is a predi-
cate on two heaps 〈〈θ, η〉, 〈θ ′, η′〉〉 where 〈θ, η〉 is a ‘before heap’ and 〈θ ′, η′〉 an ‘after heap’.
runbcs then holds if given 〈θ, η〉 the result of executing bcs is 〈θ ′, η′〉.

The box calculus consists of a set of conditional rewrite rules. A rule changes the triple
〈θ, η,bcs〉 and has the syntax

〈θ, η,bcs〉 � Rule(X1, . . . ,Xn) ⇓ 〈θ ′, η′,bcs′〉.
This is read as “Rule with parameters X1, . . . ,Xn will, under the configuration 〈θ, η,bcs〉
create the configuration 〈θ ′, η′,bcs′〉”. This can also be written:

〈θ ′, η′,bcs′〉 = (Rule(X1, . . . ,Xn))(〈θ, η,bcs〉)
meaning that the program configuration is an implicit argument of Rule. Let Ti be the type
of Xi above. Rule has then the type:

Rule :: T1 × · · · × Tn → PC → PC.

Semantically, a strategy is the same as a rule—with the intention that it represents some-
thing “higher level”. The plan is to have a (closed) set of primitive rules. This set can be
used for theoretical results, like completeness. From this set of primitive rules, higher-level
strategies are derived and these will be used in actual program transformation. The use of
inference rules and tactics in LCF-style theorem proving can be seen as an analogy to rules
and strategies.2

A function, on the other hand, does not change the program configuration. Furthermore,
in many cases a function does not need all the program configuration. Thus, the configu-
ration is not an implicit argument as the case is for a rule. Instead, a function will always
produce a result. For example, let T be the result type of Function. It will then have the
type:

Function(X1, . . . ,Xn) :: T1 × · · · × Tn → T

3.1 A framework for correctness verification

The Temporal Logic of Action (TLA) [24] allows us to separate computation and coordina-
tion for reasoning, and fits well into the Hume framework [15, 19]. The TLA specification
for the Hume program triple 〈θ, η,bcs〉 is

∃η : Initθ ∧ Initη ∧ �(runbcs).

2Technically, an inference rule and a tactic have different types, so a more correct analogy would be an
inference rule wrapped by a tactic, and a “normal” tactic.

Higher-Order Symb Comput

∃η denotes that η is hidden. Initθ ∧ Initη holds the initial values for the two heaps. The
key to proving transformations is allowing steps that do not change the state space 〈θ, η〉.
Such steps are called stuttering steps, and are internal actions. Validity of formula should
not depend on those, and such formulas are said to be invariant under stuttering. Thus,
runbcs will henceforth denote that if bcs does not hold between a before and an after state
of an action, then 〈θ, η〉 is left unchanged. runbcs must hold throughout execution and has
therefore been prefixed by the temporal ‘always’ operator ‘�’.

A transformation of 〈θ, η,bcs〉 into 〈θ ′, η′,bcs′〉 (by application of a rule) is here seen as
a refinement, or in other words an implementation. Here,

(∃η : Initθ ∧ Initη ∧ �(runbcs)
)
. (1)

can be seen as specifying the behaviour which

(∃η′ : Initθ ′ ∧ Initη′ ∧ �(runbcs′)
)

(2)

must preserve. Thus, (2) is a correct transformation of (1) if (2) implements (1). A proof
of implementation in TLA, is represented by implication. Thus, the transformation proof is
formalised as:

(∃η′ : Initθ ′ ∧ Initη′ ∧ �(runbcs′)
) ⇒ (∃η : Initθ ∧ Initη ∧ �(runbcs)

)
. (3)

The introduction/elimination rules for ∃ is similar to those for ∃ in standard predicate logic—
however ∃ has a more complex semantics since it has to be invariant under stuttering. Hence,
we must find a witness for η and introduce a Skolem constant for η′ in (3). The witness is
called a refinement mapping, and F is used for F under this refinement mapping, i.e. after
the application of the introduction rule for ∃. We follow this syntax, and let η be this witness.
For simplicity, we use η′ for the Skolem constant as well. runbcs (runbcs′) represents running
bcs (bcs′) with η (η′) replacing η (η′).

To give a simple example, lets say there are two wires x and y in the box heap η,3 and
x and y are connected to the same boxes (with the same direction), and always have the
same values. Thus, y is a duplicate of x and may be removed. A result of applying such
a duplication elimination rule is that in the prior heap η, we have e.g. that η(x) = η(y).
However, since x has been eliminated in η′, it will always be the case that η′(y) = nil,
regardless of x. Thus, the witness of η in (3) is

η = (
λz. if z = y then η′(x) else η′(z)

)
.

Note that since η′ is bound in the hypothesis, the ∃ elimination rule will introduce a Skolem
constant, which we assume is η′. In most cases, the witnesses are much more complex, and
often requires the introduction of auxiliary variables [1]. This example has illustrated the
distinction of the box and wire heaps for the calculus—and the importance of reducing the
wire heap.

The proof of the correctness of the rules derived in the next section have a complex
underlying TLA machinery. Full details are beyond the scope of this paper. In particular,
hierarchies must be flattened for us to prove that a transformation is in fact correct, i.e.
global and local steps are no longer separated at this level.

3For simplicity, let x and y be locations and not identifiers. Remember, the box heap contains wires that are
not connected to external devices.

Higher-Order Symb Comput

We then use an induction principle to prove (3) above: initially, the new heaps must
be stronger than before the transformation4—and all actions updating the heaps must be
stronger than the actions before the transformation:

〈θ ′, η′〉 ⇒S 〈θ, η〉 runbcs′ ⇒ runbcs

〈θ ′, η′,bcs′〉 ⇒T 〈θ, η,bcs〉 .

where

(〈θ ′, η′〉 ⇒S 〈θ, η〉) ⇔ (∀x ∈ dom(θ), y ∈ dom(η) : θ(x) = θ ′(x) ∧ η(y) = η′(y)
)
,

and

dom(h) :: H → P(Locs)
Returns the domain of heap h, i.e. dom(h) = {l | h(l) �= nil}. P is the powerset.

Note that the primed components are the translated ones. Further, ⇒T is an instantiation of
standard TLA rules for our purpose. Thus, its soundness therefore follows from the sound-
ness of TLA. An important feature, which underpins the calculus, is the transitivity of ⇒T :

Theorem 1 (transitivity) 〈θ, η,bcs〉 ⇒T 〈θ ′, η′,bcs′〉 and 〈θ ′, η′,bcs′〉 ⇒T 〈θ ′′, η′′,bcs′′〉
implies 〈θ, η,bcs〉 ⇒T 〈θ ′′, η′′,bcs′′〉 .

Proof The proof reduces to transitivity of ⇒ which is trivial. �

4 Rule & strategy derivations

Here, we formally derive some rules and strategies of the calculus. A summary of functions
used are listed in Appendix A while all rules and strategies that are applied in this paper are
listed in Appendix B. Details, such as pre-conditions, have been elided from the listings. We
use standard logical terminology in the rules: a rule postfixed by ‘I’ is a rule that “introduces
something”, and its dual, the elimination rule, is postfixed by ‘E’.

In the rule derivation we give an informal graphical representation of the impact of the
rule. In the graphical representation we do not show any potential siblings or parents of
relevant boxes.

4.1 Derivation of HieI

The first rule we consider, HieI, introduces hierarchy by nesting one box B inside another
box A with name N :

HieI(B,N) :: Id × Id → PC → PC
Replaces box B by N which only holds B.

4A heap H ′ is stronger than heap H if all properties P of H ′ also holds for H :

(H ′ stronger than H) ⇔ (∀P.P (H ′) ⇒ P(H)
)
.

Higher-Order Symb Comput

The following functions and rules are used to derive it:

Gen_Rules(rs) :: [RS] → [RS]
Returns a generalisation of the rule set rs. This generalisation works by replacing pat-
tern variables by ‘_’, while the rest is unchanged. In an expression, everything but ‘∗’ is
replaced by ‘_’, and all function calls are removed. Furthermore, any duplicate matches
as a result of this are omitted.

Get_Box(B,bcs) :: Id × [BCS] → BCS
Returns box configuration with box id B from list bcs.

HeapLocs_Copy([l1, . . . , ln],H1,H2) :: [Locs] × H × H → H × [Locs]
A deep copy is made of the locations [l1, . . . , ln] of heap H1 into heap H2. A pair of the
updated H2 together with the locations of the copied elements is returned.

Replace
([A1, . . . ,An], [B1, . . . ,Bm]) :: [Id] × [Id] → PC → PC

Replaces boxes A1, . . . ,An by B1, . . . ,Bm.

From the types we can see that Replace is the only rule—the others are functions. This rule
introduces a bounded context for B , only consisting of N (internally) and B . By applying
this rule we can ignore the top level timing dependencies when transforming B . The rule
copies input and output wires to the internal heap, by using HeapLocs_Copy. These are the
new wires of the newly created nested box B ′, and the internal wires of the nesting box A.
Further, A consists of one nested box B ′ and generalises B’s rule set into the more restricted
hierarchical form, by Gen_Rules:5

〈B, iws,ows, rs, iw,ow, ibcs〉 = Get_Box(B,bcs)
〈η1,niw〉 = HeapLocs_Copy(iws, θ, η)

〈η2,now〉 = HeapLocs_Copy(ows, η1, η1)

〈θ, η,bcs〉 � Replace_BoxHeap(η2) ⇓ 〈θ, η′′,bcs〉
B ′ = 〈B,niw,now, rs, iw,ow, ibcs〉 irs = Gen_Rules(rs)

A = 〈
N, iws,ows, irs,niw,now, [B ′]〉

〈θ, η′′,bcs〉 � Replace
([A], [B]) ⇓ 〈θ, η′,bcs′〉

〈θ, η,bcs〉 � HieI(B,N) ⇓ 〈θ, η′,bcs′〉

Next we sketch the proof that shows that the transformation is indeed correct.

Theorem 2 (HieI correctness)

If 〈θ, η,bcs〉 � HieI(A,N) ⇓ 〈θ ′, η′,bcs′〉
then 〈θ ′, η′,bcs′〉 ⇒T 〈θ, η,bcs〉

Proof Since we only extend η and do not change θ , 〈θ ′, η′〉 ⇒S 〈θ, η〉 holds (it follows
from 〈θ ′, η′〉 ⇒S 〈θ, η〉). In bcs, B is replaced by A. Since A’s rule set generalises B’s the

5This rule only applies to top-level boxes. The only difference with nested boxes, is that the source
and destination heap for the HeapLocs_Copy function would both be η. As an alternative, we
could have abstracted over the heap and computed which source heap should have been given to
HeapLocs_Copy—it is easy to check if the box is nested using bcs. This is also the case for use of
HeapLocs_WireFree/HeapLocs_BoxFree and Replace_WireHeap/Replace_BoxHeap. However, we be-
lieve that the more concrete approach taken here eases the reading.

Higher-Order Symb Comput

matching will be the same. Further, with this and since A only contains B , the computation
and termination will be the same, and therefore also the result. Therefore runbcs′ ⇒ runbcs

holds. �

4.2 Derivation of HieE

The second derivation is for HieE. This dual of HieI eliminates a layer of a hierarchy:

HieE(B,N) :: Id × Id → PC → PC
Replaces B with it’s (only) child box and names this new box N .

The following functions and rules not already discussed are used to derive it:

HeapLocs_BoxFree([l1, . . . , ln]) :: [Locs] → PC → PC
Frees locations [l1, . . . , ln] from the box heap.

len(L) :: [α] → N

Returns the length of list L. α indicate type variable, thus the function is polymorphic.
Match_eq(rs1, rs2) :: [RS] × [RS] → B

Holds if the patterns of rs1 and rs1 match and consume the same inputs.
Terminates_eq(B1,B2,bcs) :: Id × Id × [BCS] → B

Holds if box B1 and B2 have the same termination conditions.

HieE assumes that one box is nested by another box, with no internal wires that are not
connected to the parent. Moreover, the matching (and wire consumption) of the parent box
must “behave similiarly” as the child box (achieved by Match_eq). The internal wires of
the parent box, as well as the parent box, are then removed—and the (external) wires of the
parent box are wired directly to the inner box:

〈B, iws,ows, rs, iw,ow, [IB]〉 = Get_Box(B,bcs)
〈IB, iiws, iows, irs, iiw, iow, ibxc〉 = Get_Box(IB,bcs)

Match_eq(rs, irs) ∧ Terminates_eq(B, IB,bcs)
len(iws) = len(iiws) ∧ len(ows) = len(iows)

A = 〈
N, iws,ows, irs, iiw, iow, ibxc

〉

〈θ, η,bcs〉 � HeapLocs_BoxFree(iiws) ⇓ 〈θ, η′′,bcs〉
〈θ, η′′,bcs〉 � HeapLocs_BoxFree(iows) ⇓ 〈θ, η′,bcs〉

〈θ, η′,bcs〉 � Replace
([A], [B]) ⇓ 〈θ, η′,bcs′〉

〈θ, η,bcs〉 � HieE(B,N) ⇓ 〈θ, η′,bcs′〉

Theorem 3 (HieE correctness)

If 〈θ, η,bcs〉 � HieE(A,N) ⇓ 〈θ ′, η′,bcs′〉
then 〈θ ′, η′,bcs′〉 ⇒T 〈θ, η,bcs〉

Proof Firstly, θ is not changed. The witness η on the other hand, is more complicated than
in HieI—since part of the heap is freed. The proof would follow the same approach as in
[12, pp. 107–109], where an ad-hoc transformation was verified by model checking (the
witness still had to be provided manually).

Now, the correctness of this transformation follows from the observation that (the freed)
iiws mimic iws, and (the freed) ows mimic iows. This is explored in the witness. However,

Higher-Order Symb Comput

iws is consumed when iiws is written—while iows is consumed when ows is written. Thus,
we need to introduce auxiliary (ghost) variables [1] to the (specification of the) “before”
program, which holds the “old values” of e.g. iws. In η, the witness is then over the auxiliary
variables rather than the actual variables.

Initially, 〈θ ′, η′〉 ⇒S 〈θ, η〉 holds since all nested wires are empty, or with a known (con-
stant) initial value. Since Match_eq(rs,irs), Terminates_eq(B, IB) and the computation of
the outer box is achieved by the inner box, it is clear that the matching, computation and
termination will be the same. With the witness for the freed inner variables described above
it is then clear that runbcs′ ⇒ runbcs holds. �

4.3 Derivation of HCompI

In the third derivation, for HCompI, two non-nested boxes, A and B , are horizontally com-
posed into a new box called N :

HCompI(A,B,N) :: Id × Id × Id → PC → PC
Horizontally composes box A and box B into N . There is an implicit renaming of
variables in the patterns of B if there are name clashes with variables of A.

The following new functions and rules are used in the derivation:

is_Blocked(C,B) :: PC × Id → B

Holds if box B cannot be executed.
mutually_exclusive(rs) :: [RS] → B

Holds if the patterns of rule set rs are mutually exclusive.
project([(p1 → e1), . . . , (pn → en)], [(p′

1 → e′
1), . . . , (p

′
m → e′

m)]) :: [RS] × [RS] → [RS]
Pairwise combines each pattern pi and p′

j with ei and e′
j where i ∈ 1..n and j ∈ 1..m.

For example,
project([p1 → e1], [p2 → e2,p3 → e3]) = [(p1,p2) → (e1, e2), (p1,p3) → (e1, e3)]

L1@L2 :: [α] × [α] → [α]
Concat list L1 in front of list L2.

�H F :: (PC → B) → PC → B

This represents the temporal ‘always’ operator, denoting that F :: PC → B must hold
henceforth, abstracted over the program specification. Due to the temporal property, a
possible world semantics is used, thus F is a predicate over a program configuration.
Translated into TLA, the meaning becomes:

(λ〈hw,hb,bcs〉. �H F) ⇔ (λ〈hw,hb,bcs〉. Inithw ∧ Inithb ∧ �(runbcs) ⇒ �F)

A and B must always have the same Blocked status, since N will be Blocked if either of
them is. If one, but not the other, is Blocked the behaviour of the composed box N will not
capture the sum of A and B . The inputs and outputs of A prefixes B’s inputs and outputs.
For all matches, the patterns and expression of the A and B are pairwise composed by
project. This projection might introduce non-determinacy, so the patterns must be mutually
exclusive. Finally, A might execute while B fails to pattern match the inputs, and vice verse.
This is captured by postfixing the composed rule set below with a rule set where A’s rule
set is composed with only ‘∗’s, and the same for B . The box N ′, capturing all the above,
replaces A and B:

Higher-Order Symb Comput

〈A, iwsA,owsA, rsA, [], [], []〉 = Get_box(A,bcs)
〈B, iwsB,owsB, rsB, [], [], []〉 = Get_box(B,bcs)

�H

(
λ〈hw,hb,_〉. is_Blocked(〈hw,hb,bcs〉,A) = is_Blocked(〈hw,hb,bcs〉,B)

)
(〈θ, η,bcs〉)

mutually_exclusive(rsA) mutually_exclusive(rsB)

iws = iwsA@iwsB ows = owsA@owsB
nA = len(iwsA) mA = len(owsA)

nB = len(iwsB) mB = len(owsB)

∗A = [〈∗, . . . ,∗︸ ︷︷ ︸
nA

〉 → 〈∗, . . . ,∗︸ ︷︷ ︸
mA

〉] ∗B = [〈∗, . . . ,∗︸ ︷︷ ︸
nB

〉 → 〈∗, . . . ,∗︸ ︷︷ ︸
mB

〉]

rs = project(rsA, rsB) @ project(rsA,∗B) @ project(∗A, rsB)

N ′ = 〈N, iws,ows, rs, [], [], []〉
〈θ, η,bcs〉 � Replace([N ′], [A,B]) ⇓ 〈θ, η,bcs′〉
〈θ, η,bcs〉 � HCompI(A,B,N) ⇓ 〈θ, η,bcs′〉

The unification with the empty lists ensures that the boxes are not nested when calling
get_box. The mutual exclusiveness test is straightforward, and the establishment of the
Blocked status requires a temporal invariance proof. This has therefore been prefixed by the
temporal ‘always’ operator ‘�H ’. Note that during execution the Hume coordination layer
is static—thus program execution only changes the values on the heap (remember, that all
values are on the heap due to the cost model). However, �H has a more general definition,
and in this case the bcs input is ignored.

Theorem 4 (HCompI correctness)

If 〈θ, η,bcs〉 � HCompI(A,B,N) ⇓ 〈θ, η,bcs′〉
then 〈θ ′, η′,bcs′〉 ⇒T 〈θ, η,bcs〉

Proof There is no nesting, hence η = η. Further, it is obvious that θ ′ = θ and η′ = η, thus
〈θ ′, η′〉S ⇒ 〈θ, η〉. The proof of runbcs′ ⇒ runbcs is by case-analysis on the “execution state”
of A and B: Since

�H

(
λ〈hw,hb,_〉. is_Blocked(〈hw,hb,bcs〉,A) = is_Blocked(〈hw,hb,bcs〉,B)

)
(〈θ, η,bcs〉)

we know that A and B are always Blocked at the same time. Hence, if one is Blocked then
so is the other, and since N will be Blocked if either of them are, then so is N . If both A

and B succeeds then, since all possible matches are composed, so will N . Since the patterns
are mutually exclusive only one pattern can succeed, and the result is obviously the same. If
both boxes fail to execute, then so will N since it only composes A and B . Finally, the case
where only one box succeeds is captured by the case where each match is composed with
only ‘∗’s. Thus the goal holds. �

4.4 Derivation of VCompE

The next two rules are complicated since they change the timing behaviour, as explained
above. The first rule VCompE, performs vertical decomposition to produce two (non-
nested) boxes:

Higher-Order Symb Comput

VCompE(B,N, [o1, . . . , on],M, [i1, . . . , in]) :: Id × Id × [Id] × Id × [Id] → PC → PC
Vertically de-composes box B into two sequentially composed boxes N and M , where
N has B’s inputs and [o1, . . . , on] as outputs, and M has [i1, . . . , in] as inputs and B’s
outputs.

The following functions that have not been discussed yet, are required:

Alloc([S1, . . . , Sn],H) :: [N] × H → [Locs] × H
Accepts as input a list of natural numbers and a heap. Each number represent the size
of a data type. Note that for mutable data structures, such as lists, this will be the size
in the initial program configuration. For each such Si (i ∈ (1..n)), a heap region of size
Si is allocated, and the list of newly allocated locations [l1, . . . , ln] is returned, together
with the new heap.

NoTime_Dependency(B,bcs) :: Id × [BCS] → B

There is no “time dependency” from box B. This implies that we can add identity
boxes on the inputs and outputs of B, without this having any effect on the functional
behaviour of the Hume program. We use a restrictive form of this predicate where we
assume that NoTime_Dependency(B,bcs) holds iff:

– there are no *s in any patterns of boxes in bcs which the output of B is directly or
indirectly wired to, and

– B is not directly connected to an output in heap θ .

Out_Type_Size(e) :: Expr → N

Returns the return type of an expression/function.
Patt_of_Expr(e) :: Expr → Patt

Returns a pattern from an expression. The pattern will consist of (distinct) variable(s)
to be bound.

Note that with the restrictive definition of NoTime_Dependency, there may be cases where
the above definitions does not hold, but the potential “bad” behaviour can be ruled out with
an invariant or some dynamic properties. Finding a less restrictive definition is a subject for
future work.

The main two side conditions of the rule are: (1) the (flat) box contains one match, with
an expression of the form g(f (e)), i.e. in a pure functional setting the expression is a com-
position of (at least) two functions; (2 there is no timing dependency on the output of the
box being decomposed. This means that if it takes one extra/less step (or any extra/fewer
steps in general) to compute the result, then this will not have any effect on the functional
behaviour of the other boxes. The rule is derived as follows:

〈B, iws,ows, [patt → g(f (e))], [], [], []〉 = Get_box(B,bcs)
NoTime_Dependency(B,bcs)

p′ = Patt_of_Expr(f (e))

〈[l], η1〉 = Alloc([Out_Type_Size(f (e))], η)

〈θ, η,bcs〉 � Replace_BoxHeap(η1) ⇓ 〈θ, η′,bcs〉
F = 〈F, iws, [l], [patt → f (e)], [], [], []〉
S = 〈S, [l],ows, [p′ → g(p′)], [], [], []〉

〈θ, η′,bcs〉 � Replace([B], [F,S]) ⇓ 〈θ, η′,bcs′〉
〈θ, η,bcs〉 � VCompE(B,F,S) ⇓ 〈θ, η′,bcs′〉

Higher-Order Symb Comput

Theorem 5 (VCompE correctness)

If 〈θ, η,bcs〉 � VCompE(B,F,S) ⇓ 〈θ ′, η′,bcs′〉
then 〈θ ′, η′,bcs′〉 ⇒T 〈θ, η,bcs〉

Proof This rule is function decomposition lifted to the box level. The matching/consume
property of the new F/S component is that of F —which has the same pattern as B , and
the output/blocking properties are that of S—which is the same resulting expression as in
B (under an invariant on the intermediate step). The connection between them is ensured to
be correct by Patt_of_Expr, while Out_Type_Size ensures the heap allocates the correct
amount of memory. The main difficulty in the proof is the timing issue: F/S will require 2
steps to produce the output which B only requires 1 step to produce. Thus, it will also block
and unblock one step later.

The key to correctness is, as in the proof of HieE, to find a witness which can abstract
away the timing delay. We will here argue for why such witness exists with the given as-
sumptions, drawing upon experiences in [12, pp. 107–109], where a transformation was
mechanically verified (model checked) following a similar approach. Firstly, note that it is
simpler than HieE in the sense that no heap space is freed—however, the (possible) delay
parts are (much more) complicated.

Again, the proof relies on the introduction of auxiliary (ghost) variables [1], which
records the changes of the variables. This “log” must also take care of the blocked status
when recording the values. In the witness, this log is used instead of the actual program/wire
variables.

This approach relies on the fact that the same values will appear on all variables (and
in the same order)—the only deviation is when they appear. This is ensured by the No-
Time_Dependency predicate as follows. All variables are updated by boxes which are pure
functions without side-effects. Since all boxes except B are left unchanged, all variables
except those from S are the same. Following an inductive principle, we assume that all
variables so far have been written in the same order and the same value is written (note
that we cannot simply use the Cartesian product of all variables due to the timing issue).
The only way a box can then produce a different result, is if a different match is triggered.
Since this is deterministic, it can only occur with different output. Now, since the values are
guaranteed (by the induction hypothesis) to be the same, the only case left is that another
match triggers due to a missing input value. This can only happen if the pattern contains
* (if not it will simply be a Matchfail), which violates the NoTime_Dependency assump-
tion.

Thus, since θ is not changed, η is just extended, thus 〈θ ′, η′〉 ⇒ 〈θ, η〉. Since functionally
the result will always be the same, and using the auxiliary variables and witness above,
runbcs′ ⇒ runbcs also holds. �

4.5 Derivation of VCompI

The next rule VCompI is the dual of VCompE, and introduces composition from two
boxes.

VCompI(F,S,B) :: Id × Id × Id → PC → PC
Vertically composes boxes F and S into box B. It assumes that F is directly followed
by S. The input of the new box B is the input of F and the output is the output of S.

Higher-Order Symb Comput

It requires the following new functions and rules

is_Empty(H,L) :: H × [Loc] → B

Holds if ∀l ∈ L.H(l) = nil.
WiresE(A,xs) :: Id × Id → PC → PC

Eliminates wires xs of box A.

and is derived as follows:

F = 〈F, iwsF ,owsF , [pattF → f (e)], [], [], []〉
S = 〈S, iwsS,owsS, [pattS → g(pattS)], [], [], []〉

NoTime_Dependency(S,bcs)
iwsS = owsF ∧ is_Empty(η,owsF)

N = 〈N, iwsF ,owsS, [pattF → g(f (e))], [], [], []〉
〈θ, η′,bcs〉 � Replace([F,S], [B]) ⇓ 〈θ, η,bcs′〉
〈θ, η,bcs′〉 � WiresE(F,owsF) ⇓ 〈θ, η′,bcs′〉
〈θ, η,bcs〉 � VCompI(F,S,B) ⇓ 〈θ, η′,bcs′〉

Theorem 6 (VCompI correctness)

If 〈θ, η,bcs〉 � VCompI(F,S,B) ⇓ 〈θ ′, η′,bcs′〉
then 〈θ ′, η′,bcs′〉 ⇒T 〈θ, η,bcs〉

Proof The proof follows the same approach as the proof of VCompE. In addition, as in
HieE, parts of the heap are freed—thus the proof of VCompE is combined with aspect
of the proof of HieE. The functional correctness of the box-level function composition is
direct (since g is a function directly on the input pattern). The timing issue is handled as in
VCompE—with addition of handling the freed variables owsF (which are the same heap
locations as iwsS). Again, this is handled by auxiliary variables, which “remember” the
input, and compute f (iwsF)—which will become the result of box F , and later written to
owsF . Now, the intermediate step that updates owsF is removed in the new configuration.
To “simulate” this, a notion of auxiliary variables called stuttering variables [1], which
introduces steps that leaves all but the auxiliary variables unchanged is used. Using them,
the intermediate step is achieved—since only the auxiliary “log” is changed here—and no
program variables. The rest of the witness is as in VCompE. Note that is_Empty(η,owsF)

asserts that the wires connecting F and S are initially empty. �

4.6 Derivation of ThreadE

The rules will often be too low-level to work with. Instead a user will work with higher-
level strategies, which are derived from rules and other strategies (see discussion on the
distinction between rules and strategies in Sect. 3). An example of a strategy, although still
rather low-level, is the elimination of threading ThreadE:

ThreadE(B,x, y) :: Id × Id × Id → PC → PC
Replaces threading of input x and output y through box B by direct wire.

Higher-Order Symb Comput

A wire is threaded through a box if there is a one-to-one correspondence between a pattern
x and an expression y in all matches. x cannot be used in other expressions (�= y). Further,
x and y must form an identity box. When eliminated, the threaded value will arrive earlier
at the destination. This must not have any effect on the context. Finally, a Blocked state
on B will prevent the threaded value leaving B , which is not the case when the thread is
eliminated. This must again not have any impact on the context. Since the rule is derived
from other rules these precondition can be ignored as they are implicitly captured by the
precondition of the rules in the derivation. Threading elimination, ThreadE, is derived as
follows. x and y are horizontally de-composed into a new box Id by HCompE. Id is then
an identity box eliminated by IdE:

〈θ, η,bcs〉 � HCompE(B, [x], [y], Id,B) ⇓ 〈θ1, η1,bcs1〉
〈θ1, η1,bcs1〉 � IdE(Id) ⇓ 〈θ ′, η′,bcs′〉

〈θ, η,bcs〉 � ThreadE(B,x, y) ⇓ 〈θ ′, η′,bcs′〉

It uses the identity elimination rules, which has not been previously used:

IdE(B) :: Id → PC → PC
Eliminates identity box B.

The correctness proof for strategies are trivial since they only rely on the transitivity theorem
(Theorem 1):

Theorem 7 (IdE correctness)

If 〈θ, η,bcs〉 � ThreadE(B,x, y) ⇓ 〈θ ′, η′,bcs′〉
then 〈θ ′, η′,bcs′〉 ⇒T 〈θ, η,bcs〉

Proof Since the two given rules are applied sequentially the proof reduces to the transitivity
of ⇒T . This is proved by the transitivity theorem (Theorem 1). �

5 Examples

We now illustrate the calculus by applying it to two simple examples based on single bit
adder circuits. The first example shows the decomposition of a half adder box into a simple
binary tree of three elementary logic gate boxes. The second example shows the decom-
position of a full adder box into two half adders and an elementary logic gate, but with
staged mutual dependencies. The examples are chosen to illustrate both the deployment of
a characteristic range of base rules, and the use of strategies.

5.1 Example 1: half-adder

First we apply the box calculus to the half adder example above. We will do so stepwise,
and a graphical representation of each of these steps is shown in Fig. 7. We use a dot ‘.’
notation to refer to nested boxes, starting from the first level. If a rule has more than one
parameter, it is sufficient to give the full path to one of the boxes, since we can only work in
one context at a time. We omit the configuration triple to make the text easier to read. The
rules are sequentially applied.

Higher-Order Symb Comput

Fig. 7 Transformation of half adder

1. Since the transformation has a forward direction we start with the box shown in Fig. 4a.
First rule HieI(half1,half2) which replaces box half1 with a box half2 that
simply nests it.

2. Since there is no ‘∗’ in the context nested by half2 there are no dependencies. We can
therefore introduce identity boxes for both input wires of half1:
IdI(half2.half1,x,Id) followed by IdI(half2.half1,y,Id′). The input/output
variables of the identity boxes are v/v’ by default. These are renamed to x/x1 and
y/y1 respectively: VRename(half2.Id,v,x), VRename(half2.Id,v’,x1),
VRename(half2.Id’,v,y) and VRename(half2.Id’,v’,y1).

3. The two identity boxes are then horizontally composed into one box called fanout:
HCompI(half2.Id,Id’,fanout):

box fanout
in (x,y::Bit) out (x1,y1::Bit)

match
(x,y)->(x,y) | (x,*)->(x,*) | (*,y)->(*,y) ;

A simple invariant of the internal behaviour of half2 shows that it will never be the case
that only one of fanout’s inputs is empty. The last two matches of fanout will there-
fore never succeed. This is the only precondition in the match elimination rule which can
therefore be applied: MatchE(half2.fanout,3) and MatchE(half2.fanout,2).

4. We then duplicate the two wires connecting fanout and half1. We name them x2
and y2: DupI(half2.fanout,x1,x2,half1,x,x2) followed by
DupI(half2.fanout,y1,y2,half1,y,y2).

5. In half1 we now have two sets of identical inputs: {x, y} and {x2,y2}. We can then
state that output s depends on the first set and c on the second, and decompose the
box. The first of these boxes is exactly the same as the xor while the second is the
same as the and box of Fig. 4b/c: HCompE(half2.half1, [x,y], [s],xor,and).
Finally, we rename the inputs of the and box: VRename(half2.and,x2,x) and VRe-
name(half2.and,y2,y). This concludes the transformation.

Higher-Order Symb Comput

box adder1
in (x,y,c::Bit)
out (s,c’::Bit)
match
(0,0,0) -> (0,0) |
(0,1,0) -> (1,0) |
(1,0,0) -> (1,0) |
(1,1,0) -> (0,1) |
(0,0,1) -> (1,0) |
(0,1,1) -> (0,1) |
(1,0,1) -> (0,1) |
(1,1,1) -> (1,1) ;

a. Adder 2: Truth Table

b. Adder 2: (Graphic) Half
Adders and OR gate

box adder2
in (x,y,c::Bit) out (s,c’::Bit)

match
(_,_,_) -> (_,_)

boxes
box h1

in (x,y::Bit) out (s,c::Bit)
match

(0,0) -> (0,0) |
(0,1) -> (1,0) |
(1,0) -> (1,0) |
(1,1) -> (0,1);

wire h1(adder2.x,adder2.y)(h2.x,or.x);

box h2
in (x,y::Bit) out (s,c::Bit)

match ... -- same as h1
wire h2(h1.c,adder2.c)(adder2.s,or.y);

box or
in (x,y::Bit) out (z::Bit)

match
(0,0) -> 0 |
(0,1) -> 1 |
(1,0) -> 1 |
(1,1) -> 1;

wire or(h1.c,h2.c)(adder2.c);
end;

c. Adder 2: Source Code

Fig. 8 Full adders in Hierarchical Hume

Fig. 9 Transformation of full adder

5.2 Example 2: a full adder

The second example is more complex: A full adder represented as a truth table (Fig. 8a) is
transformed into a representation using two half adders and an OR gate (Fig. 8b/c). Again,
the transformation is step-by-step and each step is graphically illustrated in Fig. 9:

1. The transformation starts with adder1 from Fig. 8a. First we move all the matches
inside a case expression. Since the patterns are total with respect to the Bit type this is
allowed: CaseI(adder1,1,8):

Higher-Order Symb Comput

f(a,b,c) = case (a,b,c) of
(0,0,0) -> (0,0,0) |
(0,0,1) -> (1,0,0) |
(0,1,0) -> (1,0,0) |
(0,1,1) -> (0,0,1) ...;

g(a,b,c) = case (a,b,c) of
(0,0,0) -> (0,0) |
(1,0,0) -> (1,0) |
(0,0,1) -> (0,1) |
(1,0,1) -> (1,1) ...;

ff(a,b,c) = case (a,b,c) of
(0,0,0) -> (0,0,0) |
(0,0,1) -> (1,0,0) |
(0,1,0) -> (0,1,0) |
(0,1,1) -> (1,1,0) ...;

gg(a,b,c) = case (a,b,c) of
(0,0,0) -> (0,0,0) |
(0,0,1) -> (0,1,0) |
(0,1,0) -> (1,0,0) |
(0,1,1) -> (1,1,0) ...;

Fig. 10 Auxiliary functions used in full adder transformation

box adder1
in (x,y,c::Bit) out (s,c’::Bit)

match
(a,b,c) -> case (a,b,c) of ...;

The case expression is then replaced by the function composition g · f(a,b, c):
ReplaceExpr(adder1,1,g · f(a,b,c)) where f and g are shown in Fig. 10. The
next step is to vertically de-compose this box—where f is the expression of the
first and g the expression of the second box. However, this will introduce an ex-
tra step, and we do not know anything about the context, so we need to nest the
boxes first: HieI(adder1,adder2). The boxes can then safely be de-composed:
VCompE(adder2.adder1,h1h2, [s,x’,c’],or, [z,x,y]).

2. The newly created or box has one match with the expression g, where g consists of
a (total) case expression. We unfold g and move the case-expression into the match:
Unfold(adder2.or,g) followed by CaseE(adder2.or,1). The result is illustrated
on the left side below. The first pattern and expression are identical (and total). We
therefore replace them by a variable: MatchVarI(adder2.or,x,s). We now have a
threading of a variable which we can eliminate (since there are no ‘∗’ in the context):
ThreadE(adder2.or,x,s). The result is illustrated on the right side:

box or
in (z,x,y::Bit)
out (s,c’::Bit)

match
(0,0,0) -> (0,0) |
(1,0,0) -> (1,0) |
(0,0,1) -> (0,1) |
(1,0,1) -> (1,1) ...;

box or
in (x,y::Bit)
out (c’::Bit)

match
(0,0) -> 0 |
(0,0) -> 0 |
(0,1) -> 1 |
(0,1) -> 1 ...;

Matches 2,4,6 and 8 are now duplicates of their previous matches, and can therefore be
removed: MatchE(adder2.or,8), MatchE(adder2.or,6), MatchE(adder2.or,4)
and MatchE(adder2.or,2). Finally, the output wire is renamed to z:
VRename(adder2.or,c’,z). The or box is now the same as in Fig. 8c.

3. Box h1h2 consists of one match with expression f. This function can be replaced by
function composition gg · ff(a,b,c) where ff and gg are shown in Fig. 10: Re-
placeExpr(adder2.h1h2,1,gg · ff(a,b,c)). Since the context does not contain
any ‘∗’s we can apply vertical function decomposition
VCompE(adder2.h1h2,h1, [s,x’,c’],h2, [x,y,c]):

Higher-Order Symb Comput

4. In box h2 the match has the expression gg which is unfolded and the (total) case-
expression is moved into the body: Unfold(adder2.h2,gg) and CaseE(adder2.h2,1)
as illustrated on the left side below. The last pattern and second expression in all matches
can be replaced by a variable, which creates a threading that can be eliminated: Match-
VarI(adder2.h2,c,s) and ThreadE(adder2.h2,c,s)—as illustrated on the right
side:

box h2
in (x,y,c::Bit)
out (s,x’,c’::Bit)

match
(0,0,0) -> (0,0,0) |
(0,0,1) -> (0,1,0) |
(0,1,0) -> (1,0,0) |
(0,1,1) -> (1,1,0) ...;

box h2
in (x,y::Bit)
out (s,c’::Bit)

match
(0,0) -> (0,0) |
(0,0) -> (0,0) |
(0,1) -> (1,0) |
(0,1) -> (1,0) ...;

Matches 2,4,6 and 8 are now duplicates of previous matches and therefore removed:
MatchE(adder2.h2,8), MatchE(adder2.h2,6), MatchE(adder2.h2,4) and
MatchE(adder2.h2,2). After renaming the last output to c’ we have created a correct
implementation of a half adder: VRename(adder2.h2,c’,c).

5. The transformation of h1 follows the same pattern as h2 (and or): First the case ex-
pression is removed, followed by a variable introduction and threading elimination: Un-
fold(adder2.h1,ff), CaseE(adder2.h1,1), MatchVarI(adder2.h1,c,x’) and
ThreadE(adder2.h2,c,x’). Then the duplicate matches are removed, which creates
a correct implementation of a half -adder: MatchE(adder2.h1,8),
MatchE(adder2.h1,6), MatchE(adder2.h1,4) and MatchE(adder2.h1,2). By
renaming c’ to cwe have concluded the transformation: VRename(adder2.h1,c’,c).
To achieve an even lower level representation we can now apply the half-adder transfor-
mation to h1 and h2, as explained above.

6 Strategies for transforming Hume for parallelism

Hume boxes offer considerable potential as loci of concurrent execution. However, unsys-
tematic parallelisation is well known to produce disappointing initial results, subsequently
requiring considerable fine tuning of code. We see the box calculus as offering a principled
way to guide the construction of multi-box programs with known properties.

We next present an overview of the derivation of a general divide and conquer transfor-
mation for exposing horizontal parallelism from a single box. This is a well known variant of
standard transformations for higher-order program manipulation and skeleton deployment.

Graphically, this transformation can be seen as

Higher-Order Symb Comput

where box B (with no time dependency) is transformed into a divide (D) and conquer (C)
component, where P 1 to PN performs the computation. We will now illustrate how to
achieve this in the calculus by applying a (binary) divide and conquer strategy, followed by
two flattening steps, which combines the divide and conquer boxes, respectively. We will
illustrate this by creating a system of four parallel boxes, but the same approach can be
applied to create more parallel boxes.

We assume there is a divide function, which divides an input type into two “sub-types”,
e.g. this can be a list or vector divided in the middle (where the former will have the same
type). Moreover, we can normalise x → divide x to use the projection function l and r for
each resulting partition divide x = (l x, r x). Next, there is a dual conquer function conq
which combines the result, and a function f such that the following distributivity law holds:

Dist_Div_Conq(f) ≡ (f x = f (conq(l x) (r x)) = conq (l(f x)) (r(f x)))

One example of such f is the mapping a function g over a list x. Further, we assume that
there are no timing dependency on the boxes being transformed.

6.1 A binary divide & conquer strategy

The first strategy transforms a box B into a divide box B , two boxes P 1 and P 2 which
performs the computation, and a conquer box C which merges the results. We have pre-
viously derived this strategy in [16] using the box calculus—however, for completeness,
the full strategy is shown in Fig. 11. First, the expression of B is refactored following
Dist_Div_Conq. This is followed by vertically composing out the conquer function into
D, while the rest of the box is in F (1). To horizontally decompose P 1 and P 2 in a later
step, an identity box is introduced with two duplicate wires (2). The F box can now be

〈B, [iw], [ow], [x → f x], [], [], []〉 = Get_Box(B,bcs)
Dist_Div_Conq(f)

B ′ = 〈B, [iw], [ow], [x → conq (l(f x)) (r(f x))], [], [], []〉
〈θ, η,bcs〉 � Replace(B,B ′) ⇓ 〈θ, η,bcs′′〉

(1) 〈θ, η,bcs′′〉 � VCompE(B ′,F, [a, b],C, [a, b]) ⇓ 〈θ, η1,bcs1〉
〈θ, η1,bcs1〉 � IdI(F, iw, I) ⇓ 〈θ, η2,bcs2〉

(2) 〈θ, η2,bcs2〉 � DupI(I, v′, v′′,F,ow,ow′) ⇓ 〈θ, η3,bcs3〉
(3) 〈θ, η3,bcs3〉 � HCompE(F, [v′], [ow],F1,F2) ⇓ 〈θ, η4,bcs4〉
〈θ, η4,bcs4〉 � VCompE(F1,F1′, [o1],P 1, [i1]) ⇓ 〈θ, η5,bcs5〉

(4) 〈θ, η5,bcs5〉 � VCompE(F2,F2′, [o2],P 2, [i2]) ⇓ 〈θ, η6,bcs6〉
〈θ, η6,bcs6〉 � HCompI(F1′,F2′,D) ⇓ 〈θ, η7,bcs7〉
(5)〈θ, η7,bcs7〉 � DupE(D, i1, i2) ⇓ 〈θ, η8,bcs8〉

(6)〈θ, η8,bcs8〉 � IdE(I) ⇓ 〈θ, η′,bcs′〉
〈θ, η,bcs〉 � DivConq(B,D,P 1,P 2,C) ⇓ 〈θ, η′,bcs′〉

Fig. 11 Derivation of the DivConq strategy

Higher-Order Symb Comput

〈A, iwsA, [owA1,owA2], [x → (l x, r x)], [], [], []〉 = Get_Box(A,bcs)
〈B, [owA1], [owB1,owB2], [y → (l y, r y)], [], [], []〉 = Get_Box(B,bcs)
〈C, [owA2], [owC1,owC2], [z → (l z, r z)], [], [], []〉 = Get_Box(C,bcs)

〈θ, η,bcs〉 � HCompI(B,C,N) ⇓ 〈θ, η′′,bcs′′〉
〈θ, η′′,bcs′〉 � MatchE(N,3) ⇓ 〈θ, η′′,bcs′′′〉
〈θ, η′′,bcs′′′〉 � MatchE(N,2) ⇓ 〈θ, η′′,bcs′′′′〉

〈θ, η′′,bcs′′′′〉 � VCompI(A,N,A′) ⇓ 〈θ, η′,bcs′〉
〈θ, η,bcs〉 � FlattenDiv(A,B,C,A′) ⇓ 〈θ, η′,bcs′〉

Fig. 12 Derivation of the FlattenDiv strategy

horizontally decomposed into F1 and F2 (3), and the divide (projection) functions are then
vertically moved into F1′ and F2′, thus giving the P 1 and P 2 boxes (4). F1′ and F2′ are
then horizontally combined into the divide box D (5), and the identity box I can be elided
(6). Please see [16] for a more detailed discussion.

6.2 A flattening strategy for dividing

DivConq will create two parallel boxes. To achieve four, DivConq can be applied again on
the resulting P 1 and P 2 boxes. This will result in a divide box, with both outputs wired
into another divide box. Figure 12 derives the FlattenDiv strategy which flattens these three
boxes into one. box. The correctness of this transformation follows from the transitivity
of ⇒T . Firstly, the A, B and C boxes must apply the (normalised) divide function, and
have the correct wiring (as shown in the diagram). B and C are first (horisontally) com-
bined, as shown in the intermediate step. HCompI will introduce additional (y,∗) → ·· ·
and (∗, z) → ·· · matches. These can safely be eliminated, since either both or none of the
inputs will be available (assured by A). In this intermediate step, N will have the following
match:

(y, z) → (l y, r y, l z, r z)

In the final step A and N are combined using the vertical composition rule—the new box A′
will then have the following match:

x → (l (l x), r (l x), l (r x), r (r x))

6.3 A flattening strategy for conquering

As for dividing, two nested application of DivConq will create a conquer box with outputs
connected to another two conquer boxes. Figure 13 derives the FlattenConq strategy—
which is behaves for conquer as FlattenDiv behaves for divide. The intermediate N box
will here have the following match:

(a, b, c, d) → (conq a b, conq c d)

while the final C ′ box has the match:

Higher-Order Symb Comput

〈A, [iwA1, iwA2], [owA], [(a, b) → conq a b], [], [].[]〉 = Get_Box(A,bcs)
〈B, [iwB1, iwB2], [owB], [(c, d) → conq c d], [], [].[]〉 = Get_Box(B,bcs)
〈C, [owA,owB], [owC], [(e, f) → conq e f], [], [].[]〉 = Get_Box(C,bcs)

〈θ, η,bcs〉 � HCompI(A,B,N) ⇓ 〈θ, η′′,bcs′′〉
〈θ, η′′,bcs′〉 � MatchE(N,3) ⇓ 〈θ, η′′,bcs′′′〉
〈θ, η′′,bcs′′′〉 � MatchE(N,2) ⇓ 〈θ, η′′,bcs′′′′〉

〈θ, η′′,bcs′′′′〉 � VCompI(N,C,C ′) ⇓ 〈θ, η′,bcs′〉
〈θ, η,bcs〉 � FlattenConq(A,B,C,C ′) ⇓ 〈θ, η′,bcs′〉

Fig. 13 Derivation of FlattenConq strategy

(1) 〈θ, η,bcs〉 � DivConq(N,A,B,C,D′) ⇓ 〈θ, η′′,bcs′′〉
(2) 〈θ, η′′,bcs′′〉 � DivConq(B,H,P 1,P 2,H) ⇓ 〈θ, η′′′,bcs′′′〉
(3) 〈θ, η′′′,bcs′′′〉 � DivConq(C, I,P 3,P 4,L) ⇓ 〈θ, η′′′′,bcs′′′′〉
(4) 〈θ, η′′′′,bcs′′′′〉 � FlattenDiv(A,E, I,D) ⇓ 〈θ, η′′′′′,bcs′′′′′〉
(5) 〈θ, η′′′′′,bcs′′′′′〉 � FlattenConq(H,L,D′,C) ⇓ 〈θ, η′,bcs′〉
〈θ, η,bcs〉 � Para4(N,D,P 1,P 2,P 3,P 4,C) ⇓ 〈θ, η′,bcs′〉

Fig. 14 Derivation of Para4 strategy

(a, b, c, d) → conq(conq a b) (conq c d)

6.4 A divide & conquer based strategy for 4 parallel boxes

We can now combine the three derived strategies to create a strategy to paralellise four boxes.
This Para4 strategy is derived in Fig. 14. To ease the reading of the associated diagram, we
have highlighted the box(es) which are transformed in the following step. As clear from the
discussion above, the DivConq strategy is first applied to the original box N (1). The same

Higher-Order Symb Comput

strategy is then applied to the “left computation box” (2) and “right computation box” (3).
A, E and I are all then divide boxes, and FlattenDiv is then applied, creating the box D

(4). Finally, in (5) the FlattenConq strategy is applied to the H , L and D′ (conquer) boxes,
creating box C.

6.5 Applying the parallelising transformation

The Hume tool set is built around the Hume Abstract Machine (HAM) which provides a
locus for resource analysis as well as implementation. We have been experimenting with a
simple shared memory, MIMD implementation of the standard HAM interpreter [2] using
OpenMP to implement each box in a separate thread for first stage execution on multiple
cores. If all boxes have similar run times then the implementation offers good speedup but
most programs will not offer such regularity of box behaviour. Thus, the slowest concurrent
box will severely limit the overall effectiveness of this naive approach. However, by system-
atically applying the above transformations, which have known behavioural consequences,
it may be possible to produce multi box systems where each concurrent box has uniform
behaviour.

So far we have explored two canonical cases. First of all, we have investigated a top level
map over a list. Thus, for:

map f [] = [];
map f (h:t) = f h:map f t;

it is well known that for map f l, if:

l == left++right

then:
map f l == map f (left++right) == (map f left)++(map f right)

Thus, we may split a map argument list into a concatenation of equal length subsections in
a divide phase, send each to a separate box for concurrent execution, and then concatenate
the results in the conquer phase.

We have also investigated the slightly more elaborate linear iteration:

apply i j f (h:t) =
if i>j
then []
else f i h:apply (i+1) j f t;

For apply 1 (length l) f l, it is straightforward to establish that if:
l == left++right
then:
apply 1 (length l) f l ==
apply 1 (length left+length right) f (left++right) ==
(apply 1 (length left) f left)++
(apply (length left+1) (length l) f right)

As with map, we may split an apply argument list into a concatenation of equal length
subsections with appropriate ranges in a divide phase, send each to a separate box for con-
current execution, and once again concatenate the results in the conquer phase.

Early results reported in [2], of a simple Fibonacci test, and in [16], of a list-based matrix
multiplication, show consistent near-linear speedup with up to eight boxes on up to eight
cores.

Higher-Order Symb Comput

7 Related work

A Hume transformation is a strategy. Following Visser [33] this can either be categorised as
a program rephrasing, where the source and target language are the same, or as a program
translation, where the target language deviates from the source language.

We have already stated that a transformation from an upper to a lower level is a move
of activity from computation to coordination, i.e. a translation from the expression layer of
a box into the coordination layer, between components of a nested box. This has also been
illustrated by our examples, where relatively rich single-box truth-tables are dissolved into
configurations of simpler boxes. A full transformation can therefore be seen as the form of
program translation termed program synthesis from a computation to a coordination rep-
resentation. In particular, our correctness proof rule is based on a form of synthesis called
program refinement: the lower level transformed program implements the upper level pro-
gram. In TLA such implementation is represented as logical implication.

However, what is distinctive here compared with synthesis techniques, like Bird-
Meertens Formalism [5] and calculational programming [21], is the necessarily strong in-
terplay between coordination and expression transformation: changes to box/wire configu-
rations affect matches which in turn affect patterns and results. A single rule application is
not therefore just a program migration from one representation to another, but hold more
resemblance to the form of program rephrasing called program refactoring [10].

Just as Hume integrates a finite state coordination language with a functional transition
computation language, the work presented here draws on the twin traditions of process net-
work and functional program transformation. The coordination aspects of the rules have
many similarities with those found in the box calculus for Petri nets [9] as well as process
calculi [4]. The computation aspects resemble classic functional programming techniques
including curry/uncurry, fold/unfold [7] and functional refactoring [25]. Hence, a full trans-
formation can be seen as a program translation, consisting of several program rephrasing
steps. There is also some correspondence to Morgan’s refinement rules [30]—although in
sequential rather than (controlled) concurrent setting.

In principle the transformation proofs could have been achieved using (observational)
bisimulations in a process algebra like CSP [20]. However, it is not possible to construct an
adequate representation of Hume’s rich expression layer in a process algebra, requiring the
introduction of further formalism, for example Schneider’s B/CSP combination [31]. Here,
we think a “lifted logic”, like TLA, that may be founded on any underpinning predicate
formalism, is more appropriate.

Previously, we have explored horizontal box integration in establishing informally that
FSM-Hume actually is finite state [29]. Different strategies for general formal verification
of Hume programs are first discussed in [11]. TLA is first used to verify programs in [19],
while Hierarchical Hume and linear recursion to box iteration with respect to scheduling are
discussed in [15].

The calculus has yet not been fully formalised or mechanised. However, our experience
with embedding (Hierarchical) Hume in TLA and Isabelle, and in ad-hoc mechanical trans-
formation verification of both flat and Hierarchical Hume [12, 13], gives us confidence that
full formalisation and mechanisation are achievable.

8 Conclusions and future work

We have presented a first approach towards a box calculus for Hume and Hierarchical
Hume programs, which introduces correct transformation by construction, semi-formalised
through structural operational semantics and TLA. We have then discussed rule derivation

Higher-Order Symb Comput

and the combination of rules into strategies, and presented the use of the calculus through
two HW-Hume transformation examples, as well as more generic parallelisation strategy.

Hierarchical Hume enables us to elide the potentially global impact of what should be
localised program changes by providing a framework for the identification and isolation of
distinct sub-systems within a program. Furthermore, the calculus supports the systematic
transformation of program components through the introduction, modification, elimination,
composition and separation of boxes and wires. A major strength of the calculus is that it
combines changes to computation aspects within boxes with those to coordination aspects
between boxes.

Our work has given us confidence in the calculus and allowed us to focus on the intri-
cate properties of the coordination layer, which are the same for all Hume levels. Extending
formalisation of the calculus will mainly require an extension of the purely functional trans-
formation rules, together with data refinement. This will allow us to tackle problems that
have substantive behavioural and hence resource cost implications, like the recursion to
iteration example previously discussed. We speculate that it may also be necessary to incor-
porate rules which are not behaviour preserving on their own, but which can be combined
into “correct” rules/strategies.

In developing the box calculus, our next step is to identify a sufficient set of rules which
is adequate for the classes of transformations between and within levels. We then seek to
elaborate new transformation strategies that may be used in particular to optimise pragmatic
properties of Hume programs. For example, we have shown that it is possible to apply the
box calculus to derive a generalised transformation for parallelising Hume boxes. However,
its application is clearly restricted to regular cases where splitting a computation can guaran-
tee balance across all processors. Far more sophisticated strategies are required to establish
or restore balance in irregular cases.

We have previously formalised TLA in the Isabelle theorem prover, and built both a
shallow embedding of Hume and Hierarchical Hume on top of this [12]. The calculus, in
turn, could be built on the shallow embedding, where each rule becomes a tactic, or a higher-
level proof plan. The disadvantage of this is the complicated witnesses used for rules which
changes the timing behaviour. These will have to be found and verified for each example.
A better solution would be to use a deep embedding, where each rule will only need to be
derived once. This approach is discussed below.

We envisage two further desirable developments of the box calculus. First of all, the ex-
amples considered above, of application of low-level rules, and of derivation of high-level
strategies, require deep manipulation of coordination and expression layers. This suggests
that scalable program manipulation with the box calculus would benefit strongly from fully
automatic transformation or considerable automated support for user directed transforma-
tion.

A fundamental requirement for automatic transformation is to characterise some goal
to which transformation is directed. One way of achieving this is to introduce a measure
through some well-founded relation. For example, this could be that computation always
moves from the expression layer into the coordination layer, to reduce complexity within a
box and enhance the possibility of accurate intra-box costing. A second approach is to derive
high-level generic strategies. This was illustrated in Sect. 6 where a strategy for parallel box
execution was introduced. We think that, in the first instance, it would be acceptable to derive
such high-level generic strategies manually. Strategy application could then again either be
automatic, or by the user selecting strategies manually—the latter would depend on a good
graphical user interface.

Independent of the two approaches, the automatic application of rules or strategies, re-
duces to checking the preconditions of rules. The strict topology and execution model of

Higher-Order Symb Comput

Hume programs provide strong guidance in structuring proofs, and we therefore believe
we can implement special purpose LCF-style tactics, or possibly proof plans (as in e.g. [8,
26]), to prove preconditions. To illustrate, [12] implements a special purpose (post facto)
transformation tactic for Hierarchical Hume in Isabelle/HOL.

Moreover, we expect many precondition, such as comparing termination conditions and
generalising rule set, to have algorithmic solution. We may also be able to rely on tech-
niques such as data-flow analysis, to establish algorithmically (some cases of) properties
like NoTime_Dependency. Additionally properties such as checking Blocked status could
by achieved by model checking: for example, we discuss model checking of Hume program
using TLA in [19]. Moreover, recent advances with SMT solvers should improve this fur-
ther, due to the finiteness of the Hume coordination layer. Thus, we believe we can achieve
a high degree of automation for this part of the process.

The second development is to directly augment the box calculus with the Hume cost
models to implement the notion of costing by construction. In costing by construction, box
calculus rules are augmented with cost judgements, so applying a rule to a program construct
of known cost produces a changed program with a known changed cost. Thus, in principle,
a program of required cost might be constructed from scratch by applying successive rules
from a single, empty, unwired box of base cost.

In turn, costing by constructing could enable cost-oriented program refinement, similar
to Aldinucci et al.’s [3] exploration of cost-directed parallelisation. The objective here would
be to modify an original program in a principled manner to minimise cost or, less stringently,
to meet cost requirements. Once again, this would benefit strongly from tool support. One
potential difficulty with automatic cost oriented refinement is that it may be necessary to go
through intermediate stages where costs temporarily increase. This is directly analogous to
the need in correctness-oriented transformation, alluded to above, to go through stages where
program correctness is temporarily compromised. This suggests that computer aid might be
a worthwhile first goal towards full automation of box calculus based transformation for
both correctness and cost.

Acknowledgements This paper is an elaboration of work first presented in [2, 14, 16].
This work has been supported by the EU FP6 EmBounded project (2005-8) and the UK EPSRC Is-

lay project (EP/F030592, EP/F030657, EP/F03072, and EP/F031017) “Adaptive Hardware Systems with
Novel Algorithmic Design and Guaranteed Resource Bounds” (2008-11). Gudmund Grov was supported
by a Heriot-Watt University James Watt Scholarship. He has also been employed by UK EPSRC Platform
grants EP/E005713/1 and EP/E035329/1 (Newcastle University) during this work. He is currently employed
by UK EPSRC grant EP/H024204/1 “AI4FM: the use of AI to automate proof search in Formal Methods”
(2010-2014).

We would like to thank Robert Pointon and Andrew Ireland for valuable discussions of transformation and
Hierarchical Hume. We would also like to thank Kevin Hammond, who built the original HAM interpreter
and conducted the first multi-core HAM experiments, and Abyd Al Zain who built the current multi-core
HAM interpreter.

Finally, we would like to than the anonymous referees for their constructive suggestions for improve-
ments.

Appendix A: Summary of functions

Alloc([S1, . . . , Sn],H) :: [N] × H → [Locs] × H
Accepts as input a list of natural numbers and a heap. Each number represent the size
of a data type. Note that for mutable data structures, such as lists, this will be the size
in the initial program configuration. For each such Si (i ∈ (1..n)), a heap region of size
Si is allocated, and the list of newly allocated locations [l1, . . . , ln] is returned, together
with the new heap.

Higher-Order Symb Comput

dom(h) :: H → P(Locs)
Returns the domain of heap h, i.e. dom(h) = {l | h(l) �= nil}. P is the powerset.

Gen_Rules(rs) :: [RS] → [RS]
Returns a generalisation of the rule set rs. This generalisation works by replacing pat-
tern variables by ‘_’, while the rest is unchanged. In an expression, everything but ‘∗’ is
replaced by ‘_’, and all function calls are removed. Furthermore, any duplicate matches
as a result of this are omitted.

Get_Box(B,bcs) :: Id × [BCS] → BCS
Returns box configuration with box id B from list bcs.

HeapLocs_Copy([l1, . . . , ln],H1,H2) :: [Locs] × H × H → H × [Locs]
A deep copy of the locations [l1, . . . , ln] of heap H1 into heap H2. A pair of the updated
H2 together with the locations of the copied elements is returned.

is_Blocked(C,B) :: PC × Id → B

Holds if box B cannot be executed.
is_Empty(H,L) :: H × [Loc] → B

Holds if ∀l ∈ L.H(l) = nil.
len(L) :: [α] → N

Returns the length of list L. α indicate type variable, thus the function is polymorphic.
Match_eq(rs1, rs2) :: [RS] × [RS] → B

Holds if the patterns of rs1 and rs1 match and consume the same inputs.
mutually_exclusive(rs) :: [RS] → B

Holds if the patterns of rule set rs are mutually exclusive.
NoTime_Dependency(B,bcs) :: Id × [BCS] → B

There is no “time dependency” from box B. This implies that we can add identity
boxes on the inputs and outputs of B, without this having any effect on the functional
behaviour of the Hume program. We use a restrictive form of this predicate where we
assume that NoTime_Dependency(B,bcs) holds iff:

– there are no *s in any patterns of boxes in bcs which the output of B is directly or
indirectly wired to, and

– B is not directly connected to an output in heap θ .
Out_Type_Size(e) :: Expr → N

Returns the return type of an expression/function.
Patt_of_Expr(e) :: Expr → Patt

Returns a pattern from an expression. The pattern will consist of (distinct) variable(s)
to be bound.

project([(p1 → e1), . . . , (pn → en)], [(p′
1 → e′

1), . . . , (p
′
m → e′

m)]) :: [RS] × [RS] → [RS]
Pairwise combines each pattern pi and p′

j with ei and e′
j where i ∈ 1..n and j ∈ 1..m.

For example,
project([p1 → e1], [p2 → e2,p3 → e3]) = [(p1,p2) → (e1, e2), (p1,p3) → (e1, e3)]

Terminates_eq(B1,B2,bcs) :: Id × Id × [BCS] → B

Holds if box B1 and B2 have the same termination conditions.
L1@L2 :: [α] × [α] → [α]

Concat list L1 in front of list L2.
�H F :: (PC → B) → PC → B

This represents the temporal ‘always’ operator, denoting that F :: PC → B must hold
henceforth, abstracted over the program specification. Due to the temporal property, a
possible world semantics is used, thus F is a predicate over a program configuration.
Translated into TLA, the meaning becomes:

(λ〈hw,hb,bcs〉. �H F) ⇔ (λ〈hw,hb,bcs〉. Inithw ∧ Inithb ∧ �(runbcs) ⇒ �F)

Higher-Order Symb Comput

Appendix B: Summary of rules and strategies

CaseE(B, i) :: Id × N → PC → PC
Moves case expression in match i of box B into B’s rule set (note that we do not need
bcs since this is an implicit argument).

CaseI(B, i, j) :: Id × N × N → PC → PC
Replaces match i to j in box B by a case-expression.

DupI(A,x, x ′,B, y, y ′) :: Id × Id × Id × Id × Id × Id → PC → PC
Duplicates wire connecting x of box A and y of B, with wire names x ′ (of A) and y ′
(of B) respectively.

HCompE(B, [i1, . . . , in], [o1, . . . , om],X,Y) :: Id × [Id] × [Id] × Id × Id → PC → PC
Horizontally de-composes box B into boxes X and Y , where X has inputs
[i1, . . . , in] and outputs [o1, . . . , om]. Y will have the inputs/output of B not in
[i1, . . . , in]/[o1, . . . , om].

HCompI(A,B,N) :: Id × Id × Id → PC → PC
Horizontally composes box A and box B into N . There is an implicit renaming of
variables in the patterns of B if there are name clashes with variables of A.

HeapLocs_WireFree([l1, . . . , ln]) :: [Locs] → PC → PC
Frees locations [l1, · · · ln] from the wire heap.

HeapLocs_BoxFree([l1, . . . , ln]) :: [Locs] → PC → PC
Frees locations [l1, . . . , ln] from the box heap.

HieE(B,N) :: Id × Id → PC → PC
Replaces B with it’s (only) child box and names this new box N .

HieI(B,N) :: Id × Id → PC → PC
Replaces box B by N which only holds B.

IdE(B) :: Id → PC → PC
Eliminates identity box B.

IdI(B, v,N) :: Id × Id × Id → PC → PC
Introduces an identity box N to wire connected to v of box B.

MatchE(B,n) :: Id → N → PC
Eliminates match n of box B.

MatchVarI(B, i, o) :: Id × Id × Id → PC → PC
Replaces constants in inputs i and output o by a variable.

Rename(A,N) :: Id × Id → PC → PC
Renames box A to N .

Replace
([A1, . . . ,An], [B1, . . . ,Bm]) :: [Id] × [Id] → PC → PC

Replaces boxes A1, . . . ,An by B1, . . . ,Bm.
ReplaceBoxHeap(H) :: H → PC → PC

Replaces the box heap by H .
ReplaceExpr(A,n, e) :: Id × N × Expr → PC → PC

The expression of match n of box A is replaced by e.
ReplaceWireHeap(H) :: H → PC → PC

Replaces the wire heap by H .
ThreadE(B,x, y) :: Id × Id × Id → PC → PC

Removes threading of input x and output y through box B.
Unfold(B,n,f) :: Id × Id × Id → PC → PC

Unfolds function f in match n of box B.
VCompE(B,N, [o1, . . . , on],M, [i1, . . . , in]) :: Id × Id × [Id] × Id × [Id] → PC → PC

Higher-Order Symb Comput

Vertically de-composes box B into two sequentially composed boxes N and M , where
N has B’s inputs and [o1, . . . , on] as outputs, and M has [i1, . . . , in] as inputs and B’s
outputs.

VCompI(F,S,B) :: Id × Id × Id → PC → PC
Vertically composes boxes F and S into box B. It assumes that F is directly followed
by S. The input of the new box B is the input of F and the output is the output of S.

VRename(A,x,N) :: Id × Id × Id → PC → PC
Renames wire x of box A to N .

WireE(A,x) :: Id × Id → PC → PC
Eliminates wire x of box.

WiresE(A,xs) :: Id × Id → PC → PC
Eliminates wires xs of box A.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput. Sci. 82(2), 253–284
(1991)

2. Al Zain, A., Michaelson, G., Hammond, K.: Multi-core parallelisation for Hume. In: Horvath, Z., Zsok,
V., Achten, P., Koopman, P. (eds.) Tenth Symposium on Trends in Functional Programming, Komarno,
Slovakia, 2–4 June 2009, pp. 131–142 (2009)

3. Aldinucci, M., Gorlatch, S., Lengauer, C., Pelagatti, S.: Towards parallel programming by transforma-
tion: the FAN skeleton framework. Int. J. Parallel Emerg. Distrib. Syst. 16(2), 87–121 (2001)

4. Baeten, J.C.M.: A brief history of process algebra. Theor. Comput. Sci. 335(2–3), 131–146 (2005)
5. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, New York (1997)
6. Breitinger, S., Loogen, R., Ortega Mallén, Y., Peña Marí, R.: Eden—the paradise of functional concur-

rent programming. In: EuroPar’96—European Conference on Parallel Processing, Lyon, France, August.
LNCS, vol. 1123, pp. 710–713. Springer, Berlin (1996)

7. Burstall, R., Darlington, J.: A transformation system for developing recursive programs. J. ACM 24(1),
44–67 (1977)

8. Cook, A., Ireland, A., Michaelson, G.J., Scaife, N.: Discovering applications of higher order functions
through proof planning. J. Form. Asp. Comput. 17(1), 38–57 (2005)

9. Devillers, R., Klaudel, H., Riemann, R.-C.: General parameterised refinement and recursion for the M-
net calculus. Theor. Comput. Sci. 300(1–3), 259–300 (2003)

10. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Reading (1999)
11. Grov, G.: Verifying the correctness of Hume programs—an approach combining algorithmic and deduc-

tive reasoning. In: Proceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE-05), pp. 444–447. ACM Press, New York (2005)

12. Grov, G.: Reasoning About Corectness Properties of a Coordination Language. PhD thesis, School of
Mathematical and Computer Sciences, Heriot-Watt University (2009)

13. Grov, G., Ireland, A.: Towards automated property discovery within Hume. In: Ireland, A., Kovacs, L.
(eds.) 2nd International Workshop on Invariant Generation (WING’09), pp. 45–59 (2009)

14. Grov, G., Michaelson, G.: Towards a box calculus for hierarchical Hume. In: Morazon, M. (ed.) Trends
in Functional Programming, vol. 8, pp. 71–88 (2008)

15. Grov, G., Pointon, R., Michaelson, G., Ireland, A.: Preserving coordination properties when transforming
concurrent system components. In: Coordination Models, Languages and Applications Track of the 23rd
Annual ACM Symposium on Applied Computing, 1515 Broadway, New York, March 2008, vol. 1,
pp. 126–127. The Association for Computing Machinery, Inc., New York (2008)

16. Grov, G., Michaelson, G., Al Zain, A.: Multi-core parallelisation of Hume through structured transfor-
mation. In: Draft Proceedings of 21st International Symposium on Implementation and Application of
Functional Languages, Seton-Hall University, New Jersey, September (2009)

17. Hammond, K., Michaelson, G.J.: Hume: a domain-specific language for real-time embedded systems.
In: Proc. Conf. Generative Programming and Component Engineering (GPCE ’03). Lecture Notes in
Computer Science, pp. 37–56. Springer, Berlin (2003)

18. Hammond, K., Ferdinand, C., Heckmann, R., Dyckhoff, R., Hoffmann, M., Jost, S., Loidl, H.-W.,
Michaelson, G., Pointon, R., Scaife, N., Sérot, J., Wallace, A.: Towards formally verifiable resource
bounds for real-time embedded systems. In: Proc. Workshop on Innovative Techniques for Certification
of Embedded Systems (2006)

Higher-Order Symb Comput

19. Hammond, K., Grov, G., Michaelson, G., Ireland, A.: Low-level programming in Hume: an exploration
of the HW-Hume level. In: International Conference on Implementation and Application of Functional
Languages, Budapest, Hungary, September 2006. LNCS, vol. 4449, pp. 91–107. Springer, Berlin (2007)

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, Englewood Cliffs
(1985)

21. Hutton, G., Wright, J.: Calculating an exceptional machine. In: Loidl, H.-W. (ed.) Trends in Functional
Programming, vol. 5, pp. 49–64 (2006)

22. Jost, S.: Formal Hume semantics. EmBounded Project Deliverable (2008). Deliverable D12. Available
at http://www.embounded.org/

23. Kesseler, M.H.G.: Constructing skeletons in clean: the bare bones. In: HPFC’95—Conference on High
Performance Functional Computing, Denver, CO, April 10–12, pp. 182–192 (1995)

24. Lamport, L.: The temporal logic of actions. ACM Toplas 16(3), 872–923 (1994)
25. Li, H., Thompson, S.: A comparative study of refactoring Haskell and Erlang programs. In: Proceedings

of 6th IEEE Workshop on Source Code Analysis and Manipulation, Philadelphia, USA, September,
pp. 197–206 (2006)

26. Madden, P.: Automated Program Transformation Through Proof Transformation. PhD thesis, University
of Edinburgh (1991)

27. Manna, Z.: Mathematical Theory of Computing. McGraw-Hill, New York (1974)
28. Michaelson, G., Scaife, N., Bristow, P., King, P.: Nested algorithmic skeletons from higher order func-

tions. Parallel Algorithms Appl. 16, 181–206 (2001). Special Issue on High Level Models and Languages
for Parallel Processing

29. Michaelson, G., Hammond, K., Sérot, J.: The finite state-ness of FSM-Hume. In: Trends in Functional
Programming, vol. 4, pp. 19–28. Intellect, Bristol (2004)

30. Morgan, C.: Programming from Specifications. Prentice-Hall, New York (1990)
31. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Form. Asp. Comput. 17(4)

(2005)
32. Trinder, P.W., Hammond, K., Loidl, H.-W., Peyton Jones, S.L.: Algorithm + strategy = parallelism. J.

Funct. Program. 8(1), 23–60 (1998)
33. Visser, E.: A survey of strategies in rule-based program transformation systems. J. Symb. Comput. 40(1),

831–873 (2005). Special issue on Reduction Strategies in Rewriting and Programming

http://www.embounded.org/

	Hume box calculus: robust system development through software transformation
	Abstract
	Introduction
	Overview
	Hume
	Hume execution
	Transforming Hume programs
	Hierarchical Hume

	Overview of the box calculus
	The rule syntax and semantics
	A framework for correctness verification

	Rule & strategy derivations
	Derivation of HieI
	Derivation of HieE
	Derivation of HCompI
	Derivation of VCompE
	Derivation of VCompI
	Derivation of ThreadE

	Examples
	Example 1: half-adder
	Example 2: a full adder

	Strategies for transforming Hume for parallelism
	A binary divide & conquer strategy
	A flattening strategy for dividing
	A flattening strategy for conquering
	A divide & conquer based strategy for 4 parallel boxes
	Applying the parallelising transformation

	Related work
	Conclusions and future work
	Acknowledgements
	Appendix A: Summary of functions
	Appendix B: Summary of rules and strategies
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

